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SViT: a Spectral Vision Transformer for the
Detection of REM Sleep Behavior Disorder

Katarina Mary Gunter, Andreas Brink-Kjær, Member, IEEE , Emmanuel Mignot, Helge B.D. Sørensen,
Senior Member, IEEE , Emmanuel During, and Poul Jennum

Abstract— REM sleep behavior disorder (RBD) is a
parasomnia with dream enactment and presence of REM
sleep without atonia (RSWA). RBD diagnosed manually via
polysomnography (PSG) scoring, which is time intensive.
Isolated RBD (iRBD) is also associated with a high prob-
ability of conversion to Parkinson’s disease. Diagnosis of
iRBD is largely based on clinical evaluation and subjective
PSG ratings of REM sleep without atonia. Here we show
the first application of a novel spectral vision transformer
(SViT) to PSG signals for detection of RBD and compare
the results to the more conventional convolutional neural
network architecture. The vision-based deep learning mod-
els were applied to scalograms (30 or 300 second windows)
of the PSG data (EEG, EMG and EOG) and the predictions
interpreted. A total of 153 RBD (96 iRBD and 57 RBD with
PD) and 190 controls were included in the study and 5-fold
bagged ensemble was used. Model outputs were analyzed
per-patient (averaged), with regards to sleep stage, and the
SViT was interpreted using integrated gradients. Models
had a similar per-epoch test F1 score. However, the vision
transformer had the best per-patient performance, with an
F1 score 0.87. Training the SViT on channel subsets, it
achieved an F1 score of 0.93 on a combination of EEG and
EOG. EMG is thought to have the highest diagnostic yield,
but interpretation of our model showed that high relevance
was placed on EEG and EOG, indicating these channels
could be included for diagnosing RBD.

Index Terms— Computer vision, deep learning, Parkin-
son’s disease, polysomnography, RBD, vision transformer.

I. INTRODUCTION

The prevalence Parkinson’s disease (PD) in the population,
along with other neurodegenerative diseases, is expected
to increase by 23% by 2025 [1], and yet the lack of
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understanding of the disease process limits treatment options.
Patients who are diagnosed with Rapid eye movement (REM)
sleep behavior disorder (RBD), present a unique population in
which to study the spread of neurodegeneration and associated
symptoms, as isolated RBD is associated with a high risk of
phenoconversion to one of the alpha-synucleopathies – most
commonly Parkinson’s disease (PD) and Dementia with Lewy
Bodies (DLB) but also Multiple System Atrophy (MSA) [2],
[3]. An unmet need is to diagnose these disorders before
significant detoriation is evident which has the potential for
preventive or protective treatment.

Rapid eye movement (REM) sleep behavior disorder
(RBD) is a sleep disorder mainly characterized by abnormal
motor activity during REM sleep, most noticeably exhibited
through dream enactment. Under normal conditions, except
for diaphragm and extraocular muscles, all skeletal muscle
motor activity signals are inhibited during REM sleep,
resulting in paralysis (or REM sleep atonia). The clinical
progression is also aligned with the theoretical Braak staging
of PD [4]. The exact mechanism behind phenoconversion is
not currently understood, and a greater understanding of this
process is needed to develop neuroprotective therapeutics.

Deep learning and computer vision has now evolved to the
point where multiple algorithms, including state-of-the-art
vision transformers, can achieve very high performance on a
whole host of problems, such as image classification, object
detection, image segmentation, and video analysis.

II. MOTIVATION

Attaining high performance when implementing commonly
used computer vision architectures is largely agreed to be
attributed to training on vast amounts of correctly labelled
image data. This is particularly true for the state-of-the-art
image transformer, which was shown to outperform other
algorithms, when pre-trained with a large amount of data
[5]. The data sets upon which state-of-the-art algorithms are
applied to in these papers are also curated for a particular task
and relatively structured. While the potential for deep learning
to have a significant effect on patient care and treatment is
there, the issues that arise with attaining or dealing with
real-world data sets from patients - such as consent, study
withdrawal and noise - result in clinical data sets which are

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3292231

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2023 at 05:56:10 UTC from IEEE Xplore.  Restrictions apply. 



