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Intelligent Electrocardiogram Acquisition Via Ubiquitous
Photoplethysmography Monitoring

Zhangdaihong Liu, Tingting Zhu, Lei Lu, Yuan-ting Zhang, David A. Clifton

Abstract— Recent advances in machine learning, particularly
deep neural network architectures, have shown substantial
promise in classifying and predicting cardiac abnormalities from
electrocardiogram (ECG) data. Such data are rich in information
content, typically in morphology and timing, due to the close
correlation between cardiac function and the ECG. However, the
ECG is usually not measured ubiquitously in a passive manner
from consumer devices, and generally requires ‘active’ sampling
whereby the user prompts a device to take an ECG measure-
ment. Conversely, photoplethysmography (PPG) data are typically
measured passively by consumer devices, and therefore available
for long-period monitoring and suitable in duration for identify-
ing transient cardiac events. However, classifying or predicting
cardiac abnormalities from the PPG is very difficult, because it
is a peripherally-measured signal. Hence, the use of the PPG
for predictive inference is often limited to deriving physiological
parameters (heart rate, breathing rate, etc.) or for obvious abnor-
malities in cardiac timing, such as atrial fibrillation/flutter (“palpita-
tions”). This work aims to combine the best of both worlds: using
continuously-monitored, near-ubiquitous PPG to identify periods
of sufficient abnormality in the PPG such that prompting the user
to take an ECG would be informative of cardiac risk. We propose
a dual-convolutional-attention network (DCA-Net) to achieve this
ECG-based PPG classification. With DCA-Net, we prove the plau-
sibility of this concept on MIMIC Waveform Database with high
performance level (AUROC > 0.9 and AUPRC > 0.7) and receive
satisfactory result when testing the model on an independent
dataset (AUROC > 0.7 and AUPRC > 0.6) which it is not perfectly-
matched to the MIMIC dataset.

Index Terms— PPG, ECG, continuous monitoring, DCA-
Net, neural network with attention mechanisms

I. INTRODUCTION

ECG is a widely used medical test in predicting/classifying cardiac
abnormalities, such as myocardial infarction, ventricular hypertrophy,
heart failure, etc. [1], [11], [22], [28]. The 12-lead ECG is a
standard approach to performing the test in primary care, which
is measured by placing 10 electrodes on the skin surface of the
chest and limbs to record the electrical activity of the heart. The
waveform of ECG consists of a QRS complex representing ventricular
depolarisation, a P wave representing atrial depolarisation, and a T
wave representing ventricular repolarisation [27]. Such waveform is
an informative and reliable measure to reflect the function of the
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heart, therefore, is extensively used in clinical practices for cardiac
disease diagnosis [5], [9], [15], [21], [31]. 12-lead ECG devices are
generally bulky with electrodes, a central unit, and accessories such as
a monitor and keyboard. In comparison, portable ECG devices such
as smartwatches and fitness trackers are smaller but are only able
to measure one ECG lead. Moreover, they would require some user-
initiated actions, for example, holding a sensor to close a conductive
circuit such that a measurement might be taken. Therefore, ECG is
difficult to acquire continuously with portable devices. Furthermore,
cardiac abnormalities such as arrhythmia have the nature of being
paroxysmal. It is challenging even for clinical experts to choose
the timing for measuring ECG. It would be valuable to determine,
from other passively-acquired, near-ubiquitous data, whether or not a
patient is at sufficient “risk” (broadly defined) that it would be helpful
to request that the “active” ECG measurement be taken.

PPG is an optical technique to measure the cardiac cycle by
detecting blood volume changes. On the contrary to ECG, PPG
is typically measured passively by pulse oximeters, and is often
embedded as a function in portable devices, such as fitness wristbands
and smartwatches. The waveform of PPG consists of a systolic wave
and a diastolic wave, which is much simpler and smoother than the
morphology of ECG. Previous research has shown that it is possible
to use PPG to detect obvious abnormalities in cardiac timing [30],
[37]. However, the nature of the PPG makes it very difficult to identify
(let alone predict) other types of cardiac condition, particularly, due
to the following reasons; Firstly, PPG is a peripherally-measured
signal that indirectly monitors the operation of the heart. Secondly,
its relatively smooth morphology reflects less cardiac information
compared with ECG. Thirdly, the waveform of PPG is prone to shape
changes between different subjects, locations where the oximeter
is attached, etc. [16], [18]. Hence, the PPG is mostly used to
measure physiological parameters such as pulse rate, respiratory rate,
blood pressure, etc. [6], [57]. However, it carried more physiological
information beyond just heart/respiratory rate, and thus may be
possible to construct models that identify when the PPG corresponds
to intervals in which the ECG would yield positive identification
of cardiac abnormality. Such a system could then duly prompt the
user, in an “active learning” sense, to take an ECG measurement.
It is anticipated that, in addition to being of value for consumer-
based applications, such a system would also be extremely beneficial
for using consumer devices in healthcare settings where existing
monitoring can otherwise be either infrequent or entirely absent.

