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Abstract— Obstructive sleep apnea (OSA) is a high-
prevalence disease in the general population, often under-
diagnosed. The gold standard in clinical practice for its di-
agnosis and severity assessment is the polysomnography,
although in-home approaches have been proposed in re-
cent years to overcome its limitations. Today’s ubiquitously
presence of wearables may become a powerful screening
tool in the general population and pulse-oximetry-based
techniques could be used for early OSA diagnosis. In this
work, the peripheral oxygen saturation together with the
pulse-to-pulse interval (PPI) series derived from photo-
plethysmography (PPG) are used as inputs for OSA diagno-
sis. Different models are trained to classify between normal
and abnormal breathing segments (binary decision), and
between normal, apneic and hypopneic segments (multi-
class decision). The models obtained 86.27% and 73.07%
accuracy for the binary and multiclass segment classi-
fication, respectively. A novel index, the cyclic variation
of the heart rate index (CVHRI), derived from PPI’s spec-
trum, is computed on the segments containing disturbed
breathing, representing the frequency of the events. CVHRI
showed strong Pearson’s correlation (r) with the apnea-
hypopnea index (AHI) both after binary (r=0.94, p<0.001)
and multiclass (r=0.91, p<0.001) segment classification. In
addition, CVHRI has been used to stratify subjects with
AHI higher/lower than a threshold of 5 and 15, resulting in
77.27% and 79.55% accuracy, respectively. In conclusion,
patient stratification based on the combination of oxygen
saturation and PPI analysis, with the addition of CVHRI,
is a suitable, wearable friendly and low-cost tool for OSA
screening at home.
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I. INTRODUCTION

Obstructive Sleep Apnea (OSA) is a syndrome caused
by repetitive episodes of total or partial interruption of the
respiratory flow during sleep due to blockades produced by
intermittent relaxation of throat muscles. Obstructive respi-
ratory events are the cause of sleep fragmentation, hypox-
emia, hypercapnia and increased sympathetic activity [1]. The
list of symptoms can include daytime sleepiness, cognitive
impairment, memory loss [2], together with comorbidities
such as hypertension, cerebrovascular artery disease, coronary
artery disease, congestive heart failure and atrial fibrillation
[3]. OSA prevalence ranges from 9% to 38% in the general
adult population, being much higher in the elderly groups [4].
Furthermore, prevalence is expected to increase in the general
population due to obesity and overweight epidemic [5]. OSA
underdiagnosis was estimated as 93% for women and 82%
for men by Young et al. [6], however, the increase in obesity
prevalence together with the generalization of screening are
factors that may have altered these statistics from then until
now. For decades, the gold standard for diagnosis included
polysomnography (PSG) performed in a clinical environment.
The patient is requested to sleep in a medical center while he or
she is continuously monitored, making this test uncomfortable
and with some impact in the natural sleep. Recently, the use of
out-of-center sleep testing with limited channels was included
in the diagnostic criteria for adult OSA, although it commonly
underestimates the number of obstructive respiratory events
per hour as compared to PSG [3]. Obstructive respiratory
events are usually measured by the apnea-hypopnea index
(AHI). This index, being the total count of apneas and hy-
popneas normalized by the sleep time in hours, has been a
matter of controversy since its introduction in OSA diagnosis
and severity rating [7], [8]. Despite of this, AHI is still the
main measurement in OSA diagnosis, as OSA is defined as a
combination of symptoms or comorbidities together with an
AHI≥5; or an AHI≥15, even in absence of symptoms [3].

Early diagnosis of OSA is important as it can cause sev-
eral major health issues [9]. OSA underdiagnose would be
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reduced by the development of novel techniques for massive
screenings in the general population. Among these techniques,
the assessment of heart rate variability (HRV) is appealing
since it can be applied to signals recorded at home using
wearables. Variability of the heartbeat period is known to
be related to sleep breathing disorders. Zwillich et al. [10]
discovered that most apneas –excluding those without oxygen
desaturations– are associated with bradycardia episodes, and
that bradycardias became more marked when apnea length and
oxyhemoglobin desaturation increases. In 1984, Guilleminault
et al. [11] described the Cyclic Variation of the Heart Rate
(CVHR), a pattern of bradycardia during apnea, followed by
abrupt tachycardia on airflow restoration. This pattern has
been an object of study, including frequency-domain analysis
[12], morphology variations [13] and automatic detection
[14]. Shiomi et al. [12] discovered an augmented very low
frequency (VLF) component of heart rate (0.008-0.04 Hz) in
OSA patients synchronized with episodes of absence of air
exchange or hypoxemia, that occurred at a cycle length of 25-
120 seconds. They also described a VLF peak during episodes
of OSA, likely related to the CVHR oscillation frequency,
itself related to the frequency of the apneas. Stein et al. [13]
set a 20% of the sleeptime with CVHR as a threshold to
predict AHI ≥ 15. They suggested that, despite Guilleminault
described CVHR as an effective monitoring of the OSA, it
had not been used by the end of the 20th century due to
technical difficulties. They also appointed, back in 2003, that
this technique should be included as a part of routine Holter
reports.