2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

small, biased, and carry a risk of sample annotation error.
It is thus non-trivial to imply that these algorithms are even
remotely comparable to field-expert assessors, or that they
can achieve such high performance on real world clinical
data sets. PSG data is a good example of clinical data which
is typically noisy, and cohorts of RBD subjects are typically
small compared to more widespread disease groups, and
while the AASM definition of RBD is binary, the disorder is
not.

Currently, RBD is diagnosed via the visual inspection of
polysomnography (PSG) data – a range of physiological
signals recorded during sleep over one night. Visual
inspection of the PSG signals also requires an experienced
technician and trained sleep specialist. This method presents
a host of limitations, as manual annotations are subject
to inter-scorer variation, and it is not a truly objective
method. Visual inspection of the PSG signals also requires
an experienced technician and trained sleep specialist.
Furthermore, PSG-based diagnosis is currently based on
the combination of RSWA and clinical history of dream-
enactment or, alternatively, evidence of complex behaviors
and/or vocalizations during REM sleep identified on PSG
video recordings, per the American Academy of Sleep
Medicine guidelines [6]. However, recent studies suggest
that RBD may have a wider range of neurophysiological
abnormalities beyond REM sleep that could be detected on
PSG, such as loss of hypotonia during during non-REM
(NREM) sleep [7], changes in resting state EEG [8], ]
including micro-sleep event abnormalities [9], abnormal
EEG oscillations in NREM [10], EOG abnormalities [11],
and changes in autonomic activity, e.g. heart rate variability
(HRV) [12]. Thus, the discovery of novel PSG biomarkers
could potentially be used for diagnosis, and for advancing
our understanding of the neurodegenerative mechanisms
underlying synucleinopathies.

Given that many relevant aspects of physiological signals
are captured within the time-frequency domain, computer-
vision models were applied to the scalograms of the PSG
signals from patients with RBD and CC. While to date, mul-
tiple studies have used computer vision to analyse scalogram
data for the purpose of sleep stage classification [13], [14], to
our knowledge, there is limited published work on applying
computer vision to spectral data for classifying RBD and
none have applied a vision transformer to this type of data.
Ruffini et. al. showed that CNNs and RNNs could distinguish
between control subjects and RBD phenoconversion to PD,
based on scalograms [15]; however, this was based on only
a few minutes of resting state EEG, rather than PSG data
and a full electrode montage. Consequently, the aim of this
study was to implement novel deep learning architectures to
classify patients with RBD versus clinical controls without
RBD (CC). Here, both a simple convolutional neural network
(CNN) and a dilated CNN, are compared to the state-of-the-
art vision transformer. To understand the classification of a
model, as well as possibly elucidate novel pathophysiological
insights, an interpretation method was applied.

TABLE I
DEMOGRAPHICS

Variable STNF CC
[n=98]

STNF RBD
[n=71]

DCSM CC
[n=92]

DCSM
RBD
[n=82]

Age (mean
± SD)

63.8 ± 9.2 66.5 ± 9.1 51.5 ± 16.5 64.1 ±
12.5∗∗∗∗

Sex: Male
(%)

65 (66 %) 51 (72 %) 50 (54 %) 59 (72 %)

AHI (mean
± SD)

14.1 ± 13.0 23.3 ±
20.3∗

7.6 ± 9.8 12.1 ± 16.9

PLM (%) 11 (11 %) 0 (0 %)∗∗ 41 (45 %) 5 (1 %)∗∗∗∗
iRBD (%) — 61 (86 %) — 35 (43 %)
RBD+PD
(%)

— 10 (14 %) — 47 (57 %)

Sleep Stage
Wake % 19.7 22.8∗∗∗∗ 14.5 22.3
REM % 24.4 13.1 17.8 12.9∗∗∗∗
N1 % 10.6 8.3 8.4 12.0∗∗∗∗
N2 % 34.7 49.5 43.1 39.1∗∗∗∗
N3 % 10.7 5.6∗∗∗∗ 14.7 11.9∗∗∗∗

Summary of demographics, co-morbidities and patient distributions. STNF:
Stanford cohort. DCSM: Danish Center for Sleep Medicine cohort. AHI:
Apnea-hypopnea index. PLM: Periodic leg movement index > 15/hour. SD:
Standard deviation. Sleep stage indicated as percentage of total hypnogram
within defined stage in RBD (REM-Sleep Behaviour Disorder) and Controls
(C). Significance between cohort (STNF/DCSM) RBD and controls as deter-
mined by the Mann-Whitney U test for continuous variables and independent
t-test for binary variables. p < 0.0001 (****), p < 0.01 (**), p < 0.05 (*).
2 patients did not have hypnograms.

