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A Weakly Supervised Segmentation Network
Embedding Cross-scale Attention Guidance and
Noise-sensitive Constraint for Detecting Tertiary

Lymphoid Structures of Pancreatic Tumors
Bingxue Wang, Liwen Zou, Jun Chen, Yingying Cao, Zhenghua Cai, Yudong Qiu, Liang Mao, Zhongqiu Wang,

Jingya Chen, Luying Gui and Xiaoping Yang

Abstract—The presence of tertiary lymphoid structures (TLSs)
on pancreatic pathological images is an important prognostic
indicator of pancreatic tumors. Therefore, TLSs detection on
pancreatic pathological images plays a crucial role in diagnosis
and treatment for patients with pancreatic tumors. However,
fully supervised detection algorithms based on deep learning
usually require a large number of manual annotations, which
is time-consuming and labor-intensive. In this paper, we aim to
detect the TLSs in a manner of few-shot learning by proposing
a weakly supervised segmentation network. We firstly obtain
the lymphocyte density maps by combining a pretrained model
for nuclei segmentation and a domain adversarial network for
lymphocyte nuclei recognition. Then, we establish a cross-scale
attention guidance mechanism by jointly learning the coarse-
scale features from the original histopathology images and fine-
scale features from our designed lymphocyte density attention. A
noise-sensitive constraint is introduced by an embedding signed
distance function loss in the training procedure to reduce tiny
prediction errors. Experimental results on two collected datasets
demonstrate that our proposed method significantly outperforms
the state-of-the-art segmentation-based algorithms in terms of
TLSs detection accuracy. Additionally, we apply our method to
study the congruent relationship between the density of TLSs
and peripancreatic vascular invasion and obtain some clinically
statistical results.

Index Terms—Tertiary lymphoid structures, Pancreatic tumor,
Weakly supervised segmentation, Cross-scale attention, Noise-
sensitive constraint.

I. INTRODUCTION

H ISTOPATHOLOGY images are often the gold standard
for disease detection, diagnosis, and prognostic analysis.

However, analysis for such images is a very challenging
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task because of their large sizes and numerous elements.
In recent years, the development of deep neural networks
has led to many breakthroughs in automatic histopathology
image classification and segmentation [1], [2]. These meth-
ods depend highly on extensive training and accurate pixel-
level labels, which are particularly labor-intensive and time-
consuming due to the huge sizes of pathological images.
Actually, only a trained pathologist can distinguish precisely
among the elements. Therefore, acquiring accurate annotations
on pathological images is more complicated than annotating
other medical images. The development of weakly supervised
and unsupervised learning methods has become an inevitable
trend in pathological image processing [3], [4].

In pathology research, the immune micro-environment is
a topic of great concern. The main research target of the
immune micro-environment is lymphocytes. Their particular
aggregation clusters, known as tertiary lymphoid structures
(TLSs), have received significant attention in recent years.
Actually TLSs are discrete structured tissues of infiltrating
immune cells, or in other words, more organized aggregation
structures of lymphocytes. In some studies, TLSs are consid-
ered as any lymphoid aggregate similar to secondary lymphoid
organs in non-lymphoid structures [5]. Several researches [6],
[7] concentrated on the presence, composition, and location
of TLSs in health and disease tissues and organs. The high
density of TLSs found in many cancers is associated with
prolonged survival of patients, such as colorectal cancers [8],
[9] and breast cancers [10].

Previous studies have generally considered pancreatic tu-
mors as cold tumors and lack of immune response [11],
[12]. In contrast, some studies in recent years have found
that the immune micro-environment of pancreatic tumors is
highly heterogeneous, which largely contributes to its lack of
mechanical clarity to date. One of the critical elements of its
heterogeneity is a large number of immune cell subsets [13].
This means accurately segmenting lymphocytes and classify-
ing clusters are crucial for studying pancreatic tumors. In the
pathologist’s opinion, lymphocytes in a TLS have a particular
specific aggregation pattern, such as having a distinctive high
density. Although a TLS does not have an envelope but is
still clearly delimited from the surrounding tissues. However,
it is challenging to identify all TLSs on a pathological image
because of the considerable size variants of TLSs and their ir-
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regular distributions on the histopathology images. In addition,
backgrounds with different colors and textures may interfere
with the recognition of TLSs by humans. Also, an essential
feature of the pancreas lacking immune response determines
that there are fewer lymphocytes and TLSs in the pancreas,
and it is more difficult to obtain a large number of training
samples.