Pulse rate variability (PRV) is a well-known alternative that
offers a high correlation with HRV even in non-stationary
situations [15]. The main advantage is that acquisition is made
by an optic sensor placed on the skin, rather than attached
electrodes. This technique, called pulse photoplethysmography
(PPG), is the most popular in wrist-worn devices worldwide.
Khandoker et al. [2] demonstrated that PRV could be used to
distinguish OSA events from normal breathing during sleep,
although several variability measures were significantly differ-
ent from the HRV reference during OSA events. Analogously,
Lázaro et al. [16] demonstrated that PRV can be used as
HRV surrogate in apnea detectors based on decreases of
amplitude fluctuations of the PPG (DAP). Later, Lazazzera
et al. [17] combined DAP, PRV and peripheral capillary
oxygen saturation (SpO2) for OSA screening purposes in
adults. In [18], Hayano et al. presented an automatic detection
of the CVHR pattern from a PPG signal for its use in a
commercial wearable watch device. This algorithm is based
on the detection of every cycle on the pulse-to-pulse interval
(PPI) signal. Magnusdottir et al. [19] used CVHR combined
with cardiopulmonary coupling to identify sleep apnea.

In [20], a novel method of OSA screening based on CVHR
was proposed and preliminarily evaluated with recordings
from 15 subjects. CVHR was detected from PPI signal using
its Hjorth parameters as inputs of a bagged trees model. More-
over, a frequency-based metric, the CVHR Index (CVHRI),
was proposed for severity stratification, obtaining a Pearson’s
correlation (r) of r = 0.68 (p < 0.05) with AHI. The SpO2

signal is added to the model in this work, hypothesizing that

it may considerably improve segment classification outcomes
given that it provides a different source of information of
the apnea-generated hypoxia. In addition, the further inclusion
of frequency-domain PRV metrics as predictors is studied in
Appendix I. Different combinations of PPI and SpO2 inputs
are used in order to understand their individual contribution.
CVHRI is evaluated with recordings from 96 subjects as a
potential metric for stratification of subjects with AHI higher
or lower than a threshold, considered either 5 or 15, corre-
sponding with OSA diagnosis thresholds with and without
symptoms or comorbidities, respectively. The novelties of this
work are summarized as follows:

• The use of Hjorth parameters as the only features of SpO2

and PPI signals for the classification of segments.
• The inclusion of the SpO2 signal to the model preliminary

presented in [20]. A larger dataset of 96 subjects is also
used, in comparison with the previous 15-subject dataset.

• The inclusion of PRV metrics as model inputs is also
studied.

• The use of a new PPI-derived index, the CVHRI, for
stratifying subjects between OSA/non-OSA.

The manuscript structure is as follows. The methodology
is explained in Section II, where the database is detailed in
subsection II-A, the classification of segments is addressed in
subsections II-B, and II-C, and II-D, as well as the stratifica-
tion of subjects in subsection II-E, and the statistical metrics to
evaluate the performance of segment classification and subject
stratification in subsection II-F. In Section III, the results of
segment classification are studied in subsection III-A, corre-
lation of CVHRI with AHI in subsection III-B, and subject
stratification in subsection III-C. Section IV is dedicated to the
discussion of the results and is organized discussing segment
classification in subsection IV-A, correlation of CVHR with
AHI in subsection IV-B, and subject stratification in subsection
IV-C. This section includes an additional subsection IV-D
focused on the study of limitations. The manuscript is finished
with conclusions presented in section V.

II. METHODS

A. Dataset

The dataset is composed of 96 subjects (age 44.5 ± 11.4
years, 62 males) suspected to suffer from OSA, who un-
derwent a PSG (Medatec, Brainnet II, Brussels, Belgium) at
the sleep laboratory of the University Hospitals Leuven (UZ
Leuven). All included patients did not suffer from any of
the following comorbidities: atrial fibrillation, hypertension,
stroke, myocardial infarction, hyperlipidemia or diabetes. All
signals were sampled at 500 Hz, including nasal pressure and
oronasal flow (thermistor). Hypnograms are also available.
PPG and SpO2 signals were recorded using a Nonin 8000J
sensor at 500 Hz. One subject was removed from dataset due
to he/she was wake most of the test time, whereas another
one was removed due to an unreliable nasal pressure signal.
Thus, in total, 94 subjects were used. 72% of the subjects had
AHI≥5, while 50% had AHI≥15, based on AASM annotation
rules [21]. The inclusion of these data sets was approved by
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the ethical committee of UZ Leuven (S60319) and all patients
signed an informed consent.

B. Signals for Segment Classification
1) Pulse-to-pulse intervals: The PPG signal is processed to

obtain pulse event series using an adaptive threshold pulse
detector [16]. Then, pulse series are checked using the algo-
rithm described in [22], correcting both false positives and
false negatives. Finally, the PPI signal is obtained by evenly
sampling the pulse series at 4 Hz using linear interpolation.
PPI signal is also smoothed using a second-order polynomial
fitting with a moving window of 20 seconds (see Fig. 1).

Pulse event series

P. e. s. (corrected)

PPI signal

SpO2 (spikes removed)

PPG

Pulse detection

Series correction

Interpolation (Fs = 4 Hz)

PPI signal (smoothed)

Smoothing

SpO2

Moving median

Decimate   (Fs = 25 Hz)

SpO2 signal

Fig. 1: Signal processing flowchart of signals used in for
segment classification.

2) SpO2: SpO2 values are quantified in integer units and
the lack of hysteresis provokes large quantization noise. A 3-
second median filter is used to reduce noise in the SpO2 signal.
SpO2 is also decimated to 25 Hz, following the AASM 2012
recommendations [21].

C. References for Performance Evaluation
1) Airflow: The AASM [21] recommends different sensors

to annotate apneas and hypopneas: apneas are proposed to be
annotated from oronasal thermistor, while hypopneas are from
nasal pressure. However, oronasal thermistor signals were
saturated in most of the cases, making them not reliable. Thus,
following the AASM guidelines for this cases, both apneas and
hypopneas are annotated from nasal pressure signals.