III. METHODS

A. Data
Large, good quality data sets within the medical sector

are sparse, particularly when it comes to in-clinic data.
The limitations behind this are multi-faceted: data sets are
limited by collection of data from patients and consent,
and data that is collected is affected by annotation error,
inter-scorer variability and noise related to the nature of
data from human subjects, e.g. artifarcts due to movement
and electrode displacements. This is particularly relevant
for PSG data. Thus, here two different data sets have been
collated, to evaluate whether a state-of-the-art model can
generalize to this type of data from multiple sources, as
well as an evaluation of if any value can be extracted using
advanced models in this low data, noisy regime. A total of
343 full night PSG recordings/patients were included, and
comprised of 96 iRBD, 57 RBD+PD and 190 CC. Data
was sourced from two different sleep clinics, the Danish
Center for Sleep Medicine (DCSM), Department of Clinical
Neurophysiology, Rigshospitalet, Denmark, and the Stanford
Center for Sleep Sciences and Medicine (STFD), Stanford
University, Redwood City, California. The demographics,
patient groupings, and co-morbidities are shown in Table I.
All participants provided written informed consent. This study
was approved by the Institutional Review Board of Stanford
(protocol #56218) and the Danish Health Authorities, as well
as the Data Protection Agency.

B. Preprocessing of Polysomnographic Signals
The v-PSG signals used as input to the neural network

models included electroencephalogram (EEG) (C3, C4, F3,
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Fig. 1. Illustration of data set up. Whole night scalograms were
computed for each patient for 6 EEG, 3 EMG and 3 EOG channels and
stacked. These stacks were then segmented to produce stack epochs
(e.g. 30 seconds) and one epoch stack is regarded as one input sample
to the model.

F4, O1, O2), electromyography (EMG) (chin, left tibia, and
right tibia), and electrooculography (EOG) (left and right)
signals. These were raw signals, without any removal of
artifacts or epochs. Scalograms were computed between
‘lights off’ and ‘lights on’ annotations. If ‘light off’ and
‘light on’ annotations were not available for a given patient,
sleep staging scores were used to truncate the signals to the
first and last sleep stage which was not scored as wake. As
the data set included different cohorts, PSG signals were
also standardized. Standardization was based on the most
common settings; thus, signals were re-sampled to 250 Hz,
using the polyphase method provided by the SciPy library,
and a standard unit of measurement (µV ) was set.

Furthermore, the unreferenced PSG signals were referenced
using the contralateral mastoid (for EEG and EOG signals).
As most of the relevant information given in EOG signals
is directional, a third EOG signal was also included, which
was created by subtracting the two given EOGs. This was
done to account for the loss of phase information which
occurs when calculating the scalogram of a signal. The
scalograms/scalograms were computed using the Continuous
Wavelet Transform (CWT), using the Morlet wavelet [16].
For each channel, 25 frequency bins were considered, ranging
from 0.31-33.8 Hz for EEG, 10.1-101.5 Hz for EMG, and 0.2-
31.2 Hz for EOG. Due to the computational expense of the
deep learning algorithms, the time-axis was re-sampled to 5Hz
using a moving average. The resulting dimensions were Nc x
Nf x window, where Nc is the number of channels (12), Nf is
the number of frequency bins, and window is the epoch length
(150 or 1500 samples, corresponding to 30 or 300 seconds).
An example of the data set up is shown in Figure 1.