In order to accurately detect TLSs on a small-scale dataset
containing whole slide images (WSIs) of hematoxylin and
eosin (H&E) stained histopathology, we propose a weakly
supervised segmentation network embedding cross-scale at-
tention guidance and noise-sensitive constraint in this work.
The proposed method is mainly divided into three parts:
(1) all lymphocyte nuclei are segmented and identified from
the unlabeled pancreatic pathology images by combining a
pretrained nuclei segmentation model and adversarial learning.
The corresponding lymphocyte density maps are constructed;
(2) based on the aggregation characteristics of TLSs, we
convert the lymphocyte density map in WSI to the attention
guidance and establish a cross-scale attention network to learn
the TLS features from different scales; (3) considering that
the location of a TLS is critical information, we introduce a
noise-sensitive constraint by a signed distance function to train
a segmentation network with weak bounding box annotation.
It is designed to make the network explicitly learn the TLSs’
location distribution. To verify the effectiveness of our method
in few-shot learning, the proposed method is trained on a
small-scale dataset and evaluate on another large-scale dataset.
The experimental results show that our method can accurately
detect TLSs, and outperforms the state-of-the-art (SOTA)
segmentation-based algorithms in terms of detection accuracy.
As a clinical application, we use the density of TLSs to
predict peripancreatic vascular invasion based on our proposed
method.

The major contributions of this work are listed as follows.
• To the best of our knowledge, it is the first work to

realize the few-shot detection task of TLSs on pancreatic
histopathology images by embedding cross-scale atten-
tion guidance and noise-sensitive constraint into a weakly
supervised segmentation network, which can be applied
to the TLS analysis for other tumors.

• We construct the density map of lymphocytes which
reflects the distribution characteristics of TLSs on patho-
logical images and propose a cross-scale attention mecha-
nism by jointly learning the TLS features from the coarse-
scale pathological images and the fine-scale lymphocyte
density maps.

• A noise-sensitive constraint with a signed distance func-
tion loss is introduced for training the TLS segmentation
network with weak bounding box annotations, which
helps to explicitly learn the TLS distribution and avoid
enormous performance drops caused by tiny predicted
errors.

• Experimental results show that our method significantly
outperforms the state-of-the-art (SOTA) segmentation-
based algorithms in terms of the TLS detection accuracy
on pancreatic pathological images. And we validate that
the TLS density is significantly related to the peripancre-

atic vascular invasion by our proposed method based on
the clinical data acquired from two independent institu-
tions.

II. METHOD

We propose a weakly supervised segmentation network
for the few-shot detection of TLSs on pancreatic pathologi-
cal images by embedding cross-scale attention guidance and
noise-sensitive constraint to improve the TLS segmentation
performance. The pipeline of our proposed method is shown
in Figure 1. There are three core modules in our proposed
model: (1) Lymphocyte nuclei segmentation and classification
by combining nuclei segmentation baseline model and domain
adversarial learning; (2) cross-scale attention guidance mech-
anism by jointly learning the TLS features from the coarse-
scale H&E image and the fine-scale lymphocyte density map;
(3) a noise-sensitive constraint by embedding a sign distance
function loss for training the segmentation network with weak
bounding box annotations.

When the proposed model is fed with an H&E WSI from a
patient with pancreatic tumor, there are two processing flows
for extracting cross-scale features of the TLS targets. The
original H&E image is fed into a pretrained baseline model
for nuclei segmentation and a domain adversarial network
for lymphocyte nuclei classification. Then, we construct the
lymphocyte density map as the fine-scale feature on each d×d
tile image based on the previous predictions. Meanwhile, i
order to learn the generic global context information, we get
the coarse-scale feature from the original image by d×d mean
pooling operation to make it the same size as the lymphocyte
density map. Additionally, we utilize a reverse operation on
the lymphocyte density map to make it be an attention map,
termed as the lymphocyte density attention (LDA), which
is compatible with the original H&E image in terms of the
intensity distribution. Then, a cross-scale attention guidance
mechanism based on a U-shape backbone with four-channel
inputs is proposed to process the above cross-scale images.
It learns the macroscopic features from the coarse-scale H&E
image and microscopic features from the fine-scale lympho-
cyte density attention. Additionally, the proposed segmentation
model is trained with bounding box annotations, which is
weakly supervised for the segmentation task. Furthermore, a
noise-sensitive constraint with a signed distance function loss
(SDF) is used in the training procedure to explicitly learn the
TLS distribution and avoid huge performance drops caused by
tiny predicted errors.