First, nasal pressure signals are low-pass filtered at 15 Hz for
noise removal, and detrended by a high-pass filter at 0.1 Hz,
using 3-order Butterworth filters (see Fig. 2). Airflow is com-
puted from the nasal pressure signal by the algorithm described
in [23] by detection of maxima (for positive segments) or
minima (for negative segments) between consecutive zero
crossings. These minima and maxima are interpolated using

piecewise cubic Hermite interpolating polynomials, obtaining
a positive and a negative envelope. Finally, the airflow is
defined as the difference between the envelopes. Airflow
signal is decimated to 100 Hz, following the AASM 2012
recommendations [21].

N. p. min and max

Nasal pressure

Minima and maxima detection

Interpolation (Fs = 100 Hz)

Airflow

Moving median with memory

Basal respiration
Annotations

Annotations

Fig. 2: Signal processing flowchart of reference signals.

2) Basal Respiration: Running basal respiration was used
as reference for annotating reductions of the airflow signal.
This signal is obtained by an algorithm that computes the
median of the airflow signal in 1-minute segments. The result
of the sum of each segment median, multiplied by a weight
of 0.4, plus the previous segment median, multiplied by 0.6,
is stored. These weights were chosen empirically, looking for
the smoothest line that at the same time allowed to follow the
variations in the baseline in a subset of 10 random subjects.
The use of averaging with memory helps to obtain a more
accurate basal respiration in signals with the presence of
apneas. Without these disruptions, averaging is a simple task
and no weighting is required. However, subjects with apneas
present regions with large variations, sometimes composed
of a succession of events. Therefore, a compromise must be
reached that allows these disruptions not to raise or lower
the basal respiration to arbitrary values, while allowing the
average to follow the changes over time. The more challenging
decision is in those cases with burst events, where respiration
does not return to a basal respiration between events. In these
cases, basal values before and after the burst must be taken
into account to make a correct approximation. Thus, once the
algorithm obtains a value for each airflow segment, it is run
again backwards. Finally, basal respiration is the mean of the
forward and backward results. This allows for more accurate
transitions between normal and disrupted breathing segments.

3) Annotations: Events are labeled as apnea if airflow
decreases ≥ 90% from basal respiration, during ≥ 10 sec-
onds, while they are labeled as hypopnea if the decrease
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Fig. 3: Top panel: Event-based annotations. Solid lines represent airflow (top row) and nasal pressure (bottom row), the
dashed-dotted line represents basal respiration and the dashed line represents zero-reference for airflow and basal respiration.
Annotation onsets and endsets correspond to airflow reductions and restorations, respectively. Bottom panel: Grouped
annotations. Events are grouped in apneic/hypopneic bursts. Note that new bursts are initiated every 8 events, allowing
precise apneic/hypopneic characterization. These annotations are later transformed into segment-based annotations.

is ≥ 30% during ≥ 10 seconds and there is an associated
≥ 3% desaturation. A third label, severe hypopnea, is applied
to airflow decreases ≥ 70% during ≥ 10 seconds, regardless
of saturation. These are borderline cases, in which airflow
does not completely disappear, although the reduction is
considerably greater than in most hypopneas (See Section
IV-A). Hypopneas related to arousals were not annotated.
No distinction was made between central and obstructive
apnea/hypopnea annotations, although respiratory effort was
assessed (89.7% of apneas/hypopneas were obstructive [17]).

Event-based annotations were transformed into segment-
based annotations. This step is performed taking into ac-
count that the objective is to annotate each segment
into abnormal/normal breathing (binary decision) or ap-
neic/hypopneic/normal breathing (multiclass decision) as a
reference for segment classification. Events are grouped in
bursts. Bursts are composed of at least two events, separated
by a maximum of 180 seconds, and are labeled as apneic
or hypopneic depending on the events forming each burst. A
burst is labeled as apneic if it contains at least one apnea
or at least half of the events are severe hypopneas. Bursts
are labeled as hypopneic otherwise. The maximum number
of grouped events is empirically set to eight, allowing precise
apneic/hypopneic characterization. An example of event-based
annotation grouping in bursts is shown in Fig. 3.

Finally, time is divided in 180-second segments with 150-

second overlap (step: 30 seconds). A segment is labeled as
apneic if it contains at least one apneic burst; as hypopneic if
it contains at least one hypopneic burst and no apneic bursts;
or as normal breathing if it does not contain any burst. Apneic
and hypopneic classes are grouped into abnormal breathing in
the binary case. Classes were balanced by randomly removing
the majority class before segment classification, obtaining a
total of 53.242 segments in the binary case (26.621 normal and
26.621 abnormal breathing segments), and 25.278 segments in
the multiclass case (8.426 apneic, 8.426 hypopneic and 8.426
normal breathing segments).

D. Segment Classification Models

For each segment, Hjorth parameters H0, H1 and H2 of
the PPI and SpO2 signals, surrogates of power, dominant fre-
quency and bandwidth, respectively [24], [25], were computed
in a sliding window following the expressions:

Activity : H0(m) = w̄0(m)

Mobility : H1(m) =

√
w̄2(m)

w̄0(m)
(1)

Complexity : H2(m) =

√
w̄4(m)

w̄2(m)
− w̄2(m)

w̄0(m)
,
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Fig. 4: Segment classification models.

where w̄i is the i-th-order spectral moment. w̄i can be
estimated using the temporal expression of the moments in
the m-th window of P samples:

ˆ̄wi(m) ≈ 2π

P

mP∑
n=(m−1)P+1

(xi/2(n))2, (2)

being x(n) either the PPI or the SpO2 signal and P the number
of samples corresponding to 180 s. The Hjorth parameters are
used as inputs for segment classification. The motivation for
using these parameters is twofold. On the one hand, they are
simple and low cost to compute since they can be estimated
from the time domain signal. On the other hand, they are easily
interpretable, being related to the signal energy, dominant
frequency and bandwidth. The original hypothesis was that
segments with CVHR pattern would have different Hjorth
parameters from segments without CVHR [20]. In particular,
it was hypothesized that the PPI in segments with CVHR
would have a lower Complexity, H2, as the bradycardia-
tachycardia pattern would mask the normal variability of the
heart, causing it to more closely resemble a sinusoid, as shown
in [20]. Analogously, desaturations in SpO2 should affect all
parameters, especially the Activity, H0.