C. Deep Learning Models and Training Methods
Three different deep learning model architectures were

explored for this work, two of which were convolutional neural
networks (CNN), which are commonly implemented for the
task of image classification. All models were implemented
from scratch, without pre-training. A simple CNN model
was implemented, based on the architecture shown in Cesari

Fig. 2. Illustration of transformer model architecture. CLS token:
classification token. MLP: Multi-Layer Perceptron (feed forward neural
network).

et al. [14], in which it attained high performance on similar
data. In Cesari et al., this network architecture was used for
sleep stage classification of short epochs of EEG and EOG
scalograms, in PD/PD+RBD patients. This architecture is
analogous to applying a frequency domain and subsequent
time-domain filter bank to the scalogram, a convolution over
frequency dimension and time dimension, respectively (see
Appendix II, Figure 5). In addition to the simple CNN, a more
complex model, as well as larger scalogram segmentation
window, were explored. To increase the receptive field
without increasing the computational cost, a dilated CNN
architecture was implemented. See Table VII in Appendix II
for an overview of the architecture.

While the dilated CNN results in a larger receptive field,
relevant non-local interactions will only be captured by the
model if the dilation factor is appropriate. The state-of-
the-art vision transformer model by-passes this problem.
Transformers have typically been used for natural language
processing (NLP) tasks, and also recently been used for
the task of image classification [5]. For a transformer, the
receptive field is the entire input, and the model can learn
all non-local interactions. With sufficient training data, the
vision transformer has been found to outperform more
traditional CNN architectures. An illustration of the adapted
spectral vision transformer (SViT) implemented in this work
is shown in Figure 2. See Appendix II for more details and
https://github.com/katarinamg/svit.

Libraries for CNNs and other image classification
architectures typically have a hard-coded 3 channel input,
and thus the architectures described were self-implemented to
be compatible with 12 channel input PSG data. All models
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were trained on segments of the full nights’ scalogram, as
inputting the entire scalogram as one sample would both
be very computationally expensive and would significantly
reduce the number of training samples. Input segments of 30
seconds were used in both the simple CNN and the vision
transformer, whereas the dilated CNN allowed for exploration
of how larger segments (5-minute windows) of the scalograms
would influence the classification. For comparison, the vision
transformer was also trained on 5-minute windows. The data
set was split to a 70:10:20 ratio, for training, validation, and
test, respectively. This split was on a patient basis, such that
all epochs belonging to a given patient were in the same set.
During training, a batch size of 64 for the CNN models and
30 second transformer, and 8 for the 5 minute transformer,
was used. To increase the stability of training, a 5-model
ensemble was implemented, whereby the model was trained
and validated on different splits of the 80% allocated to
train/validation. The models were trained and evaluated on
the validation set after each training epoch, and ensembled to
give a robust performance metric of each architecture on the
test set. Early stopping was used with a patience of 3 epochs.
The binary cross-entropy loss function was used to optimize
the models and as the evaluation metric on the validation set.

All models were optimized using the adaptive moment
estimation (Adam) [17]. A cosine learning rate decay
scheduler was also implemented, which has been found to
often outperform stepwise decay [18]. A dropout of 10%
was also applied to all three models. Data augmentation
has also been shown to be particularly useful for improving
the robustness of image classification problems and when
dealing with low data problems; here a scalogram specific
augmentation is applied to the input samples. SpecAugment
[19], a method developed by Google Brain, applies random
time and frequency masking to the input samples and was
applied during training with a maximum frequency and time
mask of 15 Hz and 10 seconds, respectively.

D. Model Evaluation

Both the CNNs and transformers were evaluated on the test
set by ensembling the 5 models trained on different splits of
data. The geometric mean was used combine the predictions
on the test set from each ensemble model. The evaluation was
based on the F1 score metric, rather than the accuracy, as this
encompasses both precision and recall. Thus, the raw logit
outputs from the models were converted to binary labels by
applying the sigmoid function and thresholding the resulting
probabilities at 0.5 (prediction 0.5 = 1). The F1 score was
calculated for each class, as well as overall (weighted average).

The performance of each model was also evaluated on
a per-patient basis, by averaging the predicted probabilities
over an entire night. The patient probability output was then
thresholded, using a threshold which was grid-optimized on
the validation set to maximise the F1 score (average threshold
found from each of the 5 train/validation split models).

TABLE II
MODEL PERFORMANCE

Per Epoch RBD CC Overall
Simple CNN 0.78 0.74 0.77
Dilated CNN 0.73 0.77 0.75
SViTa 0.77 0.80 0.79
Large SViTb 0.81 0.83 0.82
Per Patient
Simple CNN 0.83 0.82 0.83
Dilated CNN 0.78 0.78 0.78
SViT 0.82 0.81 0.81
Large SViT 0.87 0.87 0.87
Performance of models per epoch and per patient, given as F1 score.
Results given as F1 score on each class as well as a weighted average.
aSpectral Vision transformer. b 5-Minute Spectral Vision transformer.