A. Segmentation and classification for lymphocyte nuclei

The immune response in pancreatic tumors is usually not
strong, and the distribution of immune cells is relatively sparse.
In contrast, we note that the lymphocyte nuclei’ morphological
characteristics are independent of the organs in which they
are located. The lymphocyte nuclei on pathology images
of other organs should be morphologically identical to the
pancreatic lymphocyte nuclei, although these images have
different backgrounds. Therefore, we considered transferring
the lymphocyte nuclei from a public dataset with lymphocyte



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2023 3

Ground truth

𝑳𝑫𝒊𝒄𝒆 + 𝑳𝑪𝑬 +𝑳𝑺𝑫𝑭

Red channel

Lymphocyte Density 

Map

backbone

Green channel

Blue channel

Tile image

WSI

TLSs Prediction

Lymphocyte Density 

Attention

R

P

Nucleus SegNet

Domain Adaptation ClsNet

P

R

Pooling

Reverse

Fig. 1. Pipeline of our proposed segmentation network embedding cross-scale attention guidance and noise-sensitive constraint for weakly supervised TLSs
segmentation of pancreatic cancer.

nuclei annotations of other organs to our pancreatic patholog-
ical dataset without lymphocyte nuclei annotations.

To this end, we introduce the combination of a pretained
baseline model for nuclei segmentation and a domain adver-
sarial network for lymphocyte nuclei classification shown in
Figure 2. HoVer-Net is a robust baseline model for nuclei
segmentation and has demonstrated state-of-the-art perfor-
mance on various nuclei segmentation tasks [14]. There are
three branches in the HoVer-Net architecture: the segmentation
branch for getting coarse prediction, the structure branch for
solving the nuclei overlapping, and the classification branch
for nuclei recognition. We use the segmentation and structure
branches from the pretrained HoVer-Net in the PanNuke
dataset [15] to segment the nuclei for our task. As for the
classification, we train a domain adversarial neural network
(DANN) [16] to get better performance on lymphocyte nuclei
recognition. A domain adversarial training strategy is used in
the classification network. Figure 3 demonstrates our training
strategy for domain adversarial learning. We crop 239503
lymphocyte nuclei images and 265241 non-lymphocyte nu-
clei images from the PanNuke dataset with nuclei annota-
tions. Then we obtain 121954 nuclei images with unknown
categories (lymphocyte or non-lymphocyte nuclei) based on
the segmentation results from the pretrained HoVer-Net. We
choose the former as the source domain and the latter as
the target domain to train the domain adversarial network for
lymphocyte nuclei recognition. ResNet18 [17] is used as the
feature extractor, and two loss terms are calculated as follows.

Lcls =

M∑
i=1

yi log
1

Gy(Gf (xi))
, (1)

Ladv =

M∑
i=1

di log
1

Gd(Gf (xi))
+ (1− di) log

1

Gd(Gf (xi))
,

(2)
where Gf , Gy , and Gd denote the feature extractor, image
classifier, and domain discriminator, respectively. M denotes
the number of training samples. xi, yi, and di denote the image
input, nucleus category annotation, and domain label of sample
i, respectively. The overall loss of DANN is defined by

LDANN = Lcls + Ladv (3)

input image

segmentation decoder

structure decoder

encoder

classification result final output

segmentation result

input image

segmentation result

Fig. 2. Structure of the designed combination of the nuclei segmentation
baseline model and domain adversarial network for recognizing lymphocyte
nuclei.

B. Cross-scale attention guidance mechanism

TLSs are the particular forms of lymphocyte aggregations,
and it is natural to look for TLSs where lymphocytes are
relatively aggregated. Therefore, we calculate the lymphocyte
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Fig. 3. The domain adversarial neural network training strategy based
on the annotated lymphocyte nuclei dataset from PanNuke and our nuclei
dataset obtained from the pretrained HoVer-Net model. LN and NLN denote
lymphocyte nuclei and non-lymphocyte nuclei, respectively.

density map based on the detected lymphocyte nuclei and
convert it to be attention map to guide the detection of TLSs.
To obtain the lymphocyte density map on a WSI, we count
the number Nij of predicted lymphocyte nuclei in each non-
overlapping d×d patch at location (i, j). Each pixel occupies
25 × 25 µm2. Then we get a gray-scale lymphocyte density
map by the following formulation:

Dij = 255× Nij −Nmin

Nmax −Nmin
, (4)

where Nmax and Nmin are the maximum and minimum of
the predicted number of lymphocyte nuclei among the patches.
Figure 4 shows the lymphocyte density map calculated for a
WSI from our collected dataset. We split the three channels
of the original H&E images into blue, green, and red channels
shown in Figure 1. It can be found that the target TLS
regions show low intensity in each color channel. We add a
reverse operation to make the predicted lymphocyte density
map compatible with the original H&E image to generate our
desired attention map. Each lymphocyte density attention Aij

at location (i, j) is calculated as Aij = 255 − Dij . Then a
cross-scale attention guidance network is established on the
U-shape backbone architecture. There are four channel inputs
of the backbone to jointly learn the coarse-scale features from
the original H&E images and the fine-scale features from the
calculated lymphocyte density attention.

(a) (b) (c)

Fig. 4. The visualization of the calculated lymphocyte density map of a WSI
from our collected dataset. (a) WSI with TLS annotations (shown in blue
boxes); (b) Gray-scale image of the calculated lymphocyte nuclei density
map, high density regions are denoted by green contours; (c) Heatmap of the
calculated lymphocyte nuclei density.

C. SDF loss for noise-sensitive constraint

Considering that accurate positioning usually has high pri-
ority than finding the boundary of a TLS for clinical issues.
Therefore, we train the proposed network with the bounding
box annotations from the experts, which is weakly supervised
for a segmentation task. Generally, it is difficult for a semantic
segmentation network to detect small objects by training with
general segmentation loss, such as Dice loss and cross-entropy
(CE) loss, because these small regions almost have no impact
on the overall loss. However, minor prediction errors can lead
to misdiagnosis. To solve this problem, we introduce a noise-
sensitive constraint by embedding a signed distance function
(SDF) loss into the overall loss function for the training
procedure. The signed distance function of a predicted binary
mask Y can be calculated as follows:

SDF (x, Y ) =


min
y∈∂Y

− d(x, y), x ∈ Yin

0, x ∈ ∂Y
min
y∈∂Y

d(x, y), x ∈ Yout,
(5)

where d(x, y) is the Euclidian distance between x and y,
and Yin, Yout and ∂Y denote the inside, the outside and the
boundary of the object, respectively. Then we get the signed
distance loss by calculating the mean square error (MSE)
between the SDFs of segmentation and ground truth:

LSDF (Y, Ŷ ) =

∑N
i=1(SDF (xi, Y )− SDF (xi, Ŷ ))2

N
. (6)

where N is the number of pixels in an input image. As shown
in Figure 5, small segmentation errors significantly impact the
SDF distribution. Besides, the traditional Dice and CE losses
are also used in the training procedure. They can be calculated
as follows:

LDice = −
2
∑N

i=1 sigi∑N
i=1 s

2
i +

∑N
i=1 g

2
i

, (7)

LCE = −
∑N

i=1 gilnpi
N

, (8)

where si and gi denote the predicted segmentation and the
ground truth of pixel i, respectively. pi denotes the softmax
output of si. Therefore, the overall loss function of our
proposed TLSs segmentation network can be formulated as
follows:

L = LDice + LCE + LSDF . (9)

III. EXPERIMENTS

A. Dataset

In this work, we evaluate our proposed method on
two datasets collected from Nanjing Drum Tower Hospital
(NDTH) and Jiangsu Province Hospital of Chinese Medicine
(JHCM), respectively. The NDTH dataset consists of 38 WSIs
from 12 surgical pathology-confirmed PDAC patients. The
JHCM dataset is composed of 57 WSIs from 41 PDAC
patients. To verify the generalization and the performance
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(a) Ground 

truth

(c) SDF of ground Truth

(b) Segmentation

(d) SDF of segmentation

Fig. 5. Visual comparison between the SDF of ground truth and SDF of
segmentation. (a) and (b) are the ground truth (green rectangle) and the
segmentation (yellow contours) of TLSs. (c) and (d) are the corresponding
signed distance function representation. It can be found that tiny segmentation
errors can significantly affect the SDF distribution.

in few-shot learning of our proposed method, we train and
validate our model on the smaller-scale NDTH dataset and test
on the larger-scale JHCM dataset. This study was approved by
the Ethics Committee of Nanjing Drum Tower Hospital and
Jiangsu Province Hospital of Chinese Medicine.

