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Abstract— The Pulmonary Function Test (PFT) is an
widely utilized and rigorous classification test for lung
function evaluation, serving as a comprehensive tool for
lung diagnosis. Meanwhile, Electrical Impedance Tomog-
raphy (EIT) is a rapidly advancing clinical technique that
visualizes conductivity distribution induced by ventilation.
EIT provides additional spatial and temporal information on
lung ventilation beyond traditional PFT. However, relying
solely on conventional isolated interpretations of PFT re-
sults and EIT images overlooks the continuous dynamic
aspects of lung ventilation. This study aims to classify
lung ventilation patterns by extracting spatial and temporal
features from the 3D EIT image series. The study uses a
Variational Autoencoder network with a MultiRes block to
compress the spatial distribution in a 3D image into a one-
dimensional vector. These vectors are then concatenated
to create a feature map for the exhibition of temporal
features. A simple convolutional neural network is used
for classification. Data collected from 137 subjects were
finally used for training. The model is validated by ten-
fold and leave-one-out cross-validation first. The accuracy
and sensitivity of normal ventilation mode are 0.95 and
1.00, and the f1-score is 0.94. Furthermore, we check the
reliability and feasibility of the proposed pipeline by testing
it on newly recruited nine subjects. Our results show that
the pipeline correctly predicts the ventilation mode of 8
out of 9 subjects. The study demonstrates the potential of
using image series for lung ventilation mode classification,
providing a feasible method for patient prescreening and
presenting an alternative form of PFT.
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I. INTRODUCTION

RESPIRATION diseases are the third leading cause of
death worldwide and severely impact people’s quality

of life [1]. The prevalence of chronic respiratory diseases
(CRDs) has increased by about 40% in the past thirty years
[2]. However, the diagnosis rate of CRDs is far lower than
the prevalence rate, and the treatment rate is even lower than
the diagnosis rate [3], [4]. Early screening and diagnosis of
ventilation diseases are of critical significance, yet it has not
received enough attention.

The lung ventilation function is evaluated using the Pul-
monary Function Test (PFT), in which the airflow inhaled and
exhaled by the lungs is recorded and measured by a flow meter.
A well-trained physician instructs the subjects to alternate
between tidal breath and forced expiration following the
regulations of the American Thoracic Society (ATS)/European
Respiratory Society (ERS) [5]. Like other clinical tests, such
as blood tests, PFT requires establishing normal values for
accurate diagnosis. However, the challenge with PFT is that
normal values can vary significantly from person to person
[6] compared to other tests. Ventilation performance depends
on numerous factors, including age, gender, body mass index,
and even geography [7], [8].

Multivariate regression based on PFT results of many
normal subjects is used to establish predicted values for a
specific person. However, recruiting and measuring enough
normal people in a specific area is challenging and demanding.
Moreover, PFT results can only evaluate lung function without
providing spatial information. The large-scale implementation
of PFT is challenging for several reasons. First, it requires
a significant workforce and material resources, making it
difficult to carry out in underdeveloped areas. Second, the
testing cycle is long, and data statistics and analysis are highly
demanding. Additionally, the lung function of the population
changes objectively and dynamically over time [9], making
it difficult to carry out periodic repetitions. Nevertheless,
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industrialization has contributed to an escalation in environ-
mental pollution, decreasing the number of available healthy
individuals. This decline poses a challenge when attempting to
recruit sufficient healthy subjects for research or studies [10].

Electrical Impedance Tomography (EIT) is an emerging
medical imaging modality that can detect conductivity changes
in the measured area. The air content in the lungs varies
during ventilation, and the resulting changes, especially the
spatial distribution of electrical conductivity, can be captured
by electrodes placed around the chest [11]. EIT images are
of significant clinical value [12], [13], including Positive End-
expiratory Pressure (PEEP) titration guidance [14], regional
distribution of ventilation [15], and ventilation and perfusion
matching [16], [17].