E. Interpretation of SViT

Deep learning models are often described as ‘black box’
models, and few studies interpret what a given model is
basing its predictions on. However, there are ways in which
deep learning models can be interpreted [20]. In addition
to the evaluation of the models, the predictions of the large
(5-minute) vision transformer (SViT) were interpreted using
integrated gradients [21], which generates a relevance score for
each input pixel of the scalogram inputs. The relevance scores
were averaged across time to produce relevancy-frequency
plots for each PSG channel. Briefly, integrated gradients are
calculated by integrating the gradient with respect to the
input at all points along the path from a baseline (x

′
) to

the input (x). The baseline given was a zero scalar which
corresponds to each input. The final importance output is
multiplied by the difference between x and x

′
(input-baseline).

In addition to the interpretation of the large SViT, the
predictions of this model were analyzed in relation to sleep
stages. For each class, the performance as given by the F1
score of the given class for wake, REM, N1, N2 and N3 sleep
was calculated. As the output was given in 5 minute windows,
the prediction was repeated for each 30 second sleep stage
within the window.

IV. RESULTS

The performance of each type of ensembled model on
epochs of the data are shown in Table II. Interestingly, the
small SViT had only a very minor increase in F1 score
(0.79) compared to the simple CNN (0.77). The dilated CNN
had the lowest performance, despite the increase in window
size. The state-of-the-art large SViT obtained the highest F1
score (0.82), an improvement over the other models. The
performance of the models when optimizing the threshold
for a per patient prediction can be found in Table II. We
again see the same trend in performance: and the large vision
transformer again outperforms the other models (F1 score of
0.87).

As we are exploring the effect of applying these models
to data from multiple sources, the F1 scores of all three
models with regards to the data cohort (DCSM and STFD)
are given in Table III. All models achieved a significantly
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TABLE III
COHORT PERFORMANCE

Model STFDa DCSMb STFD PPc DCSM PPd

Simple CNN 0.88 0.57 0.86 0.78
Dilated CNN 0.84 0.59 0.86 0.67
SViT 0.91 0.58 0.93 0.63
Large SViT 0.92 0.67 0.95 0.74
Performance of models per epoch and per patient on each cohort, given
as weighted average F1 score. aStanford cohort per epoch. bDanish
Center for Sleep Medicine cohort per epoch. cStanford cohort per
patient. dDanish Center for Sleep Medicine cohort per patient.

TABLE IV
LARGE SVIT CHANNEL PERFORMANCE

Channel Subset RBD CC Overall
EEG 0.87 0.89 0.88
EMG 0.77 0.80 0.78
EOG 0.87 0.87 0.87
EEG+EMG 0.86 0.85 0.86
EEG+EOG 0.93 0.92 0.93
EMG+EOG 0.80 0.82 0.81
Performance of Large Spectral Vision Transformer (SViT) channel
subset models per patient given as weighted average F1 score.

higher performance in the STFD cohort, with the large SViT
achieving an F1 score of 0.95 on a per patient basis.

The large SViT architecture was also explored in relation to
channel inputs. Channel subsets and per patient performance
is shown in Table IV. Interestingly, the combination of EEG
and EOG resulted in the highest weighted F1 score (0.93),
and EMG alone had the lowest performance (Weighted F1:
0.78).

The outputs of the large SViT were also investigated with
regards to manual sleep stage scoring. The F1 score for the
test set, within each sleep stage, are outlined in Table V. We
see the highest F1 score in REM and N2, while wake and
N1 are not significantly lower. An example of the probability
output from the large SViT in one RBD and one control
patient with the corresponding hypnogram is shown in Figure
3.

To further investigate the large SViT, the average relevancy
score for each channel type, over the frequency range,
are plotted in Figure 4. An attribution above 0 indicates
relevancy for predicting RBD, whereas an attribution below 0
indicates relevancy for classifying data as a CC. The raw and
absolute relevance scores for given EEG frequency ranges
are summarized in Table VI.

