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Abstract— We introduce LYSTO, the Lymphocyte 
Assessment Hackathon, which was held in conjunction 
with the MICCAI 2019 Conference in Shenzhen (China). The 
competition required participants to automatically assess 
the number of lymphocytes, in particular T-cells, in images 
of colon, breast, and prostate cancer stained with CD3 and 
CD8 immunohistochemistry. Differently from other 
challenges setup in medical image analysis, LYSTO 
participants were solely given a few hours to address this 
problem. In this paper, we describe the goal and the 
multi-phase organization of the hackathon; we describe the 
proposed methods and the on-site results. Additionally, we 
present post-competition results where we show how the 
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presented methods perform on an independent set of lung 
cancer slides, which was not part of the initial competition, 
as well as a comparison on lymphocyte assessment 
between presented methods and a panel of pathologists. 
We show that some of the participants were capable to 
achieve pathologist-level performance at lymphocyte 
assessment. After the hackathon, LYSTO was left as a 
lightweight plug-and-play benchmark dataset on 
grand-challenge website, together with an automatic 
evaluation platform. LYSTO has supported a number of 
research in lymphocyte assessment in oncology. LYSTO 
will be a long-lasting educational challenge for deep 
learning and digital pathology, it is available at 
https://lysto.grand-challenge.org/. 

 
Index Terms— Lymphocyte assessment, computational 

pathology, artificial intelligence, computer-aided diagnosis 

I. INTRODUCTION 

Cancer and the host immune system have a complex, yet not 

fully understood, interplay. Over the years, clinicians and 

researchers in immuno-oncology have been investigating 

mechanisms involved in the tumor-immune microenvironment 

(TME), aiming at designing biomarkers that can capture a 

snapshot of such a scenario, and use those biomarkers to 

address one of the stringent questions in oncology: what to do 

next? 

Over the years, the role of immune cells, and in particular the 

tumor-infiltrating lymphocytes (TILs), has increasingly been 

investigated[1]. Within the context of TILs in histopathology, 

two main research lines can be identified. The first line relies on 

the analysis of standard hematoxylin and eosin (H&E) stained 

histopathology slides and the quantification of a TIL score[2], 

estimated as the percentage of tumor-associated stroma region 

covered by lymphocytes and plasma cells. Several studies have 

shown that such a TIL score has prognostic and predictive 

value in breast cancer [3] as well as across a number of cancer 

types[4]. 

The second line relies on immunohistochemistry (IHC) to 

analyze T-cells, a subset of lymphocytes. Using IHC, specific 

types of cells can be identified in histopathology slides by 

targeting them via antigen-antibody interactions, and using a 

specific chromogen to distinguish them from other cells. In the 

context of lymphocyte assessment, the Immunoscore[5] was 

promoted to focus on T-cells that are positive to CD3 (all 

LYSTO: The Lymphocyte Assessment 
Hackathon and Benchmark Dataset 

Yiping Jiao, Jeroen van der Laak, Shadi Albarqouni, Zhang Li, Tao Tan,  
Abhir Bhalerao, Shenghua Cheng, Jiabo Ma, Johnathan Pocock, 

Josien P.W. Pluim, Navid Alemi Koohbanani, Raja Muhammad Saad Bashir,  
Shan E Ahmed Raza, Sibo Liu, Simon Graham, Suzanne Wetstein, Syed Ali Khurram,  

Xiuli Liu, Nasir Rajpoot, Mitko Veta, Francesco Ciompi 

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3327489

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://lysto.grand-challenge.org/


JIAO et al.: The Lymphocyte Assessment Hackathon 

 

T-cells) and CD8 (cytotoxic T-cells) IHC markers, in particular 

at the tumor invasive front and in the tumor bulk. 

Both the Immunoscore and TIL scoring approaches assess 

the density of immune cells as a biomarker, which therefore 

relies on the counting of lymphocytes. This task suffers from 

implicit variability and tediousness when performed by 

pathologists, suggesting the potential value of a 

computer-aided system. However, despite the simple nature of 

this task, it has been shown recently[6] that detecting 

lymphocytes in IHC goes beyond simply "counting dark-brown 

spots". Moreover, IHC slides in daily practice contain 

challenging regions such as dense clusters, possibly 

background staining, and presence of artifacts such as ink (see 

examples in Figure 1). Additionally, IHC also suffers from 

variation in tissue preparation, staining and scanning that is 

implicitly present across different pathology laboratories. 

With the Lymphocyte Assessment Hackathon (LYSTO) as 

well as the benchmark dataset, we proposed and fostered the 

automated quantification of CD3 and CD8 positive cells in IHC 

images across different cancer types, including breast, colon, 

and prostate cancer. Hosted in 2019, this paper looks back at the 

organization, sample acquisition, and performance of 

developed frameworks during the event. We also reported 

recent progresses based on post-event submissions to our 

online platform. 

Compared to previous challenges in this field, the LYSTO 

hackathon has two main novel aspects. First, it formulated the 

problem of cell counting in a weakly supervised learning 

fashion, where a single count is provided for each image, rather 

than exhausted annotations for individual cell. Second, it 

challenged participants to develop a solution in a short amount 

of time, namely a few hours, which justifies the ‘hackathon’ 

epithet, as well as its name, partly inspired by the word ‘listo’, a 

Spanish term for ‘clever’, as well as ‘ready/finished’. 

Different from regular challenges in medical image analysis, 

LYSTO did not enforce specific restrictions on models, training 

schemes, or task types. As a one-day event in the form of 

hackathon or proof of concept, LYSTO encourages participants 

to focus on the problem, and try out any strategy that could be 

helpful. Some of the submitted methods have achieved on par 

performance with senior pathologists, suggesting the feasibility 

of applying automated methods for IHC evaluation. LYSTO 

will serve as a long-lasting educational dataset for machine 

learning and computational pathology. 