The goal of this work is to construct a PPG-based model that aims
to predict when the ECG-based model would make a non-normal
diagnosis. We emphasise that we are not aiming to predict specific
cardiac abnormalities from the PPG, given the aforementioned diffi-
culties in doing so – we are aiming to identify from the PPG when
the existing ECG-based models would state that the user has a non-
normal cardiac function.

To achieve such an objective, we propose an attention-based deep
neural network model, namely a dual-convolutional-attention network
(DCA-Net). DCA-Net is ResNet-backboned and contains two convo-
lutional attention blocks, one attending the convolutional channels
and one attending the temporal domain. We train DCA-Net on
MIMIC Waveform Database and evaluate it on the dataset provided
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Fig. 1: An example of the training data in MIMIC-III WDB. The top three panels are the three ECG leads and the bottom panel is the
matched PPG signal. All signals are 10s long.

in the PhysioNet 2015 Challenge [8]. We further compare DCA-Net
with a set of traditional and state-of-the-art machine learning models
to show its superiority.

This task imposes several difficulties including the training data
and models. To our knowledge, such application of PPG and ECG has
never been explored. This work offers a potential solution to a signif-
icant drawback of ECG, which necessitates active acquisition. It also
addresses a fundamental challenge in the context of cardiovascular
diseases, which is their paroxysmal nature, making them challenging
to capture through active measurements. Therefore, the contributions
of this work are in three folds: 1) we are the first to undertake the
proposed novel application of PPG to perform active sampling of
the ECG; 2) we further propose a novel PPG classification model
namely DCA-Net to alarm abnormal ECG. Inspired by applications
in computer vision and 2D image classification models. DCA-Net is
the first to utilize a dual-convolutional attention module to attend 1D
time-series from both temporal and spatial domains; 3) our proposed
model achieves the state-of-the-art performance with a high AUROC
of 0.9 and AUPRC of 0.7 on the test set of MIMIC-III WDB. We
further tested our model on an independent test dataset and received a
satisfying AUROC of 0.7 and AUPRC of 0.6, under the condition that
the independent dataset is not perfectly matched to the experimental
setting.

II. RELATED WORK

Although ECG and PPG are fundamentally different physiological
signal acquisition approaches (one electrical and one hemodynamic),
they are closely related functionally, physiologically and morpho-
logically [14], [25], [26], [39], [40]. Both can be used to monitor
irregular heartbeats which is a symptom of many arrhythmias [14],
[23]. Due to the various advantages of ECG and its wide application
in clinical settings, reconstructing ECG from PPG has emerged as a
popular topic in recent years [46], [55], [56]. Such a close relationship
between PPG and ECG also prompts their joint applications of them
for clinical tasks. However, most joint applications are based on the
extracted features of the signals rather than the direct application of
the waveforms because of the high dimensionality and noise level
in the waveform. [26] used features derived from ECG and PPG for
hypertension assessment; [41] also extracted features from ECG and
PPG for blood pressure estimation. For the very few works that did

integrate the two signals together, physiological parameter estimation,
especially respiration rate, is still the primary task [10], [34]. In
the application of cardiovascular diseases, [7] was piloting on using
both ECG and PPG to alert atrial fibrillation (AF), however, in an
experimental setting using smart wristbands.

The vast majority of studies are single-modality based, mostly
using ECG only and much less commonly using PPG [39], [57].
Among the studies focusing on PPG only, again, physiological pa-
rameters estimation is the main application direction. However, there
are studies showing the strengths of PPG in indicating cardiovascular
diseases using a wide range of methodologies, from traditional
machine learning approaches to deep neural network models [4],
[12], [33], [37], [47]. [33] classified AF using extracted features from
PPG and a logistic model. The sample size in this study is only 46
with 15 AF patients. [12] used several extracted features from PPG
and a random forest model to classify AF/atrial flutter in a cohort
of 40 patients. [47] applied the neural network model (long short-
term memory (LSTM) recurrent layer + convolutional layer) to two
extracted features of PPG to classify AF using thousands of subjects.
[4] also employed a neural network approach (convolutional-recurrent
neural network) but to the raw PPG signal to detect AF in 51
subjects. Most relevantly, [42] proposed an attention-based recurrent
neural network (RNN) to detect AF. The model was first trained on
ECG data and then transferred to PPG data to improve the perfor-
mance. All the above works presented high performance/accuracy in
detecting AF which shows that PPG is indicative of some cardiac
dysfunction such as AF. However, in these works, ECG was needed
for confirmation/pre-training. Moreover, we found no research using
large-scale PPG data to target general arrhythmia.