TABLE V
SLEEP STAGE RBD ACCURACY

Large SViT Wake REMa N1b N2c N3d
RBD 0.84 0.79 0.82 0.85 0.59
CC 0.81 0.89 0.83 0.82 0.77
Weighted 0.83 0.85 0.82 0.84 0.70
F1 score with respects to sleep stage using the Large spectral vision
transformer. aRapid Eye Movement, bNon-REM 1, cNon-REM 2, dNon-
REM 3.
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Fig. 3. Example of probability of RBD in one RBD and one control (CC)
subject with corresponding hypnogram.
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frequency. SEM: Standard error of the mean.
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TABLE VI
FREQUENCY BANDS RELEVANCY

Frequency Band Absolute Relevancy Raw Relevancy
Delta 3.8× 10−4 −3.5× 10−4

Theta 4.6× 10−4 −3.9× 10−4

Alpha 5.2× 10−4 5.2× 10−4

Beta 1.1× 10−3 −3.5× 10−6

Average absolute and raw relevancy scores for the Large spectral vision
transformer in EEG channels at corresponding frequency ranges.

V. DISCUSSION

A. RBD Detection Performance

We explored whether a state-of-the-art model could achieve
high performance on PSG data, which is known to suffer
from the limitations often associated with medical data.
Furthermore, current methods for diagnosing of RBD by
PSG rely exclusively on the motor expression of the disorder,
namely RSWA and behaviors observed during video recording
while in REM sleep. As former studies have proven that there
are several other abnormalities in EEG and EOG signals, we
evaluated the use of EEG and other correlated PSG channels
to test if these contain relevant information for RBD detection
and found that these measures are useful for diagnostic
purposes.

Interestingly, the three deep learning model architectures
implemented in this work, the large vision transformer
obtained the highest per patient classification F1 score of
0.87, when distinguishing between RBD and CC patients. This
shows that state-of-the-art models which have been created
based on large amounts of good quality data, should still
be considered when dealing with the small, noisy data regime.

We can see from Table III that there was a significant
discrepancy between the per-epoch performance in the STFD
and DCSM dataset, with overall per patient F1 scores of
0.95 and 0.74, respectively. This may be due to differences
in the evaluation of RSWA between centers, and/or signal
quality. Individuals in the STFD cohort were also older,
which may be associated with a more advanced stage of
neurodegeneration as compared to DCSM where cases with
RSWA were included. The small CNN model and small SViT
had a similar performance, with only a small difference in
the per-epoch and per-patient performance, while the dilated
CNN had the lowest F1 score - despite the dilated CNN
using a larger epoch window (5 minutes). The dilated CNN
and simple CNN obtained per patient F1 scores of 0.78 and
0.83, respectively. This may be due to using a dilated CNN
with a dilation factor which is not able to capture the relevant
non-local interactions within the scalogram segment, as the
superior performance of the large SViT would suggest that a
larger window is informative for classification. When varying
the channel subset as input to the large SViT, the EEG
and EOG attains the highest performance, and comfortably
beats the full channel set, likely indicating that including all
channels may lead to over-fitting.

As there were significant differences in AHI and age
between the DCSM RBD and control groups, we examined
whether this altered the ability of the model to classify sub-
jects. The association between these variables and the binary
output were tested using logistic regression models, and the
coefficients and associated p-values reported (see Appendix I).
We found that neither AHI or age had a significant effect.

B. Physiological Interpretation
While the large SViT cannot be directly compared

to individual 30-second epochs of the manually staged
hypnograms, the 5-minute predictions were analysed in
relation to each sleep stage present within the window. Table
V shows that the F1 score in each sleep stage closely follows
what would be expected based on the literature - with the
highest F1 score within REM sleep, followed by N2 and
wake. As these stages could all be included in a prediction
window, concrete conclusions cannot be drawn. The example
in Figure 3 of the probability output of the model shows that
probability of RBD is high in sections extended periods of
wake and REM sleep. PD has previously been shown to cause
alterations in the ratio of all sleep stages compared to healthy
controls [22], [23] – thus one may speculate as to whether
the models are picking up on features related to PD from the
RBD with PD group. However, given the analysis shown in
Table III and the ratio of iRBD to RBD with PD, it is unlikely
that including these patients would have such a major effect
on the relevancy scores. In the DCSM and STNF cohort we
saw significant differences in the percentage of REM/N1/N2
and wake, respectively, between RBD and control subjects,
which may be contributing to the high accuracy within these
sleep stages. However, we also see significant difference in
the amount of N3 sleep, which had the lowest F1 score,
strengthening the indication that fewer physiological markers
of the disease are present within this stage.