II. RELATED WORKS 

In this section, we discuss the evaluation of lymphocytes in 

H&E and immunohistochemistry (IHC) slides. Lymphocyte 

evaluation, as a subtask in IHC image analysis, may also be 

related to fine-grained hotspot detection[7] or multi-slide 

registration[8]. We will focus on IHC scoring and summarize 

challenge competitions or available datasets similar to LYSTO. 

A. Lymphocyte assessment in H&E slides 

Cell quantification via visual estimation is known to suffer 

from intra- and inter-observer variability. For this reason, 

recent studies proposed the use of deep learning to analyze 

digital pathology slides stained with H&E. In a recent work on 

breast cancer, high-TIL regions are recognized, and a deep 

learning model is then developed to quantify the TIL proportion 

[9]. The spatial arrangement of TILs has shown to be correlated 

with the tumor recurrence in lung cancer [10]. Although 

convenient, it is infeasible to recognize various lymphocyte 

subtypes in H&E slides, limiting more precise and quantitative 

analyses of the immune microenvironment. 

B. IHC Scoring 

Subtypes of lymphocytes can be identified through IHC 

staining. Since the recognition is mainly based on color, many 

methods can be generalized to other markers. We categorized 

current IHC scoring methods into color deconvolution-based 

methods and deep learning-based methods. The latter can also 

be further categorized into classification, segmentation, and 

detection frameworks. 

Color Deconvolution-based Methods: The light absorbance 

contribution of Hematoxylin, Eosin, and Diaminobenzidine  

(DAB) can be separated in optical density space using 

Lambert-Beer's law [11]. The positive objects can be then 

recognized in the DAB channel, with different stain levels and 

further form an overall score [12]. Specific methods, for 

example, local adaptive threshold can be introduced for heavy 

staining cases, where the absorption is non-linear [13]. 

Except for thresholding, machine learning methods, such as 

shallow neural networks or decision trees can also be used for 

positive cell detection [14], [15]. For more complex shapes 

such as neurons, super-pixel segmentation is recommended as a 

preprocessing procedure[16]. For membrane staining patterns 

such as HER2, post-processing using image thinning was 

proposed in [17], which can accurately distinguish between 

HER2 0 and 1+. Color deconvolution can also be combined 

with deep networks used for cell detection or segmentation, as 

in the works on Ki-67 and HER2 scoring [18], [19]. 

Because of the simplicity in calculation, many open-source 

software is based on color deconvolution. ImmunoRatio was 

initially developed for scoring of ER, PR, and Ki-67 in breast 

cancer[20]. It based on color deconvolution, adaptive 

thresholding, and watershed segmentation. QuPath provides 

algorithms for multiple markers, such as CD3 and CD8, using 

peak detection after color deconvolution; it further construct a 

decision tree to determine p53 score [14]. 

Deep Learning-based Methods: Classification models are 

suitable for predicting image-level labels, and are therefore 

Fig. 1: The LYSTO dataset. (a) Example image patch used in the 

experiment. The label is calculated as the positive cells number in the 
central 267x267 pixel. (b) Label distribution in training set and test set. (c) 

Sample examples used in the hackathon. The number at the right bottom of 

each image indicates the reference standard.  
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commonly used for classifying staining patterns of individual 

cells or estimating image-level IHC scores. [21] used Gamma 

mixture models to detect potential nuclei in Ki-67 images, and 

established a convolutional neural network (CNN) to classify 

single-nuclei image patches as positive or negative; the F1 

score reaches 0.91 compared with pathologists. The positive 

class can be further extended to as weak, moderate, and strong 

classes, and forming image-level score using methods like 

voting. This strategy has been validated for HER2 scoring in 

breast cancer [22], [23], and simpler network (e.g., VGG or 

network of few layers) are recommended rather than complex 

networks such as Xception. 

Similar to color deconvolution, semantic segmentation 

models produce pixel-level segmentation maps as intermediate 

results, which are further post-processed by thresholding or 

watershed to identify instances. This pipeline has been used in 

PathoNet to evaluate Ki-67 score in breast cancer [24]. 

Sometimes the positive area ratio can be directly used without 

instance segmentation, for example, evaluating the PD-L1 

score in a previous work [25].  

Detection models or instance segmentation models can 

directly obtain bounding boxes or instance masks, making it 

easy to count positive cells. YOLLO[26], based on the popular 

object detection model YOLO, is a detector for CD8+ 

lymphocytes and robust against brown artifacts. The locality 

sensitive model (LSM) introduces restrictions towards sparsity 

in nucleus center, which has been used for CD8+ lymphocyte 

detection[27]. [28] established a detector for CD3+ cells, tumor 

cells, and other cells based on RetinaNet, which was 

extensively validated in head and neck cancer, lung cancer, 

breast cancer, and gastric cancer. Nevertheless, challenges from 

stain artifacts, tissue folds, and dense regions are persisted. 

Interestingly, some studies have found that combining 

semantic segmentation with traditional morphological 

algorithms can result in better performance than detection 

frameworks. In protein expression analysis of colorectal cancer, 

a U-Net-based segmentation model with watershed 

postprocessing outperformed Detectron2 pipeline [29]. 

Similarly, a U-Net with peak detection also outperformed 

YOLLO and LSM [27] in CD3 and CD8 scoring. Here, we 

emphasize the discovered trend, that more complex methods 

(including model structure and workflow) may not necessarily 

yield better results.  

C. Related Datasets and Challenges 

There are already some publicly available datasets for IHC 

image analysis, which include not only CD3, CD8 staining, but 

also Ki-67, PD-L1, and so on.  

Gastric CD3: This dataset is released with a recent work for 

CD3+ lymphocytes infiltration in gastric cancer [30]. It 

contains 2717 patches, with a size of 70x70 pixels. The positive 

patches contain positive lymphocytes, while the negative 

patches represent the background or other cells. 