Among the recent PPG classification works, mostly employed
an architecture of convolutional neural network (CNN), RNN or a
combination of the two. [38], [45] applied 1D CNN to the PPG
segment (an interval of the waveform) classification. [3], [24], [38],
[42] all applied a hybrid version of CNN and RNN to classify PPG
segments, among which [42] also added attention. Since the advances
of attention mechanisms, especially its successes in computer vision
(CV) and natural language processing (NLP), studies with novel
attention architectures bloomed in these areas (CV and NLP) [19],
[50]–[52]. SENet (Squeeze-and-Excitation Networks [19]) turned a
multi-layer perceptron (MLP) into an attention module to attend
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Fig. 2: Examples of PPG segments with different qualities. (a) shows a segment that passed the quality control with the raw signal shown
in blue and the processed signal shown in orange. (b)-(d) are segments that failed due to different quality control criteria listed in the
pre-processing steps.

the convolutional channels. This addition of attention to the CNN
improved the image classification performance. CBAM (Convolu-
tional Block Attention Module [52]) improved SENet by adding a
convolutional spatial attention module and showed superior perfor-
mance in image classification as well. The more recent work, ECA-
Net (Efficient Channel Attention Networks [51]) further improved
the efficiency of the channel attention by turning the MLP into
a convolutional-based attention module but not implementing any
spatial attention. ECA-Net showed that this modification outperforms
both SENet and CBAM. The adaption and transfer from 2D image to
1D time-series are intuitive and straightforward. Moreover, with the
success of attention in CV, its adaption to the 1D physiological signal
started to rise in recent two years. However, the applications are still
limited to quality assessment and blood pressure monitoring [2], [53].
Little research was found on the application of cardiac disease-related
tasks.

III. DATA

We used MIMIC-III Waveform Database (WDB) Matched Subset
[20], [32] as our training dataset. We chose the Matched Subset due to
its linkage to the clinical records – all patients in the Matched Subset
are identified and matched to the medical record system. MIMIC-III
WDB includes multi-lead ECG signals and their paired PPG signals.
The Matched Subset contains waveform records for 10,282 unique
ICU patients. For each patient, different lengths of the waveform data
were sampled at different time points during their hospital stays.
Since different ECG records have different numbers and kinds of
leads, we selected the 3 most common and representative ECG leads
for analysis, leads II, V and AVR. Therefore, records with these
three leads of ECG and PPG signals were included in the analysis.
Notably, these signals were sampled at 125Hz. To reduce the noise
level, we only considered records that are longer than two minutes
of the signals. Considering the applicable usage in wearable devices,
we set the length of the analysing signal to be 10 seconds and took
the second 10 seconds out of the whole signal to avoid the initial
unsteadiness. An example of the raw signal segments is shown in
Fig. 1.

A. PPG pre-processing

Since PPG signals are generally noisy, we carefully designed the
following processing steps:

1) Raw signal flatness detection: if the value of 60 consecutive
time points (about 0.5 seconds) does not change over a thresh-
old (1e-5), we treat it as a flat signal and remove the whole
segment. This removed about 7% of the signals.

2) Normalisation: normalise each signal to zero-mean and unit-
variance.

3) Filtering: 3rd order band-pass Butterworth filter was applied
with the low band cut being 0.5 Hz and the high band cut
being 8 Hz, a method that was proposed in [13].

4) Peak detection: we applied the Python toolbox ‘HeartpPy’ [48],
[49] to detect valid peaks of the signal. If the 10s signal has
less than 5 peaks (corresponding to lower than 30bpm), we
removed the signal from the study. This removed another 7%
of PPG signals from the dataset.

5) Skewness SQI: skewness was calculated in a sliding window
fashion. It is calculated for every 250 samples (2 seconds) with
a stride being 125 samples (1 second). If the majority (over
50%) of the calculated skewness is negative, we consider it as
a poor-quality signal. This further removed 14% signals.