In relation to the channel and frequency relevancy, for
EEG channels, a high positive relevancy is attributed to low
frequencies, specifically within the delta and theta range
(0.5-8 Hz). This is also reflected in the raw relevancy scores,
with a high relevance for prediction of RBD found within the
theta band. Both results correspond well with EEG slowing,
a known marker of RBD [24]. We see a similar trend with
the attribution scores for the EOG channels, with a very high
relevance score for low frequencies (0.2 – 4 Hz), and in
fact obtain the highest relevancy scores overall for the EOG
channels within this range. This may reflect previous findings
of changes in eye movements in patients with RBD and PD,
with PD showing more eye movement than controls during
N2 and REM sleep, and RBD showing less eye movement
than controls during wake [8]. The relevancy scores for EMG
channels are less informative. Given that PLM may be a
confounder, we also plot the relevancy for the chin channel
alone - however, this is not significantly different from the
average trend.
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C. Comparison with Previous Works

While other studies [25] have obtained similar performance
using simpler model architectures using various PSG channels,
it should be noted that it is difficult to compare automatic
methods for the detection of RBD without applying all
methods to the same dataset, as PSG datasets in RBD tend to
be small and heterogenous. However, other measures for RBD
detection have been wide-spread, including, but not limited
to, frequency component analysis [26], topic modelling [27],
sleep spindle density [9], and arousal characteristics [28].
These studies focus on certain elements related to PSG data
and rely on feature extraction. The method presented here
combines EEG, EMG and EOG and requires no feature
extraction or engineering and is also relatively interpretable,
and methods such as this are more attractive for biomarker
discovery. The interpretation of the large SViT implies
that EEG and EOG have high relevance for classification,
suggesting that these modalities may be used rather than
EMG for diagnosis.

A potential use for these findings is that diagnosing RBD
can further be improved including EEG and EOG channels,
and potentially solely using these channels for identification;
this has implication for simpler diagnostic devices identifying
RBD and earlier diagnosis of PD and related disorders.

D. Limitations and Future Work

One aspect of the picture that this study lacks, is
incorporating sleep architecture into the model. This could
be implemented by way of including both a CNN and
recurrent neural network (RNN) in the method, as can
be seen for PSG data in Brink-Kjær et al. [29], or by
way of using a transformer to classify the entire nights
scalogram using “chunked” data. However, this is likely not
ideal when dealing with a small data set – as one would
be optimizing the model based on only a few hundred samples.

There was a clear difference in the performance on the
two cohorts. The reason for this is unclear, but may be due
to data quality and recording methods - which often differ
between countries or sites. Furthermore, we cannot draw clear
conclusions from the sleep stage analysis due to the nature
of the predictions on larger windows. We hypothesize that
including sleep stage information within the model would
increase the performance, and in terms of biomarkers, sleep
stage specific models may be informative. Here we also use
only a subset of the electrophysiological signals collected
during the polysomnography, and the inclusion of other
signals and information (e.g. heart rate variability) could
result in a higher F1 score. However, this is outside the scope
of this work. More analysis on which epochs were correctly
or incorrectly classified could also provide more information
on specific wave forms which contribute to the prediction. By
adapting existing packages, such as GradCAM to this novel
transformer would allow us to visualise the attributions in

given epochs.

E. Conclusion
In this paper we implemented an adapted spectral vision

transformer (SViT), which can be directly applied to N-
Channel PSG data, which we show to comfortably beat a
baseline CNN and a dilated CNN, when applied to 5-minute
scalogram windows, a on a relatively small and noisy PSG data
set. We also investigated whether a novel image classification
model interpretation methods can be applied to PSG data
to discover new biomarkers which could be of interest to
clinicians and medical researchers. Whereas diagnostic criteria
for RBD exclusively relies on abnormal RSWA and behaviors
demonstrated during REM sleep, our model found relevant
biomarkers are also expressed during NREM sleep, and this
should be further investigated.