SHIDC-B-Ki-67: The dataset consists of 2357 images with a 

size of 1228x1228 pixels, which are obtained from invasive 

ductal carcinoma of the breast, stained with Ki-67 and scanned 

at 400X [24]. The entire dataset contains annotations of 

162,998 cell locations, including three categories, namely 

Ki-67 positive, Ki-67 negative, and lymphocytes.  

Breast PD-L1: It is released with a ring-study of PD-L1 IHC 

of invasive breast cancer, which involves 109 IHC images 

scored by 31 pathologists[31]. Stain intensity scores are given 

on image-level, ranging from 1 to 4. The size of the images is 

2160x2160 pixels, with a resolution of 0.524 µm/pixel. 

HER2 Challenge: It is a challenge organized by the Tissue 

Image Analytics (TIA) Centre at Warwick University, which 

contains nearly 100 whole-slide images of HER2-stained breast 

cancer (100,000 x 80,000 pixels) [32]. Ground-truth labels are 

provided for each WSI, with scores of 0, 1+, 2+, and 3+. 

Pan-cancer CD3: It provides 92 regions of interest from 

slides stained with CD3, each measuring 2mm2, which 

involved head and neck squamous cell carcinoma, non-small 

cell lung cancer, triple-negative breast cancer, and gastric 

cancer[28]. The image resolution was 0.23μm/px, and the 

cellular annotation was performed jointly by pathologists and 

semi-automatic commercial software.  

LYON: The LYON challenge (https://lyon19.grand- 

challenge.org/) [27] was proposed for a similar problem as 

LYSTO. LYON consists of 441 regions of interest (ROI). The 

aim of LYON is to provide an evaluation platform for 

comparison study, and neither training nor test labels are 

available. LYSTO data partially comes from LYON; in contrast, 

LYSTO samples are well-prepared, with specific reference 

standard. LYSTO can be seen as a twin challenge of LYON, 

with focus on cell counting.  

Despite above IHC image datasets, there is still a lack of a 

benchmark dataset that can be easily utilized by researchers in 

the field of computer vision. This gap arises from various 

factors: firstly, cross-organ generality is preferred. Secondly, 

artifacts and cross-center data are extremely challenging, and 

not been fully considered yet. Finally, there is a lack of balance 

between generality and usability in terms of standardized image 

and tasks. Classification models developed based on single 

nuclei images must be applied on pre-detected nucleus, while 

fusion of local results introduce additional workflow. In 

summary, there is currently a lack of a standard IHC dataset 

that can be easily used, while possessing wide varieties in term 

of organs, centers, and patterns. The gaps drove us host the 

LYSTO hackathon. 

III. LYSTO HACKATHON 

In this section, we describe the data, experiment design, 

computing infrastructure and evaluation platform in LYSTO. 

A. LYSTO Datasets 

We collected data from 83 whole-slide images (WSIs) of 

colon (n=28), breast (n=33) and prostate (n=22) cancer.  

The images were collected and produced in a multi-centric 

fashion, including tissue preparation or staining from hospital 

in Eindhoven, Radboudumc, Rijnstate, Utrecht, Heerlen, AMC 

Amsterdam, as well as JBZ (Jeroen Bosch Ziekenhuis) and 

LabPON (Laboratorium Pathologie Oost-Nederland). All the 

slides were stained with either CD3 or CD8 

immunohistochemistry, and most of the slides were stained in 

local institutes. Breast cancer cases involve 9 slides from 

LabPON and 3 slides from Radboudumc, while colorectal 

cancer cases involve 10 slides from Eindhoven, 5 slides from 

Utrecht, and 16 slides from Radboudumc, all corresponding to 

unique patients. For prostate cancer we included 11 patients 
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from Rijnstate, with each patient having two slides, and they 

were split on patient-level during training and test division. 

In order to introduce more variation in staining style, an 

additional set of triple-negative breast cancer (TNBC) cases 

was included [33], from which a subset of data consisting of 21 

sections was generated and used in LYSTO. The 21 sections 

were collected from 3 TNBC patients (5, 5, 11 slides, 

respectively) and cut at the Radboudumc, therefore producing 

so-called “blank” (i.e., unstained) slides. Successively, these 

blank slides were sent for staining to 6 different pathology 

laboratories in the Netherlands, including Radboudumc, 

Rijnstate, Heerlen, AMC Amsterdam, JBZ, and LabPON. All 

the above slides were scanned using a Pannoramic 250 Flash II 

scanner (3DHistech, Hungary) at Radboudumc, and have a 

resolution of 0.24μm/pixel. 

We split the slides into a training set (n=43 slides) and a test 

set (n=40 slides). Most of the slides are divided on patient-level. 

The high tissue homogeneity of 21 slides from three TNBC 

patients prevented us to do so. However, the multi-center 

staining nature in the TNBC subset allows us to eliminate 

histological factors and investigate the differences caused by 

staining difference among institutes. We will present the 

specific distribution of the data in the discussion section. 

In order to effectively annotate the data, an expert initially 

selected an average of 11 regions of interest (ROIs) per slide, 

resulting in a total of 932 ROIs, with an average size of 2991 

pixels by 4497 pixels (short side by long side), and an area of 

1.33mm2 ± 3.15mm2 (mean ± std). ROI selection criteria were 

to not only include “regular” region of tumor epithelium and 

adjacent normal tissues, but also areas that were expected to be 

harder to analyze by deep learning algorithms, but anyway 

present in clinical diagnostic slides when considering the full 

slide, such as areas with densely distributed cells and artifacts 

(tissue folding, streaky blurring, brown staining on the 

background, blank slides, etc.). 

Afterwards, three trained human analysts were asked to use 

ASAP software[34] to make point annotation for the center of 

each positive cell in the aforementioned ROIs. This resulted in 

the generation of over 170,000 annotations of cells[27]. The 

annotation process was carried out independently, but the 

analysts could discuss and decide together in difficult cases. 