Compared to PFT, which provides an overall evaluation of
lung function, EIT can discriminate whether changes in global
lung function stem from alterations in ventilation distribu-
tion or variations in ventilation magnitude. This distinction
enables a more precise assessment of regional lung function
and facilitates targeted prescreening effort [18]. Typically,
lung functions are assessed both before and after medical
procedures. In this process, 2D images taken at specific time
points are often compared and analyzed based on manually
crafted features relying on prior physiological knowledge.
More attention should be paid to considering the image series
and drawing broad conclusions regarding lung function.

In this study, we use 3D EIT image series to classify
lung ventilation function modes in a general view. We extract
spatial-temporal information using a Variational Autoencoder
(VAE). Our proposed method achieved the highest accuracy
and AUC of 95.6% and 0.96, respectively, in binary clas-
sification based on in-vivo measurements. Furthermore, we
also applied this method to four-category problems (normal,
restrict, obstruct, and mix), and the maximum accuracy and
f1-score were 86.3% and 0.90, respectively. Our contributions
are as follows:

• Three-dimensional lung ventilation image series are re-
constructed in a low-cost, radiation-free, and non-invasive
manner by EIT.

• Spatial and temporal information in 3D image sequences
during forced exhalation were considered simultaneously,
representing an improvement over previous analyses of
isolated 2D images.

• A concise and practical VAE network has been proposed
for dimensional image reduction.

• A new pipeline has been developed to classify lung
ventilation patterns, aiming to facilitate lung function
diagnosis without dependence on expensive predicted
values.

• Classification of ventilation patterns is focused rather than
changes in lung ventilation in a specific situation.

The remainder of the article is organized as follows. Sec-
tion II examines related works on lung ventilation pattern
classification and the clinical application of EIT. Section III
provides a detailed introduction to the preliminaries of EIT and
VAE. In Section IV, we describe the proposed method. The
EIT measurement system and study protocol are presented in

Section V. In Section VI, we test and optimize the network’s
performance. Finally, the work is summarized in Section VII.

II. RELATED WORK

A. Automated PFT Assisted by Machine Learning
PFT is an established and effective diagnostic tool for

assessing lung function. During the test, subjects are instructed
to perform tidal breath and forced expiration, allowing for
measurement of volume and speed. The results are typically in-
terpreted by physicians using predefined cutoffs in accordance
with published guidelines [19] to identify a typical pattern.
However, this process heavily relies on the doctor’s experience
and subjective judgment [20]. Additionally, many people with
chronic obstructive pulmonary disease (COPD) symptoms do
not meet the diagnostic criteria [21], [22]. PFT results are
usually interpreted by clinicians using discrete numeric data
according to published guidelines. However, inter-rater vari-
ability among clinicians is known to occur, and inaccuracies
in interpretation can impact patient care. As a result, many
studies have focused on developing automated interpretation
systems based on PFT values to reduce misdiagnosis rates and
alleviate the burden on doctors.

Automated interpretation of PFT values has been proposed
as the first stage in modeling the decision-making process of
physicians [20], [23]–[25]. Moreover, more advanced clas-
sification methods have been developed. In [26], a multi-
layer perceptron was proposed to classify obstructive and non-
obstructive patients, achieving an accuracy of 83.7% with
the spirometry data of Forced Vital Capacity (FVC), Forced
Expiratory Volume in one second (FEV1), and Forced Expi-
ratory Flow (FEF25−75). Disease-specific prediction of COPD
and DPLD, as obstructive and non-obstructive, respectively,
achieved approximately 90% accuracy in the training dataset.

In addition, researchers in [27] have considered the area
under the expiratory flow-volume curve as a new indicator,
improving the diagnostic classification rates. Furthermore, PFT
values are believed to contain adequate information currently
neglected by the diagnostic workflow. A fully convolutional
network was applied to extract this latent information from the
sequence of Flow-Volume loop data in PFT [28], enabling dis-
crimination of the structural phenotype of chronic obstructive
pulmonary disease that traditional PFT interpretation cannot
accomplish using discrete single values.