APPENDIX I
DEMOGRAPHICS

To test whether the significant difference in age and the
apnea-hypopnea index played a significant role in the output
of the model, both the raw logit output from the model and
the demographic variable were fed into a logistic regression
model. The model was fit to predict the binary output. This
method resulted in three models with different input combi-
nations: logit alone, logit and age, logit and AHI. To examine
how this affected the prediction, the weight applied in the
logit only model was compared to the weights applied in
the logit+variable models. There was no reduction in the
weight applied to the logit, indicating the the variables are
not correlated. Furthermore, we also examined the 95% CI, as
well as p-values, of the coefficients. Table VII shows that the
difference in these variables did not have a significant effect
the models ability to classify subjects.

TABLE VII
LOGISTIC REGRESSION ANALYSIS OF ASSOCIATION BETWEEN

DEMOGRAPHIC VARIABLES AND MODEL OUTPUT

Model Coefficients 95% CI p-value
Logit 0.57 [0.26-0.90] 4.3× 10−4

Logit + Age 0.64, 0.05 [0.31-0.96, -0.01-0.13] 1.2× 10−4,
0.11

Logit + AHI 0.57, -0.01 [0.26-0.92, -0.04-0.03] 4.6× 10−4,
0.71

Association between transformer output and variables using logistic re-
gression.

APPENDIX II
MODEL ARCHITECTURES AND PERFORMANCE

In Figure 5. the architecture of the simple CNN is
illustrated. A drop out of 10% was applied prior to the
last fully connected layer. Table VIII shows an overview
of the dilated CNN. Drop out of 10% was applied prior to
the second fully connected layer and prior to the last fully
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TABLE VIII
DILATED CNN

Layer 1 2 3 4 5 6 7 8 9
Conva 96x1 1x3 1x3 1x3 1x3 1x3 1x3 1x3 1x1
Dilateb 1x1 1x1 1x1 1x2 1x4 1x8 1x16 1x1 1x1
Stridec 1x1 1x2 1x1 1x2 1x1 1x1 1x1 1x1 1x1
Outputd 1x300 1x149 1x147 1x72 1x64 1x48 1x16 1x14 1x14
Fielde 96x1 96x3 96x5 96x13 96x21 96x38 96x71 96x73 96x73
Overview of dilated convolutional neural network (CNN) architecture. aSize
of convolutional kernel. bDilation factor. cStride (or step size) of the kernel
over the input. dSize of the output from convolution. eExpansion of the
receptive field of the input at each layer.

TABLE IX
FULL SUMMARY OF PERFORMANCE

Large SViT Fold
1

Fold
2

Fold
3

Fold
4

Fold
5

Train Loss 0.43 0.21 0.34 0.41 0.30
Validation Loss 0.35 0.45 0.49 0.43 0.37
Train F1 0.79 0.91 0.81 0.80 0.87
Validation F1 0.85 0.79 0.76 0.80 0.83
Test Loss 0.44 0.61 0.42 0.52 0.49
Full summary of the performance of each of the 5 fold models using the
Large spectral vision transformer architecture.

connected layer.

As in the original ViT [5], here we consider only the
encoder. 1 second slices of the input sample were split into (N
x W x H) patches, where N is the number of channels, W is the
width (1 second) and H is the number of frequency bins. The
patches were flattened and mapped to the constant embedding
vector length (768) using a linear projection. A classification
token is added at this stage. The encoder included 4 layers,
each consisting of alternating layers of LayerNorm, MultiHead
Attention, an MLP layer. The final output from the encoder
was then send through a final linear projection to give the
output class. Each MultiHead Attention layer consisted of 12
heads.

Fig. 5. : Illustration of simple convolution neural network model archi-
tecture. Input stack - stack of scalograms with dimensions frequency
bins (f bins: 96), time bins (t bins: 30), and number of channels, or
scalograms in the stack (nc). Convolutional layers, conv, followed by
rectified unit activation functions, RELU, and three fully connected layers
(red).

In Table IX we show the loss and per epoch F1 score on
the training and validation for each of the 5 SViT models.
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