The best model is selected maximizing the Area Under the
Curve (AUC) of the Receiver Operating Characteristics (ROC)
curve. For training, 5-fold cross-validation was performed in
order to avoid bias in results due to overfitting. Models from
the decision trees, discriminant analysis, logistic regression,
naive bayes, support vector machine, nearest neighbor, ker-
nel approximation, ensembles, neural networks families were
tested. As result, Bagged trees outperformed the others and
was the selected model, and a leave-one-subject-out testing
strategy was followed. Different models were created for
binary and multiclass decision. Also, for each classification

strategy, three models were created, depending if they use PPI
and SpO2 (PPI+SpO2 model), only PPI (PPI model) and only
SpO2 (SpO2 model) as inputs (see Fig. 4).

E. OSA Stratification by CVHRI

CVHRI is a metric proposed in [20] for apnea severity
quantification. The spectrum of the PPI is computed using
Fast Fourier Transformation (FFT) for each i-th 180-second
segment classified as abnormal breathing in the binary case,
or as apneic/hypopneic in the multiclass case. The frequency
of the FFT modulus maxima, Fmax

i , between 0 and 0.1 Hz
is obtained. Then, CVHRI is defined as the sum of the
frequencies of the spectrum peaks of each abnormal breath-
ing/apneic/hypopneic segment divided by the total number of
segments, obtaining a single parameter which characterizes
each patient, similarly to AHI.

CVHRI =
∑Iab

i=1 F
max
i

Itot
, (3)

where Iab is the total number of abnormal breathing seg-
ments in the binary case or the sum of apneic and hypopneic
segments in the multiclass case and Itot is the total number of
segments. Pearson correlation coefficient (Pearson’s r) between
CVHRI and AHI is computed for each model. This index
was proposed in [20] as an alternative for detecting each
bradycardia-tachycardia pattern individually, i.e., the CVHR
pattern, in order to be less costly and more robust. The
former is achieved because only one peak per segment must
be detected, which is easier in the majority of the cases, while
the latter benefits from the highly optimized FFT algorithms.

Finally, CVHRI is used for subject stratification. Groups of
interest are those clustered by AHI<5 v. AHI≥5 and AHI<15
v. AHI≥15, as are the ones used for OSA diagnosis. A CVHRI
threshold for each subgroup is searched by Linear Discrimi-
nant Analysis (LDA). Class weights w(j) are computed for
dealing with imbalanced data following:

w(j) =
N

2N(j)
, (4)

where N is the total number of patients and N(j) the
number of patients corresponding to class j. Train and test
groups are selected randomly, splitting the dataset in two halfs.
5-fold cross-validation is used to prevent overfitting during
training.

F. Performance Analysis

Segment classification performance is evaluated in terms of
accuracy (Acc) precision (P ) and recall (R). These metrics
have been evaluated for all subjects and also for AHI<15
and AHI≥15 subsets. The leave-one-subjet-out strategy is
implemented by summing up the number of false and true
events for each left subject and then computing metrics
presented in Tables I and II. After segment classification,
CVHRI is computed for every subject and compared to AHI.
Pearson’s r correlation was computed between CVHRI and
AHI with a significance level of 0.05. Correlation results
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are divided as well in binary and multiclass depending on
the segment classification prior to the CVHRI computing.
Also, results are computed for all subjects and for AHI<15
and AHI≥15 subsets separately. Finally, stratification results
were computed taking the AHI clustering (AHI<5 v. AHI≥5
and AHI<15 v. AHI≥15) as reference. Accuracy, positive
predictive value (PPV), sensitivity (Se), negative predictive
value (NPV), specificity (Sp), Area Under the Curve (AUC)
and Cohen’s Kappa (κ) are reported alongside the best CVHRI
threshold for each model that better cluster the subjects.

1) Binary Segment Classification: The target here is normal
and abnormal breathing segment classification. A number of
true normal breathing segments, Tn, false normal breathing
segments, Fn, true abnormal breathing segments, Tab, and
false abnormal breathing segments, Fab, are obtained, which
are quantified by the metrics in Table I.

2) Multiclass Segment Classification: The target here is nor-
mal breathing, apneic or hypopneic segment classification. We
obtain a number of true normal breathing segments, Tn, false
normal breathing segments, Fn, divided between those coming
from apneic and hypopneic segments (Fn = Fn,ap + Fn,h),
true apneic segments, Tap, false apneic segments, Fap, divided
between those coming from normal breathing and hypopneic
segments (Fap = Fap,n + Fap,h), true hypopneic segments,
Th, and false hypopneic segments, Fh, divided between
those coming from normal breathing and apneic segments
(Fh = Fh,n + Fh,ap), which are quantified by the metrics in
Table II.

TABLE I: Binary segment classification metrics.