B. Structure-based prediction of lung function
The static structure of the lungs determines their dynamic

function. Modalities such as CT, MRI, and X-ray have been
used to assess lung volume, parenchymal change, airway
structure, air-trapping, and other structural features. These
features are believed to be able to predict the functional
parameters of the lungs.

In [29], an end-to-end scheme was used to predict PFT
values, including FVC and FEV1, using low-dose chest CT
images, achieving an accuracy of 89.6% and 85.9%. In [30],
lung ventilation heterogeneity in COPD patients was predicted
using support vector machines (SVM) based on CT texture
analysis. The PFT results and 3He-MRI were considered
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ground truth, and the predicted ventilation maps had an
accuracy of 88% and an AUC of 0.82.

An integrated 3D-CNN and parametric-response mapping
model [31] is proposed to classify COPD subjects using CT-
based variables, achieving an accuracy of 89.3% and a sensi-
tivity of 88.3% in five-fold cross-validation. Deep learning has
also been applied to discover subvisual abnormalities in CT
scans related to COVID-19 in an interpretable manner [32].

X-ray images were also used to get an early assessment
of the lung function of coronavirus patients with the help
of invariant markers [33]. MRI-derived regional flow-volume
loops were also applied to detect chronic lung allograft
dysfunction in early-stage [34]. Meanwhile, dynamic and
functional imaging develops fast among traditional modalities,
4D-CT [35], [36] and hyperpolarized MRI [37], [38] are the
typical representation.

C. Clinical Application of EIT
EIT is a non-invasive imaging technique that provides real-

time information on the distribution of electrical conductivity
changes in the lung tissue, which is directly related to the
respiration phase. Unlike other imaging modalities, EIT does
not involve ionizing radiation and is relatively inexpensive,
portable, and can be used at the bedside. Therefore, it has
great potential for monitoring and evaluating lung function in
various clinical scenarios [39].

2D-EIT was studied on 14 healthy individuals [40],which
showed an accuracy of 98% in predicting PFT values using
EIT values alone. The device used in the study was portable,
which may have the potential for home lung monitoring. Sim-
ilarly, other studies have been conducted on 35 children with
cystic fibrosis [41] and seven healthy individuals conducting
forced expiration maneuvers [42].

Regional lung function evaluation is crucial in clinical set-
tings [43], but it is challenging to assess without EIT. Medical
hypotheses that are based on logical deduction can be validated
by EIT through the distribution of ventilation. Studies have re-
ported the observation of spatial and temporal inhomogeneous
ventilation distributions in patients with chronic obstructive
pulmonary disease (COPD) [44]–[47], cystic fibrosis [48],
idiopathic pulmonary fibrosis [49], and smokers [50]. These
findings demonstrate the potential of EIT to provide valuable
information on regional lung function in various respiratory
conditions.

The wide acceptance of these physiological findings within
the medical community confirms EIT’s reliability. Conse-
quently, once the hypothesis is validated, EIT has proven to
be a valuable tool for assessing the effectiveness of different
treatments. For example, studies have shown that EIT can be
used to evaluate the effectiveness of pulmonary rehabilitation
[51], [52], bronchodilators [15], position changes from bed
to a wheelchair [53], and even cardiac surgery [54]. EIT can
also guide tracheal tube placement [55], [56] and aid in PEEP
titration [57].

Although EIT has shown promising results in correlating
with PFT results and evaluating lung function in specific
disease scenarios, there are still limitations in the current
studies:

• The sample size in most studies is relatively small,
limiting the generalizability of the findings.

• There is still a lack of standardization in the EIT data
acquisition and analysis procedures.

• EIT measurements are sensitive to various factors, such
as electrode positioning, patient movement, and chest
wall abnormalities, which may affect the accuracy and
reproducibility of the results.