The TLSs on the WSIs are annotated with bounding boxes
by two experienced pathologists. The NDTH dataset is divided
into four equal folds. One fold containing 9 WSIs is fixed
as the validation set, and the other three folds containing 29
WSIs are adopted for training throughout the experiments.
The JHCM dataset is only used for testing (i.e., zero-shot
evaluation).

B. Evaluation metrics

We employ the precision, recall and Fβ score to measure the
detection accuracy in our experiments, which can be calculated
as follows:

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

Fβ = (1 + β2)× Precision×Recall

β2 × Precision+Recall
, (12)

where TP , FP and FN denote the true positive, false positive
and false negative TLS predictions, respectively. Generally, F1

score (i.e., β = 1 in Eq. 15) is used to be the harmonic mean
of both the precision and recall. However, because the false
negative predictions generally bring greater harm than the false
positive predictions in clinical issues, which means the recall

metric is more important than the precision metric. Therefore,
we also use the F2 score (i.e., β = 2 in Eq. 15) to evaluate
the detection performance with greater weight on recall.

Moreover, because of the difference between the TLS an-
notations by different experts, especially in the regions where
it is difficult to distinguish whether there is a single TLS or
aggregated TLSs. Fig. 6 shows two examples to describe the
annotation difference.

(a) (b)

Fig. 6. Two examples to illustrate the annotation difference by different
experts. (a) Image; (b) The TLS annotations by two experts which are denoted
by red and green rectangles, respectively.

Therefore, we propose some new evaluation metrics to
coordinate the annotation difference between the experts.
Without loss of generality, since the precision describes how
many positive cases are true among all the model predictions,
we introduce the TPS here instead of TP to represent the
TLS number of segmentation results that overlap with ground
truths. Similarly, the recall describes how many annotated
boxes are truly predicted, we introduce the TPB instead of
TP to represent the number of annotated bounding boxes that
overlap with the segmentation results. It can be seen that the
TPS and TPB are generalizations of the general TP without
the one-on-one constraint. Then, we define the corresponding
segmentation precision (SP) and box recall (BR) as follows:

SP =
TPS

TPS + FP
, (13)

BR =
TPB

TPB + FN
. (14)

Similarly, the general Fβ score (GFβ) can be calculated as
follows:

GFβ = (1 + β2)× SP ×BR

β2 × SP +BR
. (15)

Fig. 7 illustrates the insight of the proposed metrics.

C. Ablation study

In this section, we present the ablation study to verify the
effectiveness of our proposed LDA and SDF in our method.



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2023 6

(a) (b)

Fig. 7. Two examples to illustrate the proposed evaluation metrics.(a) When
one predicted segmentation denoted by yellow contour covers two annotated
boxes denoted by green rectangles, there are TPS = 1 and TPB = 2.
(b) When one annotated box denoted by green rectangle is covered by two
predicted segmentation denoted by yellow contours, there are TPS = 2 and
TPB = 1.

We show the ablation study results in Table I to investigate
the individual impact of the proposed LDA and SDF module.

1) Effectiveness of LDA: Without using LDA, the perfor-
mance significantly drops on our collected datasets, leading
to a decrease of 1.60%-3.56% in precision, 2.24%-5.42% in
the recall, 3.16%-3.42% in F1 score, and 2.70%-4.60% in
F2 score. For the introduced metrics, there is a performance
decrease of 3.47%-6.11% in SP, 2.15%-7.23% in BR, 4.08%-
5.32% in GF1 score, and 3.01%-6.46% in GF2 score without
the LDA. Figure 8 shows the visual comparison of the ablation
study for the proposed LDA. It can be found that the false
positive predictions with low attention and false negative
predictions with high attention can be efficiently captured.

2) Effectiveness of SDF: Without using the SDF loss, the
performance also drops on our collected datasets, leading
to a decrease of 2.39%-5.48% in precision, 1.85%-3.45% in
F1 score, and 1.27%-1.48% in F2 score. For the introduced
metrics, there is a performance decrease of 2.41%-3.88% in
SP, 1.73%-2.41% in GF1 score, and 0.51%-2.41% in GF2

score without the SDF loss. It should be pointed that the SDF
loss leads to a improvement of 1.21% in recall on the NDTH
dataset while it leads to a decrease of 0.84% in recall on the
JHCM dataset, which indicates that the SDF loss improves the
overall performance of the detection model by mainly reducing
the tiny false positive predictions instead of false negative
predictions with relatively large sizes. Figure 9 presents the
visual comparison of the ablation study for the SDF loss. We
can see that tiny segmentation errors can cause huge losses in
terms of the signed distance function map, and the SDF loss
can significantly reduce the tiny false positive predictions.