Class Measure Definition

All Accuracy Acc =
Tn + Tab

Tn + Fn + Tab + Fab
Normal Recall Rn = Tn/(Tn + Fab)
breathing Precision Pn = Tn/(Tn + Fn)
Abnormal Recall Rab = Tab/(Tab + Fn)
breathing Precision Pab = Tab/(Tab + Fab)

TABLE II: Multiclass segment classification metrics.

Class Measure Definition

All Accuracy Acc =
Tn + Tap + Th

Tn + Fn + Tap + Fap + Th + Fh
Normal Recall Rn = Tn/(Tn + Fap,n + Fh,n)
breathing Precision Pn = Tn/(Tn + Fn)

Apneic Recall Rap = Tap/(Tap + Fn,ap + Fh,ap)
Precision Pap = Tap/(Tap + Fap)

Hypopneic Recall Rh = Th/(Th + Fn,h + Fap,h)
Precision Ph = Th/(Th + Fh)

III. RESULTS

A. Segment Classification Results

The results for binary and multiclass classification are
shown in Tables III and IV, respectively. Results are given
for all subjects together as well as separately in the AHI<15
and AHI≥15 subgroups.

TABLE III: Binary segment classification results (%).

Model Subgroup Acc Pn Rn Pab Rab

PPI+
SpO2

All subjects 85.01 90.89 87.01 73.52 80.53
AHI<15 87.33 95.21 90.57 38.06 56.01
AHI≥15 83.01 84.33 81.53 81.76 84.53

SpO2

All subjects 86.27 91.30 88.56 76.05 81.16
AHI<15 89.38 95.00 93.19 44.41 52.60
AHI≥15 83.59 85.43 81.41 81.89 85.81

PPI
All subjects 60.30 81.13 57.34 39.36 67.50
AHI<15 57.93 94.66 57.17 12.73 65.98
AHI≥15 62.47 66.07 57.61 59.46 67.75

TABLE IV: Multiclass segment classification results (%).

Model Subgroup Acc Pn Rn Pap Rap Ph Rh

PPI+
SpO2

All subjects 73.07 92.86 80.19 65.91 60.70 23.71 49.87
AHI<15 80.39 96.00 84.53 16.25 25.93 19.62 48.22
AHI≥15 66.77 87.75 73.48 73.08 63.43 25.70 50.51

SpO2

All subjects 71.71 93.86 77.18 78.21 57.54 22.91 63.52
AHI<15 79.39 96.38 82.60 32.10 16.75 19.31 65.38
AHI≥15 65.10 89.52 68.82 80.72 60.74 24.79 62.80

PPI
All subjects 44.39 78.39 48.49 24.82 37.06 10.19 28.87
AHI<15 45.77 93.64 47.26 4.33 39.97 5.34 24.61
AHI≥15 43.12 62.94 50.46 42.10 36.83 14.36 30.55

B. CVHRI Correlation with AHI

1) Binary: Fig. 5 shows CVHRI v. AHI scatter plots for each
binary segment classification model, including Person’s r. A
very strong correlation (r = 0.94) was found when CVHRI
segments are detected with both the PPI+SpO2 model and
the SpO2 model. No correlation was found when CVHRI
segments were detected by the PPI model, except for the
group with AHI≥15, where a low correlation (r = 0.37) was
obtained. Correlation was slightly lower when including only
the AHI≥15 group in comparison with all subject correlation,
being 0.91 using the PPI+SpO2 model and 0.89 using the
SpO2 model. No correlation was found in any case for
AHI<15.

2) Multiclass: Fig. 6 shows CVHRI v. AHI scatter plots for
each multiclass segment classification model. Results when
using a multiclass classifier prior to the CVHRI computation
are analogous to the binary case, obtaining slightly lower val-
ues. A very strong correlation was found using the PPI+SpO2

model (r = 0.91) and the SpO2 model (r = 0.89), while a low
correlation was found when using the PPI model (r = 0.32).
Correlation was again slightly lower when including only the
AHI≥15 group in comparison with all subject correlation,
being r = 0.88 using the PPI+SpO2 model and r = 0.86 using
the SpO2 model, with the exception of the PPI model, that
increased its correlation to r = 0.45. No correlation was found
in any case for AHI<15 either.

C. OSA Stratification by CVHRI

Stratification results after binary and multiclass segment
classification are shown in Tables V and VI, respectively.
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(a) Segment classification using PPI + SpO2. (b) Segment classification using SpO2. (c) Segment classification using PPI.

Fig. 5: AHI v. CVHRI after binary segment classification. Vertical lines separate AHI<5, 5≤AHI<15 and AHI≥15 groups.

(a) Segment classification using PPI + SpO2. (b) Segment classification using SpO2. (c) Segment classification using PPI.

Fig. 6: AHI v. CVHRI after multiclass segment classification. Vertical lines separate AHI<5, 5≤AHI<15 and AHI≥15
groups.

TABLE V: Stratification after binary segment classification (%, except AUC and κ).

AHI ⩾ Model CVHRI Thresh. Acc Se Sp PPV NPV κ AUC (Train) AUC (Test)

5
PPI+SpO2 4.0×10−3 77.27 87.50 75.00 43.75 96.42 0.45 0.88 0.89
SpO2 4.0×10−3 72.73 87.50 69.44 38.89 96.15 0.38 0.87 0.89
PPI 1.1×10−3 51.06 66.67 47.37 23.08 85.71 0.08 0.72 0.56

15
PPI+SpO2 5.4×10−3 79.55 82.35 77.78 70.00 87.50 0.58 0.93 0.90
SpO2 6.3×10−3 79.55 88.24 74.07 68.18 90.91 0.59 0.96 0.91
PPI 1.2×10−3 59.57 57.14 61.54 54.55 64.00 0.19 0.67 0.57

TABLE VI: Stratification after multiclass segment classification (%, except AUC and κ).