• EIT is still considered an emerging technology, and there
is a need for further research to establish its clinical utility
and cost-effectiveness in routine clinical practice.

Despite these limitations, EIT holds good promise in pul-
monary medicine as a non-invasive, radiation-free, and
portable lung function assessment and monitoring tool. Fur-
ther studies with larger sample sizes and standardization of
EIT data acquisition and analysis procedures are needed to
establish its clinical usefulness.

III. PRELIMINARIES

A. EIT Formulation

EIT is a non-invasive medical imaging technique that uti-
lizes small electrical currents to create images of the internal
conductivity distribution within an object. In the context of
lung imaging, EIT involves the placement of multiple elec-
trodes on the surface of the chest. These electrodes serve as
excitation points for applying small alternating currents. By
measuring the resulting voltage distribution at each electrode,
EIT can generate images depicting the lungs’ internal con-
ductivity distribution (see Fig.1). The conductivity distribution
within the lungs changes as air is inhaled and exhaled during
breathing. This dynamic feature of EIT makes it a valuable
tool for monitoring lung function and detecting abnormalities
in real-time. Moreover, EIT is radiation-free and non-invasive,
making it a safe imaging technique for repeated and continu-
ous monitoring of lung function.

Fig. 1. EIT imaging principle: Excitation electrodes (red) and mea-
surement electrodes (green) is placed on the surface of the domain of
interest (DOI) to apply small electrical currents and measure the result-
ing voltage distribution for image reconstruction.(The three-dimensional
lung image is sourced from Zygote Media Group.)

Reconstructing the conductivity distribution from the
boundary voltage data using EIT is a highly ill-posed problem
[58], particularly in the case of 3D EIT. The algorithm
used in this work is based on 3D time-difference image
reconstruction, as described in previous studies [59], [60].
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The basic principle of this algorithm is briefly introduced
below. The chest’s conductivity distribution, denoted by σ,
is defined on a tetrahedral mesh. Let d and d∗ denote the
simulated and measured boundary voltage, respectively, given
the injection-measurement pattern. The function S(∗), also
known as the forward model, maps the conductivity distri-
bution to the boundary voltage. At an initialized point σ0, a
linear approximation is needed:

S(σ) ≈ S(σ0) + Jσ0
T ·∆σ (1)

where ∆σ is a small conductivity change around σ0, and Jσ0

is the Jacobian matrix of S(σ) evaluated at σ0:

Jσ0 =
∂S(σ0)

∂σ0
. (2)

Here, we focus on the difference in the conductivity distri-
bution. Let the measured data and conductivity distribution at
t1 and t2 be denoted by d1∗, d2∗ and σ1, σ2, respectively.
The time-difference EIT can be approximated as follows:

d2∗ − d1∗ ≈ Jσ0
· (σ2 − σ1) (3)

B. the Proposed VAE

Variational autoencoder (VAE) is a deep generative network
[61] that can encode high-dimensional data into a lower-
dimensional latent space representation. Herein, VAE is em-
ployed to acquire a compressed representation of 3D EIT
images. The 3D EIT images are fed into the encoder network,
which maps the data to a lower-dimensional latent code z.
Then a decoder would reconstruct the original data from z as

Fig. 2. The VAE Workflow and Structure. The encoder network maps
the input images to the latent variable distribution, which is then sampled
to produce a latent variable. The decoder network takes the latent
variable as input and reconstructs the original data.

shown in Fig.2.
A three-dimensional convolutional neural network (CNN)

is applied for both the encoder and decoder blocks. The
encoder is stacked with five encoding blocks with different
numbers of channels, followed by a flatten layer and a dense
layer. The flattened output is then passed through two dense
layers to obtain the mean and standard deviation of the
latent space distribution. The mean and standard deviation are
used to sample from the distribution and obtain the latent
representation of the input image. The decoder consists of
several layers of 3D transposed convolutional blocks, which
perform the opposite operation of the encoder. The transposed
convolutional blocks gradually increase the dimensions of the
input until the output matches the original input dimensions.