3) Effectiveness of LDA and SDF: Additionally, it can be
observed that without using LDA and SDF losses leads to
the worst performance in the recall, F1 score, F2 score BR,
GF1 score, GF2 score, indicating that both the proposed LDA
and SDF losses are essential for performance improvements.
It should be pointed that the baseline model (the proposed
method without LDA and SDF loss) achieves the best perfor-
mance in segmentation precision on NDTH dataset, while the
proposed method outperforms the baseline model by 0.29% in
the precision and achieves the best performance in all other
metrics.

D. Comparison with other state-of-the-art segmentation meth-
ods

In this section, we compare our proposed method with other
state-of-the-art (SOTA) methods for TLS detection. The UNet
[18], Deeplab v3+ [19], and nnUNet [20] are included in our
experiments for their excellent performance in medical image
segmentation. All these methods are trained on the NDTH
training set and evaluated on the NDTH validation set and the
JHCM dataset. Quantitative comparison results are presented
on Table II.

Experimental results in Table II demonstrate that our pro-
posed method significantly outperforms these SOTA methods,
and achieves the best performance in recall, F1 score, F2 score,
SP, GF1 score and GF2 score. We observe that the generic
UNet [18] and deeplab v3+ [19] always have conservative
predictions by minimizing the false positive predictions as
much as possible, despite causing many false negative pre-
dictions. Therefore, they have a higher precision and SP than
ours, but leading to 18.07%-44.36%, 6.58%-21.01%, 13.68%-
35.25%, 20.48%-47.35%, 9.25%-29.10% and 16.28%-40.68%
decrease in recall, F1 score, F2 score, GF1 score and GF2

score, respectively comparing with ours. Figure 10 shows the
visual comparison of TLS detection results between the above
methods and ours.

E. Application for studying the relationship between TLS
density and peripancreatic vascular invasion

For patients with pancreatic tumors accompanied by peri-
pancreatic vascular invasion, especially venous invasion,
whether the peripancreatic vessel is invaded determines the
direction of treatment, and also affect the survival time and
prognosis of patients [21]–[23]. In this section, we apply
our proposed TLS detection method to study the relationship
between TLS density and peripancreatic vascular invasion.

We collect the clinical information from 12 patients in
NDTH dataset and 40 patients (there is a patient whose
clinical information is not available) in JHCM datatset to
carry out our statistical experiments. There are 19 patients
without peripancreatic vascular invasion and 33 patients with
peripancreatic vascular invasion. Therefore, we divide the
52 samples into two groups: the no-invasion group and the
invasion group. Then we apply our proposed method to detect
the TLSs on their WSIs, and calculate the TLS density of the
patients in the two groups, respectively. The TLS density is
calculated as the ratio of the TLS number to the WSI’s area.

The Shapiro-Wilk (S-W) test [24] is conducted to check
whether the TLS densities of the 52 patients obey the normal
distribution. Based on the S-W test results of p < 0.05 and
p < 0.001 on the invasion and no-invasion group, respectively
(i.e., they do not obey the normal distribution), we use the
Mann-Whitney U test [25] to observe the correlation between
the TLS density and the peripancreatic vascular invasion. We
get the result of p = 0.03 for the Mann-Whitney U test,
which indicates that the TLS density is indeed related to the
peripancreatic vascular invasion.

For comparison, we also study on the correlation between
the lymphocyte density and the peripancreatic vascular inva-
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TABLE I
ABLATION STUDY RESULTS OF THE PROPOSED METHOD ON TWO COLLECTED DATASETS. EXPERIMENTAL RESULTS ON THE NDTH VALIDATION SET

AND THE JHCM DATASET ARE PRESENTED. W/O MEANS REMOVING THE CORRESPONDING MODULE. P, R, F1 AND F2 DENOTE THE PRECISION, RECALL,
F1 SCORE AND F2 SCORE, RESPECTIVELY. SP, BR, GF1 AND GF2 REPRESENT THE INTRODUCED SEGMENTATION PRECISION, BOX RECALL, GF1 SCORE

AND GF2 SCORE, RESPECTIVELY.