AHI ⩾ Model CVHRI Thresh. Acc Se Sp PPV NPV κ AUC (Train) AUC (Test)

5
PPI+SpO2 5.6×10−3 75.00 75.00 75.00 40.00 93.10 0.37 0.88 0.86
SpO2 4.0×10−3 72.73 75.00 72.22 37.50 92.86 0.34 0.86 0.86
PPI 1.2×10−3 53.19 55.56 52.63 21.74 83.33 0.05 0.71 0.52

15
PPI+SpO2 7.8×10−3 79.55 88.24 74.07 68.18 90.91 0.59 0.92 0.88
SpO2 7.8×10−3 77.27 82.35 74.07 66.67 86.96 0.54 0.93 0.90
PPI 1.4×10−3 46.81 57.14 38.46 42.86 52.63 0.04 0.64 0.51

IV. DISCUSSION

The present work has found sufficient evidence for support-
ing the use of spectral features, extracted by Hjorth parameters,
as models for OSA screening based on oximetry systems.
These models stand out for their low computational cost,
–linearly proportional to the length P of the segment, in
contrast to FFT, with a computational cost proportional to

P log2(P ), or wavelet transform, also proportional to P but
with a greater number of operations [26]–, being suitable for
built-in wearable applications. Moreover, CVHRI computed on
not normal breathing classified segments has demonstrated to
be strongly correlated to AHI, implying that could be a proper
AHI surrogate when the airflow is not available, specially in
moderate-to-severe cases (AHI ≥ 15). However, the limitations
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that apply to AHI as a diagnosis and severity stand-alone index
should also be attributed to CVHRI, making it just valuable as
surrogate for AHI. As future research, it could be interesting
to include patients with comorbidities. As CVHR amplitude is
mortality risk predictor [27], a new index could be included
as the amplitude of the peak between 0 and 0.1 Hz of the
PPI spectra used in CVHRI computation. In addition, CVHR
is thought to reflect cardiac autonomic responses to cardio-
respiratory perturbation caused by apneic/hypoxic episodes
[27]. Consequently, it is possible that it could be useful in
other disturbance assessments.

A. Segment classification

Both PPI+SpO2 and SpO2 models perform similar, ob-
taining 85.01% and 86.27% accuracy when including all
subjects, respectively. Differences are high when comparing
with the PPI model, which obtained a 60.30% accuracy. Both
PPI+SpO2 and SpO2 models performed slightly better in the
AHI<15 group, obtaining 87.33% and 89.38% accuracy, in
comparison with the AHI≥15 group (83.01% and 83.51%
accuracy). Despite the better accuracy, precision and recall are
uneven between classes in the AHI<15 group, e.g., 95.21%
(normal class) against 38.06% (abnormal breathing class) pre-
cision and 90.57% (normal class) against 56.01% (abnormal
breathing class) recall in the PPI+SpO2 model; being even in
the AHI≥15 group, with ≥81.41% in all cases.

Multiclass results follow analogous trends as for the
binary case. PPI+SpO2 and SpO2 models showed the
best performance, with 73.07% and 71.71% accuracy, re-
spectively, whereas PPI model obtained 44.39% accuracy.
Both PPI+SpO2 and SpO2 models performed better in the
AHI<15 group as well, obtaining 80.39% and 79.39% against
66.77.39% and 65.10% accuracy in the AHI≥15 group. Pre-
cision an recall are also uneven in the AHI<15 group in
comparison with the AHI≥15 group. Most errors are confu-
sions between apneic and hypopneic breathing: e.g., in the
PPI+SpO2 model, normal breathing precision and recall was
92.86% and 80.19%, while for apneic/hypopneic breathing
was 65.91/23.71% precision and 60.70/49.87% recall. This
differences are accentuated in the AHI < 15 group: e.g., in the
PPI+SpO2 model, normal breathing precision and recall was
96.00% and 84.53%, while for apneic/hypopneic breathing
was 16.25/19.62% precision and 25.93/48.22% recall.

According to the results, most of the predictive capacity of
the models rely on the SpO2 signal, taking into account that
PPI+SpO2 models and SpO2 models perform identically, in
contrast with the poor performance of the PPI models. How-
ever, correlation between CVHRI and AHI was slightly higher
using PPI+SpO2 models. The inclusion of SpO2, evaluated in
a higher number of subjects, has largely improve the results
of the preliminary work [20]. It is possible that PPI could be
useful to detect arousal-related hypopneas as [16], [28] suggest
(see IV-D Section).

The overall segment classification performance worsens in
the multiclass case relative to the binary case, although accura-
cies remain high (73.07%). Multiclass classifiers may be useful
in future research, specially when including comorbidities,

although nowadays there is no distinction in OSA treatment
whether there is an apneic or hypopneic predominance. Severe
hypopneas annotations (airflow reduction higher than 70%
but lower than 90% related to desaturation) were introduced
to improve apneic segment detections. 90% reduction of the
airflow is an arbitrary threshold that attempts to operationalize
the requirement of “absent or nearly absent airflow” [29].
This way, it was observed that borderline events labeled as
hypopneas have comparable PPI and SpO2 response to that of
apneas rather than < 70% airflow reduction hypopneas. Nev-
ertheless, analyzing the segment classification results, virtually
no differences were found when the label severe hypopnea was
omitted, i.e., strictly following the AASM rules, as it is shown
in Table VII. This comparison has been computed using the
best classification model (PPI+SpO2). The utility of this label
for stratification will be discussed in Section IV-C.