A MultiRes block [62] is the common part of the encoder
and decoder and the key of the proposed structure. Three
convolutional blocks are connected sequentially to capture
spatial features at multiple resolutions. Moreover, a residual
connection is introduced by a 1 × 1 convolutional layer to
comprehend some additional spatial information.

The purpose of VAE is to model the real probability
distribution of the training data pr(x) with a latent distribution
p(z), which is commonly set as standard distribution N (0, I).
The distribution of the generated samples p(x) can be written
as:

p(x) =

∫
p(x|z)p(z)dz (4)

Given the Kullback–Leibler (KL) divergence, which is a
measure of the difference between the distributions. The
optimization principle of VAE can be written as follows:

argmin
p(x|z)

DKL((pr(x)∥p(x))) (5)

The corresponding objective function is derived as:

L = Ex∼p̃(x)[DKL((q(z|x)∥p(z)))−
∫

q(z|x) ln p(x|z)dz]
(6)

Assume that q(z|x) ∼ N (µ,σ), where µ and σ =
diag{σ2

v} are the mean vector and variance vector of the VAE
encoder. Then the first KL term in Eq.6 can be written as:

LKL =
1

2

n∑
i=1

(µ2
i (x) + σ2

i (x)− lnσ2
i (x)− 1) (7)

where n is the length of the latent code z. The KL loss
encourages the distribution in the latent space to be close to
a standard normal distribution, which leads to a smoother and
more continuous latent space structure. The second term is
approximated [60], [63] as:

LMSE =
1

Nx
∥x− x̂∥22 (8)

where x and x̂ represent the raw and reconstructed images
respectively, and Nx denotes the total number of pixels in
a single 3D image. This term ensures that the reconstructed
images are faithful to the input images.

In the total loss, the LKL is weighted by λ = 10−3

to prevent it from dominating the reconstruction loss during
training.
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Loss = LMSE + λLKL (9)

The VAE is designed to learn unsupervised representations
by extracting latent features with the encoder. These learned
features can then be used as inputs to classification tasks,
achieving improved performance.

IV. THE PROPOSED APPROACH

A. Voltage data preprocessing

The total voltage signal obtained from EIT during a PFT is
presented in Figure 3. The signal captures the dynamics of ven-
tilation, including forced expiration (depicted in light orange)
and tidal breathing (depicted in green), which alternate under
the guidance of physicians before breath-holding (depicted in
yellow). The EIT electrodes are placed on the skin around the
chest, resulting in the raw voltage signal containing changes
from ventilation and perfusion inside the chest. To obtain
accurate information about the ventilation activities, isolating
the ventilation-related changes from the raw EIT voltage signal
is necessary.

Fig. 3. The raw EIT voltage signal throughout a whole PFT, and the
separated ventilation-related signals around the forced expiration.

The heart beats at a significantly higher frequency of 60-
100 times per minute (1-1.6 Hz) compared to the respiration
rate of 10-20 times per minute (0.17-0.33 Hz). Furthermore,
the magnitude of cardiac-related signals is much lower than
that of ventilation-related signals. Therefore, digital filters
are designed to effectively remove cardiac-related signals and
noises, as illustrated in the lower row of Fig. 3.

B. EIT Image Reconstruction and Code Splicing

The ventilation-related voltage signal is utilized as input
to the image reconstruction algorithm (described in Section
III), with the end of expiration selected as the reference
point. Specifically, for each data record, a sequence of data

frames at time ti (where i = 1, 2, ..., T ) denoted as di

(where i = 1, 2, ..., T ) is reconstructed as a 3D image series
P = pi, (i = 1, 2, ..., T ).