Datasets Methods P R F1 F2 SP BR GF1 GF2

NDTH

Proposed 78.21 84.34 81.16 83.04 84.80 87.95 86.34 87.30
Proposed w/o LSDF 75.82 83.13 79.31 81.56 82.39 85.54 83.93 84.89
Proposed w/o LDA 76.61 78.92 77.74 78.44 81.33 80.72 81.02 80.84
Proposed w/o LDA, LSDF 77.92 72.29 75.00 73.35 86.21 74.70 80.04 76.75

JHCM

Proposed 62.25 83.13 71.19 77.90 76.15 87.70 81.52 85.12
Proposed w/o LSDF 56.77 83.97 67.74 76.63 72.87 88.16 79.79 84.61
Proposed w/o LDA 58.69 80.89 68.03 75.20 70.74 85.55 77.44 82.11
Proposed w/o LDA, LSDF 59.98 77.17 62.12 70.35 69.89 81.36 75.19 78.77

Baseline Baseline + LDA LDA LDAImage Image Baseline Baseline + LDA

Fig. 8. Visual comparison of the ablation study for the proposed LDA. The baseline model is the proposed method without LDA and SDF loss. Regions
with high and low attention on the calculated LDAs are signed with red and blue dashed circles, respectively. It can be found that the calculated LDA can
significantly improve the TLS detection performance.

TABLE II
QUANTITATIVE COMPARISON RESULTS WITH OTHER SOTA METHODS FOR TLSS DETECTION ON TWO COLLECTED DATASET. EXPERIMENTAL RESULTS

ON THE NDTH VALIDATION SET AND THE JHCM DATASET ARE PRESENTED. P, R, F1 AND F2 DENOTE THE PRECISION, RECALL, F1 SCORE AND F2

SCORE, RESPECTIVELY. SP, BR, GF1 AND GF2 REPRESENT THE INTRODUCED SEGMENTATION PRECISION, BOX RECALL, GF1 SCORE AND GF2 SCORE,
RESPECTIVELY.

Datasets Methods P R F1 F2 SP BR GF1 GF2

NDTH

UNet [18] 85.27 66.27 74.58 69.36 89.92 67.47 77.09 71.02
DeepLab v3+ [19] 84.68 63.25 72.41 66.62 85.48 63.86 73.10 67.26
nnUNet [20] 77.92 72.29 75.00 73.35 86.21 74.70 80.04 76.75
Proposed 78.21 84.34 81.16 83.04 84.80 87.95 86.34 87.30

JHCM

UNet [18] 76.57 45.39 56.99 49.11 82.88 49.02 61.60 53.38
DeepLab v3+ [19] 71.11 38.77 50.18 42.65 74.78 40.35 52.42 44.44
nnUNet [20] 59.98 77.17 62.12 70.35 69.89 81.36 75.19 78.77
Proposed 62.25 83.13 71.19 77.90 76.15 87.70 81.52 85.12
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Proposed
(w/ SDF loss)

Proposed
(w/o SDF loss)

Ground Truth

Fig. 9. Visual comparison of the ablation study for the SDF loss. Segmentation and ground truth are denoted by green and yellow contours in pathological
images, respectively. The SDF maps are shown under the corresponding images.

sion. The same statistical testing experiments are conducted
for the lymphocyte density. We get the S-W test results of
p < 0.01 on the invasion group (i.e., they do not obey
the normal distribution). We use the Mann-Whitney U test
to observe the correlation between the TLS density and the
peripancreatic vascular invasion. The we get the result of
p = 0.1 for the Mann-Whitney U test, which indicates
that the lymphocyte density has no significant relationship to
the peripancreatic vascular invasion. Figure 11 presents the
distributions of the TLS density and lymphocyte density for
the two groups.

IV. DISCUSSIONS

In this paper, we develop a novel weakly-supervised seg-
mentation framework for TLS detection. Since TLSs are
aggregates of lymphocytes, we utilize the density map of
lymphocyte nuclei as an attention guidance in our approach.
Although the segmentation of individual lymphocyte nucleus
may not affect the TLS detection, the overall accuracy of
lymphocyte nuclei segmentation results may still impact the
detection results. Therefore, we also show the lymphocyte
nuclei segmentation results in this section. As described in
Section II-A, we have used a domain-adversarial approach to
segment lymphocyte nuclei on pancreatic pathology images.