TABLE VII: Multiclass segment classification results (%).
Comparison between using/omitting severe hypopnea label
using the PPI+SpO2 model.

Sev. hypo. Acc Pn Rn Pap Rap Ph Rh

Omitting 73.01 92.90 80.20 65.90 60.70 23.70 49.90
Using 73.07 92.86 80.19 65.91 60.70 23.71 49.87

Previous studies have classified apneic events based on
SpO2 and PPI. The approach of this work is different. In this
case, there is no detection of apneic/hypopneic events, but
rather a classification of segments, which subsequently allows
CVHRI to be calculated. To the authors’ knowledge, there are
no studies in which segments are classified, which is one of the
main novelties of this study. The different approaches make
the results not directly comparable with other works. As a
reference, it is worth mentioning the event classification results
of Lazazzera et al. [17], which obtained a 75.1% accuracy
on the same database and using the same input signals. This
result was obtained for multiclass classification, so it should be
compared with the 73.03% (Table IV) of this work. Deviaene
et al. [30] obtained an accuracy of 83.4% using SpO2 and PPG
features, in a database with 102 subjects, also recorded at UZ
Leuven. In this study they reached the same conclusion that
SpO2 models outperform PPG models, obtaining an accuracy
of 82.2% with the SpO2 model. The authors concluded that
it is better to use both inputs if available [30]. In a recent
study by Huttunen et al. [31], the authors compare different
combinations of signals used as inputs of a deep learning
model that is able to simultaneously detect respiratory events
and classify sleep stages. The authors compare three models:
the first using PPG and SpO2, the second adding the nasal
pressure, and the third using SpO2, nasal pressure and the
electroencephalogram. Interestingly, the three obtain virtually
the same results in estimating AHI, supporting the use of pulse
oximeters in OSA screening without additional sensors.

B. CVHRI Correlation with AHI

Best correlation between CVHRI and AHI was found in
the AHI≥15 subgroup. This may appear counter-intuitive
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observing segment classification accuracies, that are higher
in the AHI<15 subgroup. However, the abnormal class (or
apneic + hypopneic classes in the multiclass model) is better
detected in the AHI≥15 subgroup, according to precision and
recall results, probably due to the fact that those are the cases
with the most clear bursts of respiratory events. As CVHRI is
measured only in abnormal (or apneic + hypopneic) segments,
it is not as reliable in the AHI<15 subgroup as in the AHI≥15
subgroup.

C. OSA Stratification by CVHRI

Analogously to the previous result sections, stratification
accuracy decreases substantially when using PPI segment
classification model. Similar trends are followed after mul-
ticlass decision. Established thresholds are a reliable tool for
OSA diagnosis after PPI+SpO2 and SpO2 model, being the
first slightly more accurate. Morover, its use for screening
purposes is supported by high negative predictive values. Bad
results after PPI models were expected taking into account
segment classification results. Binary models obtained slightly
better results in comparison with multiclass models. This, in
addition to the higher complexity of multiclass models suggest
that binary models should be used for stratification purposes.
Results are comparable with other researches that use PPG-
derived metrics for OSA diagnosis (Table VIII), such as [32],
[33], although none of these works used train-test splits nor
cross-validation. Also, higher scores in [33] could be explained
since airflow information was added to the model by using
a nasal cannula. A comparison with [34] cannot be directly
done as different groups were used (5≤AHI<15, 15≤AHI<30
and AHI≥30), obtaining κ values ranged from 0.49 to 0.79.
It is reasonable to assume that these results are in the same
order than in [32], as they used the same proprietary algorithm
(Morpheus Ox. WideMed Ltd, Herziliya, Israel). Same AHI
groups were used in [35]. In this work, AHI was estimated
from SpO2 using an artificial neural network. Estimated AHI
classified patients in mentioned groups with 90.9% accuracy.

The inclusion of the label severe hypopnea also deserves
discussion at this point. This label applies to events with
an airflow reduction ≥70% for ≥10 seconds, regardless of
desaturation. Therefore, by omitting this label, events with an
airflow reduction between 70% and 90% –at which point they
are classified as apneas regardless of desaturations– need to
be linked to desaturation to be scored. Thus, there are events
previously annotated as severe hypopnea that may change
to hypopnea and events where annotations may be removed.
Stratification results did not change substantially by omitting
the severe hypopnea label. Only two errors arose after binary
classification (one subject with AHI<5 was stratified as with
an AHI≥5 and other with AHI<15 was stratified as with an
AHI≥15) and one error after multiclass classification (one
subject with AHI<15 was stratified as with an AHI≥15)
with respect to the results including the severe hypopnea
label. Considering that the dataset consisted of 94 subjects,
the increase in error was 2.12% after binary classification
and 1.06% after multiclass classification. Therefore, no large
differences were obtained to support the need for the label,

although the type of error, i.e., false positive in all cases, may
be relevant in a screening tool.

D. Limitations
Arousal-related events are not taken into account in this

work, being desaturation-related hypopneas and apneas the
only events annotated. This decision was made taking into
account that models rely on CVHR pattern detection and that
PPI and SpO2 were the only used signals. First, CVHR pattern
is not present in events not associated to desaturations [10].
Second, although PPI can be used to assess arousals to some
extent [25] using PPI’s DAPs, it has not been demonstrated
its feasibility from PPI’s Hjorth parameters. Also, arousal
assessment using PPI’s DAPs has the limitation that some
of the DAPs are not related to apneic arousals [25]. In
any case, thresholds for OSA stratification should be set
observing Oxygen Desaturation Index (ODI) thresholds, rather
than AHI’s, if arousals are not included [36]. Moreover, no
distinction between central, obstructive and mixed apneas was
made. The justification is rather similar to that for arousal-
related hypopneas, as respiratory effort is not available with
limited channel motorization.