B. Sample Extraction 

According to the ROIs and point annotations, we were able 

to generate patches and labels for training and validation. We 

used overlapped slide-window approach with a step size of 200 

pixels to extract image patches of 299×299 pixels from each 

ROI. This corresponds to a tissue area of approximately 

75×75μm. This specific patch size was selected to cover typical 

input shape of most popular CNNs, enabling using pre-trained 

models. In the context of a hackathon, where time is a vital 

factor, pre-training can reduce the convergence time.  

The label of a patch y is defined as the number of annotated 

lymphocytes within it. Considering a point annotation could be 

present very close to the border, and the associated cell is only 

partly visible, we ignored annotations present within 4 μm 

thickness (approximately half the average size of a T-cell) at 

the border of a patch (Figure 1). For being compatible with 

classification task, we defined several bins for cell counts, 

namely 1~5, 6~10, 11~20, 21~50, 51~200, and >200. In the 

generation of the training set and test set, we tried to balance the 

labels according to these bins. We also collected plenty patches 

without the presence of lymphocytes, especially background 

stain region. To challenge participants with the dye artifacts in 

real-world applications, patches with y=0 were generated 

selectively according to the brown score proposed by [26]. The 

image source and label distribution of the LYSTO dataset is 

shown in Table 1. 
 

TABLE I: Label distribution of LYSTO dataset 

Properties Training Test 

No. of slides 

Breast 18 15 

Colon 13 15 

Prostate 12 10 

Label value 

Min 0 0 

Max 70 77 

Mean 3.11 3.92 

No. of sample 

0 4,208(21%) 2,915(24%) 
1~5 12,586(63%) 6,663(56%) 

6~10 2,008(10%) 1,260(11%) 

11~20 900(5%) 790(7%) 
21~50 290(1%) 323(3%) 

51~200 8(~0%) 49(~0%) 

>200 0(0%) 0(0%) 
 Total 20,000 12,000 

 

Given the slides in training set and test, we randomly 

selected n=20,000 and n=12,000 patches, respectively 

according to the rules above. In addition to the patch and 

corresponding label, the cancer type is also recorded as optional 

information in the training set. 

C. External Validations 

In parallel with collecting data above, we also collected a set 

of n=10 lung cancer slides from Radboudumc. Please note that 

the training set and test set of LYSTO do not contain lung 

images. Therefore, this external validation set can be used to 

assess the robustness and the generalizability to data from a 

different organ and different scanner. All these slides were 

stained with a CD8 marker and scanned with a Pannoramic 

1000 scanner (3DHistech, Hungary), resulting in WSIs with a 

pixel size of 0.24 μm/pixel. Using the similar way as sample 

generation in LYSTO, we created n=54 ROIs and gathered 

annotations. The average physical size of these ROIs is 0.874 ± 

0.641 mm2 (mean ± std), and the ground-truth positive cell 

counts is 393 ± 412 (within entire ROI). 

Additionally, we considered all the full LYON test set, this 

allows to test generalizability beyond single patches, especially 

when larger portions of challenging regions are present. 

Furthermore, running models on LYON allows comparison 

with expert pathologists using the observer study conducted in 

[27], where four pathologists were involved. 

In order to perform validation on the external datasets, 

participants were asked to run their methods within a few 

months after the hackathon. We provide scripts that can 

processing patches in larger ROIs with slide-window fashion. 

D. Timeline 

The LYSTO experiment was a single-day event, held in 

conjunction with the Computational Pathology Workshop 

(COMPAY) at the MICCAI 2019 conference in Shenzhen 
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(China). The hackathon was organized based on three main 

steps. 

First, approximately one month before the event, a small 

dataset of n=4,000 labeled patches were released publicly via 

LYSTO website. The aim of this pilot dataset was to let 

potential participants get familiar with the data format that will 

be used during the event, and start coding pipelines that could 

be reused and modified during the event.  

Second, the final official training set containing n=20,000 

patches was released via the hackathon website three days 

before the event for the convenience of downloading. 

Finally, the formal test set containing n=12,000 patches was 

solely released on-site via external storage units, and were 

manually distributed to participants. After the event, both 

training and test set were released publicly via the Zenodo 

platform. (https://zenodo.org/record/3513571) 

E.  Rules 

As an application-driven challenge, LYSTO encourages 

participants to try out various solutions; therefore, no specific 

restrictions were enforced on model architecture, training 

schemes, data usage, or computing resources. We reformulate 

the problem of cell counting as a classification problem using 

pre-defined bins. This means that participants can solve the 

problem by using either classification, regression, or detection 

frameworks. Meanwhile, no restrictions were imposed 

regarding the data. Participants were allowed to reuse any 

materials in the community or append their in-house 

annotations. In summary, LYSTO is an open challenge, in 

which one can explore the most effective direction for future 

investigation towards cell counting task in IHC image. 

F. Performance Metrics 

In order to make the metric compatible with classification, 

regression, and detection frameworks, we make LYSTO as a 

patch classification problem using the 7 types of bins defined 

above (from 0 to >200 positive cells). In practical, pathologists 

will not identify and count individual cells in whole-slide 

images. To measure the consistency with reference standards, 

and penalize distinct errors (e.g., predict a patch with 50+ 

positive cells as none), we use quadratic weighted kappa (QWK) 

coefficient as the main performance metric on the LYSTO test 

set and external lung validation set. Meanwhile, QWK may also 

mitigate harmless error caused by observer variability. 

Moreover, since the intervals defined in LYSTO is same as 

that in LYON, we are able to compare our results with the 

reader study described in LYON[27]. For this purpose, we 

report sensitivity in the LYON test set. 

G. Baseline Results 

We provided a baseline prior to the event, and submissions 

were thought to be valid if only it outperforms the baseline. The 

baseline was built with a decision tree using MATLAB (The 

MathWorks Inc., MA). Specifically, we extracted DAB 

channel of a patch, and use statistics including maximum, 

minimum, mean value, standard deviation, and percentiles of 

intensity as features. The features were then used to build a 

classification and regression tree (CART) to predict patch label. 