We show the segmentation and classification results of our
designed combination of the baseline model for nuclei seg-
mentation and the domain adversarial network for lymphocyte
nuclei recognition in Table III. The segmentation accuracy,
sensitivity, and specificity for the nucleus achieve 86.20%,
76.29%, and 80.94%, respectively. The classification accuracy,
sensitivity, and specificity for lymphocyte and non-lymphocyte
nuclei achieve 88.87%, 94.79%, and 34.41%, respectively.
Figure 12 presents two visual results for the segmentation and
classification, respectively.

TABLE III
SEGMENTATION AND CLASSIFICATION RESULTS FOR LYMPHOCYTE

NUCLEUS ON OUR TEST DATASET.

Methods Accuracy Sensitivity Specificity

HoVerNet 86.20 76.29 80.94

DANN 88.87 94.79 34.41

We would like to highlight that we have opted for a
simple U-shape segmentation network to detect TLSs rather
than a complex object detection framework. This decision is
based on the fact that detection frameworks usually require a
larger amount of annotated data and parameters to be trained
compared to the U-shape segmentation network. Therefore, in
the context of few-shot learning, the detection framework does
not notably outperform the U-shape network. It is worth noting
that the designed combination of the baseline model for nuclei
segmentation and domain adversarial network for lymphocyte
nuclei classification can still be improved, especially in terms
of lymphocyte nuclei recognition specificity.

The proposed LDA improves the TLS segmentation perfor-
mance by multi-channel fusion. However, the proposed LDA
can also be embedded in the U-shape network architecture
or used as an extra loss function for training, which can
be studied in our subsequent work. Additionally, we set the
patch size d for coarse-scale pooling and fine-scale density
calculation as 32 based on medical experts’ experience.

Our proposed LDA shows an improvement in TLS segmen-
tation performance through multi-channel fusion. However, we
intend to investigate further the potential benefits of embed-
ding the proposed LDA in the U-shape network architecture
or using it as an additional loss function during training in
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UNet

DeepLab v3+

Proposed

nnUNet

Image

Fig. 10. Visual comparison results between the SOTA segmentation methods and our proposed method. The green and yellow denote the ground truth and
predictions, respectively. Improved predictions are signed by red arrows.
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Fig. 11. The distribution of (a) TLS density and (b) lymphocyte density for two groups (the no-invasion group and the invasion group). ∗∗ indicates p < 0.05
using the Mann-Whitney U test.

(a) (b) (c) (d)

Fig. 12. Segmentation and classification results of the designed combination of baseline model for nuclei segmentation and domain adversarial network for
lymphocyte nuclei recognition. (a)-(b): Segmentation results. The predicted nuclei are shown in dark masks whose centers are marked by yellow circles.
(c)-(d): Classification results. The lymphocyte and non-lymphocyte nuclei are shown in green and blue boxes, respectively.
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future work. Furthermore, we have chosen a patch size d of
32 for coarse-scale pooling and fine-scale density calculation
based on medical experts’ recommendations.

Regarding the detected TLSs, we have examined the re-
lationship between TLSs and vascular invasion. Through a
study of two central patients, we found that TLSs have a
stronger association with vascular invasion than individual
lymphocytes, highlighting TLSs as an important component
of the tumor immune microenvironment. With the expansion
of sample size and the subdivision of lymphocyte categories,
we will conduct more detailed and in-depth investigations of
the immune microenvironment.

V. CONCLUSIONS

In this paper, we propose a novel weakly supervised seg-
mentation network embedding cross-scale attention guidance
and noise-sensitive constraint for TLS detection. We firstly
obtain the segmentation and classification results of the lym-
phocyte nuclei by combining a pretrained baseline model for
nuclei segmentation and a domain adversarial network for lym-
phocyte nuclei recognition. Then, we establish a cross-scale
attention guidance network by jointly learning the coarse-
scale features from the original H&E images and fine-scale
features from our calculated lymphocyte density attention.
A noise-sensitive constraint is introduced by embedding the
signed distance function loss in the training procedure to
reduce tiny segmentation errors. Experimental results on two
collected datasets demonstrate that our proposed algorithm
outperforms the state-of-the-art segmentation-based methods
for TLS detection. Additionally, we apply our method to
validate that the TLS density is significantly related to the
peripancreatic vascular invasion based on the clinical data
acquired from two independent institutions. Our proposed
approach can be applied to the TLS analysis for the tumors
in other organs.
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