Another limitation was introduced by the saturation of
the oronasal thermistor signals, that lead to the use of the
alternative oronasal pressure for airflow assessment. However,
the use of an orosonasal pressure sensor instead of a nasal
pressure sensor may be considered a half-way solution be-
tween the recommended and the alternative, as nasal pressure
is criticized because the signal may show decreased amplitude
during mouth breathing [29].

The device used for the input signals is a commercial
pulse oximeter. Since this work has focused on a screening
tool, with the possibility of being used in at-home solutions
with wearables, it is possible that the signals available may
be of lower quality. Tests should be performed to calculate
performance metrics for each case.

Finally, segment classification models used in this work
were designed to detect bursts of respiratory events that lead
to a CVHR pattern, rather than isolated events. As CVHR
is mediated by the parasympathetic system [11], it cannot be
detected in patients with autonomic nervous system impair-
ments, such as autonomic neuropathy, multiple system atrophy
or Guillain-Barré syndrome.

V. CONCLUSION

A classifier for during-sleep breathing segments has been
presented. This classifier exploits the differences in oscillatory
pattern characteristics of the SpO2 and PPI signals by using
the Hjorth parameters as features. This approach obtained
86.27% accuracy in the binary (normal-abnormal breathing)
decision, and 73.07% accuracy in the multiclass (normal
breathing-apneic-hypopneic) decision. A novel index, CVHRI,
has been computed in not normal breathing segments after
segment classification. This index has shown to be strongly
correlated with AHI both after binary (r = 0.94, p < 0.001)
and multiclass (r = 0.91, p < 0.001) segment classification. A
better performance has been found in subjects with AHI≥15
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TABLE VIII: Comparison with other studies (%, except AUC and κ).

AHI ⩾ Model Acc Se Sp PPV NPV κ AUC (Train) AUC (Test)

5
PPI+SpO2 binary 77 88 75 44 96 0.45 0.88 0.89
Romem et al. [32] - 80 86 93 68 0.67 0.91 -
Fassbender et al. [33] - 100 44 62 100 0.43 0.93 -

15
PPI+SpO2 binary 80 82 78 70 88 0.59 0.93 0.90
Romem et al. [32] - 70 91 80 85 0.71 0.90 -
Fassbender et al. [33] - 92 77 60 96 0.59 0.95 -

rather than in the AHI<15 subgroup. In addition, CVHRI
has been used to stratify AHI≥5 and AHI≥15 subgroups,
resulting in 77.27% and 79.55% accuracy, respectively. These
results suggest that the presented methods provide value for
OSA limited-channel screening, allowing monitoring with
wearables at home.

APPENDIX I
INCLUSION OF FREQUENCY-DOMAIN PULSE RATE

VARIABILITY METRICS AS PREDICTORS

The inclusion of frequency-domain PRV metrics in the
study for the detection of apneic segments is justified by the
known relationship of OSA with sympathetic overactivity. For
this reason, HRV has previously been used as a method to
assess cardiac autonomic changes during sleep [37]. To find
out whether the inclusion of these metrics can provide even
improved results, the best resulting model (PPI+SpO2 model)
was taken as a starting point and power in the low frequency
band (PLF), in the high frequency band (PHF) and PLF/PHF

ratio were added to the inputs. These features were calculated
in the same segments as the other models to make the results
comparable. Both PLF and PHF were computed by trapezoidal
integration of the power spectral density estimate obtained by
periodogram within the classic windows, i.e., 0.04-0.15 Hz for
the low frequency and 0.15-0.4 Hz for the high frequency.

To facilitate comparison with the PPI+SpO2 model, both
model results are shown including and excluding the PRV
metrics (see Tables IX and X). The variations in the predic-
tor output are minimal, demonstrating that the inclusion of
these metrics does not significantly improve the model. For
simplicity, results related to the subsequent computation of
CVHRI and its ability to predict OSA are not shown since the
variation in the outcome is as imperceptible as for segment
classification.

TABLE IX: Binary segment classification results (%).

Model Subgroup Acc Pn Rn Pab Rab

PPI+
SpO2

All subjects 85.01 90.89 87.01 73.52 80.53
AHI<15 87.33 95.21 90.57 38.06 56.01
AHI≥15 83.01 84.33 81.53 81.76 84.53

PPI+
SpO2+
PRV

All subjects 84.98 90.67 87.23 73.71 79.95
AHI<15 87.27 95.13 90.59 37.77 55.22
AHI≥15 83.01 83.95 82.06 82.09 83.98

It should be noted that the use of the classic high-frequency
band has been criticized [38]. It is known that respiration
affects the boundaries of this autonomic component, therefore

TABLE X: Multiclass segment classification results (%).

Model Subgroup Acc Pn Rn Pap Rap Ph Rh

PPI+
SpO2

All subjects 73.07 92.86 80.19 65.91 60.70 23.71 49.87
AHI<15 80.39 96.00 84.53 16.25 25.93 19.62 48.22
AHI≥15 66.77 87.75 73.48 73.08 63.43 25.70 50.51

PPI+
SpO2+
PRV

All subjects 73.13 92.69 80.52 66.12 60.85 23.11 47.81
AHI<15 80.43 95.89 84.64 17.00 27.62 19.23 46.31
AHI≥15 66.85 87.53 74.16 73.36 63.46 24.99 48.39

it should be studied whether the inclusion of respiratory
frequency information to the PRV analysis would allow a more
accurate classification.
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