Using different prune levels, the test set performance ranges 

from about 0.628 to 0.649. In the end, a prune level of 1800 was 

used, which got 0.635 test set QWK (Figure 2). The baseline 

result and description were made available via website. In the 

end, all the on-site participants exceeded this baseline. 

 
Fig. 2: The LYSTO baseline. (a) Color deconvolution; (b) Patch-level DAB 

channels statistics; (c) CART built with MATLAB; (d) Model performance and 

hyperparameter tuning. 

H. Computing Resources 

During the on-site event, we provided participants access to a 

dedicated GPU and storage on a cloud-based NVIDIA DGX-1 

device, sponsored by NVIDIA. The official training set and test 

set were pre-loaded to the storage of the DGX-1. Additionally, 

participants were allowed to use local resources (e.g., their own 

laptop) as well as remote resources without any restriction. 

I. Evaluation Platform 

We implemented an automatic evaluation procedure, and 

released it via https://lysto.grand-challenge.org/. Participants 

were required to submit predictions with a single CSV file, and 

QWK scores can be calculated automatically. Examples of 

submission format were also provided upfront. 

IV. METHODS 

During LYSTO, participants were permitted to form teams. 

Ultimately, five teams attended the on-site event and submitted 

their algorithms. After the event, we requested team leaders to 

provide a brief description of their methods. In this section, we 

outline the primary components of the developed methods, 

including 1) pre-processing, 2) data partitioning, 3) model 

architecture, and 4) training strategies. 

A. Team 1 (GSK) 

Preprocessing: Use the center 267×267 pixels of raw image 

as inputs. Patches were then normalized using ImageNet 

statistics. Horizontal and vertical flip, contrast and brightness 

adjustment (±20%, with p = 0.75) were used for augmentation. 

Data split: The 20,000 training patches were stratified by the 

bins, and were further split into training and validation set with 

3:1 randomly using built-in scikit-learn method. 

Model architecture: The model is a multi-task network with a 

pre-trained ResNet-50 backbone. The last two layers of the 

ResNet were replaced with 4 convolutional layers 

(channel=2048, 1024, 512, 256, respectively, kernel size =3, 

padding =2, dilation=2). Afterward, regression and 

classification task branches were added. The two branches are 

both consisted by an adaptive pooling layer, a flatten layer, a 

Batchnorm1D layer, a dropout layer (p=0.25), ReLU activation, 
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a linear layer (64 neurons), a Batchnorm1d layer, a dropout 

layer (p=0.25), and the final linear layer (with 1 or 7 neurons, 

for regression and classification task, respectively). 

Training: Adam optimizer and one-cycle learning rate 

scheduler[35] implemented in fast.ai was used. The backbone 

was frozen in the first 20 epochs, using a maximum learning 

rate of 1e-3. Afterwards, the entire network became trainable 

for an additional 25 epochs. In the later phase, the maximum 

learning rate of backbone and task-specific layers is 1e-6 and 

1e-4, respectively. The QWK scores calculated from the 

classification branch were monitored, and the regression branch 

is used for the final prediction. 

B. Team 2 (HUST) 

Preprocessing: The center 267×267 pixel region of the 

original image was used, and augmented by vertical and 

horizontal flipping, rotating in n×90°, and perturbating the 

brightness within a small range of values. 

Data split: The 20,000 training patches were divided into ten 

folds at random, with an original intention to pick the best 

model using ten-fold cross-validation. However, during the 

hackathon it was decided to average the outputs of the 10 

models trained during the cross-validation. 

Model architecture: The model is a tailored ResNet-101 

network for regression task. The last layer of the ResNet is 

removed, and a series of layers, including a global max pooling 

layer, a fully-connected layer (64 neurons) with ReLU 

activation, and a single-channel output layer, are attached. 

Training: The model is trained with regression task, using 

mean squared error as loss function. The model was optimized 

with Adam optimizer (learning rate = 1e-3, step decay of 0.1 

every 1500 iterations; exponential decay rates of 0.9 and 0.999 

for the two moment) for a total of 6000 iterations with a batch 

size of 64. 

C. Team 3 (TIA Warwick) 

Preprocessing: The images are firstly reflected padded to the 

shape of 302×302. The pixel intensity is normalized within the 

range [0,1]. During training, flipping, contrast, brightness, 

median blur, Gaussian blur, and Gaussian noise are used for 

data augmentation. 

Data split: Our method contains two networks, trained with 

segmentation and regression tasks, respectively. For the 

segmentation pretraining, we fully annotated the pilot training 

dataset using the ASAP software. In each patch, we ensured 

that there is an agreement between the number of annotated 

lymphocytes and the reference standard count. This dataset was 

split by the ratio of 7:3 into training and validation sets. Part of 

the segmentation network was reused in the final regression 

network, which was trained with the on-site 20,000 training 

images using five-fold cross-validation. 

Model architecture and Training: Initially, a HoVer-Net [36] 

model was trained to perform instance segmentation of 

positively lymphocytes. The model was trained in two stages. 

In the first stage, the ResNet-50 encoder was initialized with 

weights pre-trained on ImageNet, and only the decoders were 

trained. In the second stage, both the encoder and decoder were 

trainable. The segmentation model was trained using Adam 

optimizer with an initial learning rate of 1e-3 and a batch size of 

8 on each GPU. 

After the training for segmentation task, the decoders are 

removed, and a series of 3×3 convolution, a max-pooling layers, 

an additional global average pooling layer, and a 1 × 1 

convolution layer are added. The network output is a single 

value that regress the number of positively cells. In other words, 

the HoVer-Net encoder is used as a pre-trained network. The 

regression network is trained using Adam optimizer with an 

initial learning rate of 1e-3 and a batch size of 8 on each GPU. 