To enhance the visualization of the lungs, the pixels that
rank within the lowest 20% are set to 0 for each image pi,
which helps to make the lung outline more clearly visible.
Subsequently, the amplitude of the entire image series P is
normalized to fall within the [0, 1] range before being fed
into the VAE. Let Pmin and Pmax denote the minimum
and maximum pixel value of the image series P , and the
normalized image series P̂ can be expressed as shown in
Eq.10. The images before and after this process are presented
in Fig.4.

P̂ =
P − Pmin

Pmax − Pmin
(10)

Fig. 4. The EIT image (a) before and (b) after process. The unit in (a)
is mS/m

The trained VAE is utilized as a compressor for dimensional
reduction. The resulting latent code of the reconstructed image
series is represented as Z = zi, (i = 1, 2, ..., T ), where each
z has a length of 32. Since the expiration duration varies
from person to person, the T dimension of the Z is zero-
padded to a length of 93. The resulting zero-padded latent
code is denoted as Zpad = zi, (i = 1, 2, ..., 93). Subsequently,
the Zpad is input to a 2D CNN for classification. See Fig.5
for a general overview of this work.

V. EXPERIMENT DESIGN
A. Subjects and Data Acquisition

1) Measurement system: EIT signals were acquired using
the Infivision 1900 (Beijing Huarui Boshi Medical Imaging
Technology Co., Ltd., Beijing, China). Two electrode belts
were placed around the chest to record the signals, with
each belt containing 16 electrodes. The upper electrode belt
was placed at the height of the armpit, while the lower
electrode belt was placed at the fourth to sixth intercostal space
(medioclavicular line).

The EIT measurement system utilized in this study has an
input impedance of 40 kΩ at a phase angle of −90◦ and a
frequency of 20 kHz. The instrumentation amplifier has a high
standard mode rejection ratio (CMRR) of 120 dB. A 2-loop
of electrodes injection-measurement pattern [60] was used to
record EIT signals, with an injected alternating current of 2
mA (root mean square) at a frequency of 20 kHz. EIT data
were collected at a rate of 20 images per second and were
reconstructed using a reconstruction matrix with Tikhonov
regularization, as described in Section III-A.
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Fig. 5. An overview of the proposed method. (The three-dimensional human body image is sourced from Zygote Media Group.)

2) Clinical Study Cohort: From August 2021 to September
2022, a total of 186 subjects were recruited after obtaining
written consent. Subjects who did not provide written informed
consent (n=4), had contraindications to PFT or EIT (n=9), or
had lung diseases such as pulmonary lesions, large bullae, and
pleural effusion (n=11) were excluded prior to the test. During
the test, 6 patients could not perform PFT adequately, and 19
had poor contact with EIT.

After the exclusions above, forced expiratory data from 137
subjects were included in the subsequent analysis. The partic-
ipant’s physical characteristics and PFT values are presented
in Table I. In general, 67 patients (age 62.36 ± 9.56 yr, body
weight 63.15 ± 11.70 kg, body height 165.79 ± 8.04 cm)
were classified as the abnormal ventilation group, while 70
patients (age 59.04 ± 10.37 yr, body weight 65.89 ± 11.53 kg,
body height 166.60 ± 8.57 cm) were classified as the normal
ventilation group. Demographically, no significant differences
were observed between the two groups (P >0.05).

EIT measurements were conducted with PFT with approval
from the Ethics Committee of Zhongshan Hospital, Fudan
University (2022-084R), and registration was in the Clinical
Trials Register.

VI. RESULTS AND DISCUSSION

A. Performance of VAE
The EIT image series of the 137 subjects were processed

and shuffled to create a training dataset for the VAE model,
which was implemented and evaluated using Python with
TensorFlow on an NVIDIA Tesla V100 GPU card. The image
reconstruction was conducted using MATLAB R2021b. The
dataset consisted of 2781 images with a size of 48× 32× 48,
with 2508 images used for training and 279 for testing. The
Adam optimizer was applied during training with a learning
rate of 4× 10−4 over 50 epochs.