Mean absolute error is used as the loss function. The final 

prediction is the average of five cross-validation models. 

D. Team 4 (TU/e) 

Preprocessing: The input is mostly original patch size of 299

×299 pixels, and zero-padded to size of 331×331 pixels if 

necessary. Images are augmented by random translation, 

rotation, scaling, shearing, flipping, and color channel shifting 

Data split: The data split was done at the WSI level, ensuring 

that the validation and test set contain at least 1 WSI from each 

of the three tissue types. Out of the 43 unique WSIs, 32 were 

used for training, 5 for validation, and 6 as a test set. 

Model architecture: Models with NASNet, Inception- 

ResNet-v2, Xception, SE-Net-154 and SE-ResNeXt-50 

backbones were tested individually. 

Training: All the backbones were pre-trained using 

ImageNet, and optimized with momentum SGD optimizer 

(learning rate 0.01, momentum 0.9, cosine annealing decay) for 

50 epochs. The batch size ranges from 8 to 18, depending on 

GPU memory. Prediction is obtained by taking the median of 

the predictions of all single models. 

E. Team 5 (mi2rl) 

Preprocessing: Images are first split into two subsets by DAB 

channel, and the ones with fewer DAB are stain normalized. 

The center 267×267 pixels are used as input, with random 

rotation, flipping augmentation. Being aware that no sample 

with more than 200 positive cells are given, we take patches 

with high DAB response to generate new samples for that 

category. 

Data split: 16305 image patches were used for training, and 

the rest was used for validation. The two sets are independent 

on slide-level. Instead of using raw bins, we cluster patches 

with their label to get more bins, ensuring that each bin has 

more than 50 samples. Image samples within the same bin were 

with the same label and the mean of the lymphocyte numbers 

per bin was used as the prediction.   

Model architecture: The model is a classification model with 

DenseNet121 backbone, and attached classification layers. The 

raw and normalized images lead to two feature sets obtained 

from the end of backbone. The features are concatenated, and 

fed into another fully-connected layer for classification. 

Training: The model was trained using AdamW optimizer 

(learning rate 1e-5, weight decay 0.05) for 10200 iterations 

with batch size 64. The loss was the distance between the 

median of the predicted and reference bins. 

V. RESULTS 

A. "On-site" results 

The on-site results of the five methods are reported in Table 

II in terms of QWK. In Figure 3, we depict the scatter plots of 

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3327489

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE JOURNAL ON BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2020 9 

predictions versus ground-truth (a), the Sankey diagram of 

predictions (b), and examples of patches misclassified by all 

teams (c), grouped per bin in each row. From the QWK values, 

we see that most methods achieved comparable performance, 

with QWK>0.922, except for the mi2rl method (QWK=0.824). 
 

TABLE II: Leaderboard of LYSTO event 

Team name On-site Rank 
External 

(lung dataset) 
Rank 

GSK 0.9270 1 0.9680 2 
HUST 0.9247 2 0.8595 4 

TIA Warwick 0.9229 3 0.9798 1 

TU/e 0.9224 4 0.9652 3 
mi2rl 0.8241 5 0.4678 5 

Baseline 0.6350 - 0.8579 - 

 

According to the Sankey diagram, the samples with label ‘0’ 

and ‘1~5’ are relatively easy, as majority samples are correctly 

predicted by all the teams. Such easy samples take 68.5% of the 

test set. In contrast, 4.0% of the samples are misclassified by all 

the teams, with some examples given in Figure 3(c). The 

misclassification is often correlated with background staining, 

resulting in strong DAB signal with few or none positive cells. 

Another typical case is partial membrane staining, which can be 

recognized by pathologists, but missed by most methods. The 

presence of artifacts (e.g., out-of-focus or ink), cluster of cells 

also lead to difficulties. More specifically, automated methods 

prone to underestimate cell number, especially when 

ground-truth count grows (Figure 3 (a)). 

B. Post-event Submissions 

The LYSTO hackathon remains open for new submission 

after MICCAI 2019. By now LYSTO has 667 registered users 

and receives 399 valid submissions. The highest QWK metric 

reaches up to 0.9331, which is higher than the top on-site group 

(GSK, 0.9270). According to gathered descriptions, newly 

submitted methods acquire similar techniques to the on-site 

groups. Participants are likely to use ResNet-18, ResNet-50, 

ResNeXT or U-Net as backbone. The task of classification, 

regression, or a combination of both are mostly used, with 

cross-entropy loss, and mean square error or Huber loss. 

C. External Validations 

After the on-site event, we asked the five teams to apply their 

methods on the two external validation datasets. In order to 

evaluate methods on ROI, local images generated by 16-pixel 

overlapped slide-window were evaluated, and the count 

Fig. 3: On-site results. (a) Scatter plots of prediction versus reference standard. (b) Sankey diagram ground-truth versus number of groups that got correct 
prediction. (c) Examples of those 4% samples misclassified by all five groups. 
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numbers are summed up as ROI-level prediction. With larger 

field of view, these validations focus on model performance 

when applied to more representative of tissue morphology in 

whole-slide images used in routine clinical practice.  

Lung dataset: The QWK values of the lung dataset are 

reported in Table II. The overall performance trend is similar to 

that in the LYSTO test set, with most methods achieving 

QWK>0.9. After ranking with average QWK (on-site and lung 

dataset)), GSK remains the best, followed by TIA Warwick, 

which achieved the best performance on the lung dataset. 