TABLE I
THE PHYSICAL CHARACTERISTICS OF THE PARTICIPANTS

The performance of the proposed method heavily relies on
the effectiveness of VAE for dimensional reduction. To verify
the reconstruction quality of VAE, several samples from the
test dataset were randomly selected, and their reconstructed
images were visually evaluated. As shown in Fig.6, each
reconstructed 3D image is presented with four slices: the
central coronal slice in the middle, the center section slice
on top, and the left and right lung sections on both sides.
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The upper row of Figure 6 shows the 3D EIT images
of three subjects at different stages of the respiratory cycle.
Figure A displays the image of a normal subject’s lung at the
apex of inhalation. The image shows both lungs as round and
full, with the ventilation range of the left and right lungs being
approximately the same. In contrast, Figure B shows the image
of an abnormal subject at the start of forced expiration, with
defects visible in the ventilation image of the right lung. Figure
C shows the end of the expiration of another subject. The
corresponding output images reconstructed by VAE are shown
in the lower row of Figure 6. The VAE effectively reproduces
the input images in terms of both value and contour.

Fig. 6. Three images reconstructed by the proposed VAE. The recon-
structed images (bottom row) show good agreement with the original
images (top row), demonstrating the high reconstruction accuracy of the
VAE model.

Furthermore, to verify the compact and continuous nature
of the latent space, we conducted code interpolation between
two test samples x1 and x2. We first encode them to obtain
their respective latent vectors z1 and z2. Then, we created a
series of intermediate latent vectors by linearly interpolating
between z1 and z2 through convex combinations of the two
vectors, given by:

zi = (1− t)z1 + tz2 (11)

where t ∈ [0, 1] is a parameter that controls the degree
of interpolation. Subsequently, we decoded these intermediate
vectors zi to obtain the corresponding intermediate image xi.
As depicted in Fig.7, the intermediate images formed a smooth
transition between the original images. Thus, we conclude that
the latent code z provides a low-dimensional representation of
the entire 3D image and that the latent space is compact and
continuous.

The latent code serves as a condensed representation of
the spatial distribution of lung ventilation, enabling efficient
storage and analysis of the pulmonary ventilation distribution’s
temporal changes. The sequence of latent space vectors, ob-
tained from sequentially inputting 3D lung ventilation images,
effectively captures the temporal changes in pulmonary venti-
lation distribution. Thus, this sequence of latent vectors can be
utilized to efficiently store and analyze the temporal changes
in the pulmonary ventilation distribution.

B. Classification performance
The input series were encoded and zero-padded to form a

latent code series denoted as Zpad. As the training dataset

Fig. 7. The intermediate images obtained by linearly interpolating
between two latent vectors form a smooth transition, confirming the
continuity of the latent space.

consisted of 137 image sequences reconstructed from mea-
sured data, it was essential to validate the model to ensure that
overfitting did not occur. To accomplish this, we employed ten-
fold and leave-one-subject-out validation techniques during the
convolutional neural network (CNN) training. Moreover, we
recruited nine new subjects in October 2022, and their data
were processed following the same pipeline as the training
dataset. These data were used as blind data to test the model’s
generalization capability.

1) Ten Fold and Leave-One-Out Cross Validation: A ten-fold
test is first conducted to ensure the model’s fitness. The whole
training data is split into 10 parts; each part is used as a test
dataset in turn, while the remaining nine parts are used for
training. The average accuracy and AUC are 0.956 ± 0.06,
and the f1-score is 0.956 ± 0.06. The coefficient of variation
for the accuracy and AUC are 0.0637 and 0.0639, respectively,
indicating a relatively low variance and good reproducibility
of the results. These results suggest that the model has a good
generalization ability and can accurately classify ventilation
patterns in unseen data.

Next, we performed Leave-One-Out Cross Validation
(LOOCV) to evaluate the model’s performance further. The
accuracy, sensitivity, f1-score, and confusion matrix are shown
in Fig.8. The results indicate that the model achieves high
accuracy, sensitivity, and f1-score on the test data. Specifically,
the model achieves an overall accuracy of 0.953, a sensitivity
of 0.941, and an f1-score of 0.945. The confusion matrix
shows that the model has a high true positive rate for all
classes, indicating that the model can accurately classify the
ventilation patterns for each subject. These results confirm the
robustness and generalization ability of the proposed model
for classifying the ventilation patterns in 3D lung ventilation
images.

Furthermore, abnormal ventilation can be classified into
obstructive, restrictive, and mixed patterns. In order to test
the proposed pipeline, we modified the 2D CNN model
from a two-class to a four-class classification. The LOOCV
confusion matrix indicates good performance in identifying
normal and obstructed patterns, where the obstructed pattern
is characterized by slow and uneven expiration. However,
the model’s ability to distinguish between restrictive and
mixed patterns could have been more satisfactory. Regarding
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Fig. 8. Results of Leave-one-out validation. (left: two-classification,
right: four classifications, where 1,2,3,4 stands for normal, obstructed,
restricted, and mixed, respectively.)

respiratory mechanics, the restrictive pattern is characterized
by a reduction in total capacity but a smooth expiration pattern
similar to the normal pattern. The model’s accuracy was lowest
for the mixed pattern, mainly due to a lack of balanced
training samples. Further investigation is required to verify
and enhance the model’s ability to differentiate among various
lung ventilation abnormalities.

2) Blind Data: The proposed workflow was tested on blind
data from nine patients with varying demographics and PFT
results. Despite the unbalanced distribution in sex and lung
ventilation mode, the results confirmed the reliability and
validity of the proposed method. Among the nine subjects,
only one was normal, and the remaining eight had obstructed
or mixed diagnoses.

TABLE II
THE PHYSICAL CHARACTERISTICS OF THE 9 PARTICIPANTS

EIT records during forced expiration were processed using
the proposed pipeline, and the PFT diagnosis was noted in
Table II. The classification results of our method are shown in
the last line of the table, with only one mistake in subject 3, a
53-year-old female with a PFT diagnosis of restriction. While
the flow metrics in PFT, such as the percentage of FEV1/FVC
and FEF25−75 were close to normal, a decrease was observed
in instantaneous flow rate, such as PEF and FEF25.

VII. CONCLUSION

In summary, this work studies the general diagnosis of
lung ventilation patterns using 3D EIT image series. Unlike
previous studies focusing on specific diseases or operations,
this work provides a more comprehensive diagnosis of nor-
mal or abnormal lung ventilation. Using a well-trained VAE
network with MultiRes block, a single subject’s spatial and
temporal features are integrated into a two-dimensional feature
map, which is then classified using a simple CNN network.
The model exhibits satisfying accuracy and stability in cross-
validation tests and is validated on new data from nine patients.

This study also addresses the need for more attention to
individualized lung function assessment, which can provide
valuable information for diagnosis and treatment. While PFT
is commonly used for lung function diagnosis, the potential
of EIT for individualized lung function evaluation is explored
in this work. The results suggest that this approach may
have promising applications in personalized diagnosis for lung
function disorders.

While this work presents promising results for individu-
alized lung function assessment using EIT, some limitations
must be acknowledged. Firstly, the sample size of the training
data set is relatively small, which may limit the generalizability
of the proposed workflow. A larger sample size is needed to
validate the results further and assess the model’s performance
among different populations.

Secondly, the study only focuses on forced expiration and
does not consider the potential changes in lung function
during normal breathing or other respiratory maneuvers. Incor-
porating more comprehensive respiratory measurements may
provide a more complete assessment of lung function.

Finally, while the proposed workflow provides a two-
dimensional feature map for classification, the interpretability
of the features extracted by the VAE network and CNN still
needs to be improved. Further research is needed to understand
better the relationship between the extracted features and the
underlying physiological mechanisms of lung function.
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