 
TABLE III: Comparison with reader study in LYON 

Label 0 
1 

~5 

6 

~10 

11 

~20 

21 

~50 

51 

~200 
>200 All 

P1 0.78 0.11 0.25 0.15 0.32 0.71 0.54 0.41 

P2 0.96 0.17 0.20 0.15 0.27 0.58 0.73 0.44 
P3 0.78 0.28 0.15 0.20 0.32 0.48 0.35 0.37 

P4 0.96 0.33 0.25 0.15 0.55 0.65 0.43 0.47 

Average 0.87 0.22 0.21 0.16 0.37 0.60 0.51 0.42 

[27] 0.30 0.44 0.30 0.35 0.54 0.76 0.92 0.52 

TU/e 0.36 0.67 0.32 0.19 0.58 0.81 0.95 0.55 

HUST 0.24 0.50 0.23 0.43 0.55 0.81 0.93 0.53 

GSK 0.08 0.44 0.23 0.24 0.63 0.81 0.94 0.48 
TIA Warwick 0.04 0.28 0.23 0.14 0.52 0.78 0.95 0.42 

mi2rl 0.16 0.06 0.00 0.05 0.22 0.42 1.00 0.27 

 

LYON Dataset: The performance on LYON can be seen as a 

generalization of patch-level performance of LYSTO, with 

more artifacts and cell clusters. In consistence with the reader 

study in previous study [27], the performance here was 

measured by sensitivity rather than QWK. The results are 

summarized in Figure 4 and Table III, where P1 to P4 stands for 

four pathologists involved in the study. In this dataset, TU/e got 

the best sensitivity. Notably, TU/e and HUST both got higher 

sensitivity than the method presented in [27], using 

fully-supervised point annotation. Moreover, the best four 

groups got better or comparable performances than the average 

of pathologists. These facts imply the feasibility to develop a 

human-level model using weakly-supervised patch-level label. 

Moreover, algorithms and humans seem behave differently. 

Particularly, automatic methods prone to achieve higher 

sensitivity than pathologists when the number of lymphocytes 

grows. In contrast, human can easily distinguish positive cells 

from background staining or artifacts, which are usually 

challenging for computer algorithms.  

 

VI. DISCUSSION 

LYSTO has witnessed the success of deep learning in 

medical image analysis, with participants extensively utilizing 

deep models such as ResNet, SENet, and DenseNet. By 

providing standardized data, LYSTO enables researchers to 

focus on specific problems and spend less time on coding, 

interface, and debugging. LYSTO gives a typical example 

demonstrating that standardized data can lead to clinically 

applicable solutions in a very short time. 

Another benefit of standardized data is to allow participants 

time to explore a wide range of strategies or solutions. For 

instance, GSK adopted a multi-task learning strategy, using 

classification and regression tasks simultaneously. TIA 

WARWICK supplement extra manual annotations on a small 

part of the training set for pre-training. Mi2rl adopted stain 

standardization method, and defined more bins. TU/e used 

models with different architectures for ensembling, which often 

leads to performance gain[37]. Both GSK and TIA WARWICK 

adopted a two-stage training strategy[38], [39], where top 

layers or task layers are trained first with backbone frozen, and 

the entire network are trained together later. Limited by time 

duration, participants were unbale to finish ablation studies. 

Nevertheless, these techniques have already been widely 

employed in this field. As complete solutions, these methods 

have achieved comparable accuracy to human experts. 

Despite the wide differences in the submitted methods, there 

are still noteworthy commonalities between them. The 

pair-wised prediction is shown in Figure 5. The Pearson 

correlation coefficients among the first four groups are all 

above 0.95. The ml2rl group used discrete prediction, which is 

different from others, resulting in relative lower Pearson 

coefficients to others, ranging from 0.86 to 0.88. Interestingly, 

all these values are higher than the correlation compared with 

ground-truth (0.84), indicating the commonalities between 

Fig. 4: Results of external validations. (a) The lung cancer cohort from Radboudumc. (b) The LYON test set. 
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automatic methods. According to the recall matrices presented 

in Figure 5, five groups are also sharing consistency in terms of 

bin predictions. However, as shown in the first row, except for 

the TIA Warwick group, other groups prone to mis-predict 

label 6 as label 5 with different preferences for the two class. 

The most challenging samples are related to background 

staining, artifacts, and brown debris, which often results in 

overestimations of positive cells. Additionally, the presence of 

weakly or partially stained cells also poses difficulties. Such 

difficult samples take at least 4% of the test set, where no teams 

gave correct prediction. Notably, this cannot be well addressed 

even using fully supervised methods [27]. So far, the best 

Fig. 6: Organ-level and institute-level data distribution, performance, and error trend. (a) sample number distribution; (b) QWK values on the organ level; (c) 

QWK values on the institute level; (d), (e) are the error trends, showing prediction error (pred-GT) regarding GT count in each subset, (d) and (e) are 

partitioned by organ and institute, respectively; the values are NaN-filtered and weighted by sample number with smoothing. R.U: Radboudumc; R.S: 
Rijnstate; L.: LABPON; E. Eindhoven; U.: Utrecht; A.A: AMC Amsterdam; H.: Heerlen; GT: ground-truth. 

Breast

Colon

Prostate

A.AE. H. J.L.R.U R.S U.

training

test

(a) (b) (c)

(d)

(e)

Fig. 5: Pairwise prediction correlation of on-site submissions, gives in count (scatter plot on the left) and bins (normalized recall matrix on the right). 
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solution seems to identify regions of background staining and 

nonspecific staining as a pre-processing step under macro-level 

view [40]. Hard sample mining technique may also help [8]. 

Given the multi-organ and multi-cohort nature of LYSTO, 

the decline in model performance may also be due to domain 

shift caused by differences in data distribution[41]. To support 

this hypothesis, we visualized the distribution of data across 

organs, cohorts, and institutes, and evaluated the performance 

of five methods on the corresponding subsets of data in Figure 6 

(a)~(c). One notable trend is the consistent decline in accuracy 

for all methods in the Utrecht (colon) cohort. Interestingly, the 

Eindhoven (colon) cohort, which is also an independent test set 

at the institute level, shows comparable QWK values for other 

subsets in the first four groups, whereas the mi2rl method 

exhibits a significant decrease in accuracy. These findings 

indicates that the performance in cross-domain scenario is 

influenced by both dataset characteristics and specific methods. 

In the breast subset, the Heerlen and JBZ cohorts can achieved 

even better results than the internal Radboudumc and LABPON 

sets in most cases, while the performance in the AMC 

Amsterdam cohort generally decreased. This once again 

confirms the complex effects caused by domain shift on the 

institute level.  

In order to investigate whether there are common biases in 

different models, we further visualized the prediction error 

trends of each group at the subset level of organ and cohort in 

Figure 6 (d)~(e). It can be observed that all groups exhibit a 

noticeable negative bias, i.e., an underestimation of target count, 

especially when the ground-truth is large. This phenomenon is 

expected due to the relatively small number of labels with "≥

51". Increasing the number of such samples or generating 

training samples using carefully-designed generative methods 

may be potential solutions. We also discovered unique error 

trends in each data subset. For example, GSK, TU/e, and mi2rl 

exhibit a small but distinct positive bias in the breast cancer 

subset on the beginning part. Another interesting finding is the 

strikingly similar trends among all groups in the Utrecht cohort, 

despite that these methods were independently developed. This 

suggests that the cohort may induce a fixed-direction prediction 

bias that shares among various models. 

The goal of LYSTO is to establish a lymphocyte evaluation 

pipeline with preferred generalization, where both internal and 

external performance are important. Therefore, our data 

arrangement may differ from other competitions. For example, 

data stained by Radboudumc, Rijnstate, and LABPON are 

present in both the training and test sets. A complete 

independent test set allows ones to find the best model for 

specific data. However, due to domain shift, the model may 

behave differently on a different test set. This phenomenon has 

been confirmed by comparing difference among institutes in 

LYSTO. Therefore, the most reasonable evaluation scheme 

remains an open question. In future research, it may be worth 

considering submitting an encapsulated training and evaluation 

framework to enable systematic evaluation on various subsets. 

Performance metrics in LYSTO are computed based on local 

patches, which is different from whole-slide image used in 

practice. The external lung dataset and LYON dataset provide 

insights under broad field of view, as well as the generalization 

to a different organ and slides prepared by different centers. 

According to Table II, most of the methods got a QWK larger 

than 0.85. Mi2rl performance dropped, perhaps due to discrete 

predictions. Interestingly, the HUST method, which performed 

well on the LYSTO test set, shows a significant decrease in the 

lung dataset. We examined the predicted results and found 

frequent false positive on normal lung parenchyma and 

enlarged alveoli (data not shown). This indicates that even 

relatively simple IHC counting pipelines require thorough 

evaluation when used across tissue types. 

The performance on LYON is defined by sensitivity for the 

convenient comparison with previous reader studies that 

involving a panel of pathologists [27]. As shown in Table III, 

most automated methods share similar performance patterns 

across bins. Compared to pathologists, these methods are prone 

to produce error in class ‘0’; however, when the cell count is 

extremely large (>=200), automatic methods give better 

prediction than human. According to the averaged sensitivities, 

four out of five methods achieved better performance than the 

pathologist panel. The performance of TU/e and HUST is even 

comparable with fully-supervised method[6], [27].  

Based on LYSTO and post-event submission, we observed 

preference of using relatively simple models (such as VGG). 

These simple models have lower training and inference cost, 

with similar or even superior than complex counterparts. This 

perspective is supported by a series of studies [22], [23]. 

Despite recent advances in vision transformer (ViTs) and 

prompt learning, these methods have rarely been reported 

superior in IHC scoring tasks. Considering computational cost, 

simple models may be more suitable for IHC evaluations. 

Numerous challenges have been hosted in the field of 

medical image analysis, which typically last for several months, 

allowing participants to iteratively update their methods [27], 

[42], [43]. Stemming from the cell counting problem, LYSTO 

attempted a novel challenge format, requiring participants to 

develop models and submit results within an extremely short 

timeframe. This brainstorming-style event encourages 

participants to focus on the problems and explore a wide range 

of possible solutions. For this, the data format and interface 

should be simplified and standardized as much as possible. The 

success of LYSTO demonstrates that with deep learning-based 

framework and well-prepared data, researchers can establish 

diagnostic models at a human expert level within a few hours. 

Another major contribution of LYSTO is to promote 

lymphocyte assessment and computer vision research. LYSTO 

has already supported a series studies. These works mainly 

focus on lymphocyte IHC scoring and use detection models 

such as Faster R-CNN and Mask R-CNN [44]–[46]. Inspired by 

LYSTO, [47] explored an interactive annotation framework. 

Meanwhile, LYSTO can serve as benchmark dataset in 

computer vision field, for example, verifying novel 

group-invariance methods [48], [49].  

As an early event, LYSTO has a clear limitation in that we 

did not require participants to provide source code or reusable 

models. While this is partly due to limited event time, it hinders 

us from conducting a more in-depth and detailed analysis of the 

results, as well as reusing these methods. Packaging the 

algorithms as Docker or other containers may serve as an 

effective solution to enhance algorithm availability and 

reproducibility[50]. 

We made the dataset, as well as the evaluation platform 
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available on grand-challenge website. The dataset is also 

available via Zenodo (https://zenodo.org/record/3513571). In 

this way, we envision LYSTO as a potential future benchmark 

for development in computational pathology, easy to access 

and process. 

VII. CONCLUSIONS 

In this paper, we presented the summary of the Lymphocyte 

Assessment (LYSTO) Hackathon, which was held in 

conjunction with the 2019 Medical Image Computing and 

Computer Assisted Interventions (MICCAI) Conference. The 

aim of the hackathon was to develop automatic methods for 

immunohistochemistry quantification. We proposed the 

LYSTO dataset, which is composed of multi-center and 

multi-organ pathological images, as a reference to benchmark 

future computational pathology methods. Moreover, we left the 

LYSTO dataset as a long-lasting educational benchmark on 

https://lysto.grand-challenge.org/. 
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