6) Outlier sample replacement: lastly, we applied the Hampel filter
to detect outliers. For every 10 samples, MAD (median absolute
deviation) is calculated. Then segment standard deviation is
estimated in terms of the MAD value assuming a normal
distribution. Outliers are detected if the sample value is 3 std
away from the segment median, and the outliers are replaced
by the segment median. This mainly replaced the start and end
of the signals.

Step 1) can be considered as a quality screening step. Steps 2) and
3) are cleaning and denoising and Steps 4)-6) are quality controlling.
After processing, we had 38,320 10s-long paired ECG and PPG
training segments in total. A snapshot of the good and poor PPG
segments is shown in Fig. 2.

Since there are no ECG labels given in the MIMIC-III WDB, we
used a highly reliable in-house ECG classification model, AutoNet
to label the ECG [43], [44]. For each ECG lead, we applied the 5th
order high-pass Butterworth filter at 0.5Hz, followed by powerline
filtering with the powerline frequency being 50Hz. Then we assessed
the signal quality using the method proposed in [54]. This assessment
outputs one of the three categories of quality – unacceptable, barely
acceptable or excellent. If any of the ECG leads has ‘excellent’ qual-
ity, we accept the segment. All ECG pre-processing was implemented
using the Python package NeuroKit2 [29].

Fig. 3 gives an example of the normal and abnormal ECG labelled
by AutoNet and their paired PPG.

IV. DUAL-CONVOLUTIONAL ATTENTION NETWORK

The backbone of the Dual-Convolutional Attention Network
(DCA-Net) is a standard ResNet [17]. Inspired by the deep convolu-
tional neural networks with attention in the computer vision area [19],
[51], [52], we employed a 1D dual-convolutional-attention (DCA)
module added to the ResNet-34 backbone to classify the 1D PPG.
Notably, we replaced the 2D convolutional layers in the original
ResNet with 1D convolutional layers to suit the 1D PPG signal
classification. The model architecture of 1D DCA-Net is illustrated
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Fig. 3: Examples of normal (a) and abnormal (b) ECG signals labelled by AutoNet and their paired PPG signal. Signals are shown after
pre-processing.

in Fig. 4. We added a DCA module right before adding the residual
in a normal ResNet block to form the new ResNet+DCA block. The
rest of the model architecture stays the same with ResNet-34.

We reviewed several attention mechanisms including the afore-
mentioned SENet, CBAM and ECA-Net which all adopted a single
MLP/convolutional attention module or a combination of them to
learn the attention weights. We further conducted empirical ex-
periments to analyse the efficacy of different attention blocks and
designed the DCA module trying to maximise the advantage of the
attention block to fit into the 1D scenario. The input of DCA-Net is
the 10-second long processed 1D PPG signal and the output of the
model is a binary label indicating whether this segment of the signal
is considered to be abnormal by the model.

A. The dual-convolutional attention module

DCA-Net follows the overall architecture of ResNet. The differ-
ence exists in each of the ResNet blocks. The DCA module consists
of two convolutional attention blocks arranged in sequential order
as shown in the ‘DCA module’ box in Fig. 4. The convolutional
attention relies on applying the convolution operation to a certain
dimension of the data to learn the interactions between data points
along that dimension. Compared with the MLP attention module,
convolutional attention is computationally more efficient since it
requires no parameters in a convolutional layer. Moreover, [51]
suggested that avoiding dimensionality reduction, i.e. using fully-
connected layers in a MLP style is helpful towards effective channel
attention learning.

The first convolutional attention is applied to the convolution
channels and the second is applied in the temporal domain. Both
the channel-wise and temporal-wise attentions adopt the architecture
illustrated in the ‘Convolutional Attention’ box in Fig. 4 with
the pooling and convolutional layers applied to the corresponding
directions. We used the same channel attention introduced in [52]
and adapted it to 1D scenario. Specifically, let X ∈ RN×C×D be
the input of the channel-wise convolutional attention (also the input of
the DCA module), where N is the sample/batch size, C the number
of convolution channels output from the original ResNet layers and
D is the length of the signal (denoted as the temporal dimension).

The output of the channel-wise attention X̃ is

X̃ = X ⊗ σ(conv(7)C (g(X))), (1)

where g(X) = [p1(X) ∥ p2(X)]D, (2)

where p1(X) = max poolD(X), (3)

and p2(X) = mean poolD(X). (4)

In Eqn. 1, ⊗ indicates the Hadamard product (element-wise matrix
multiplication); σ(·) represents the Sigmoid activation function and
conv(7)C denotes the 1D convolutional layer with kernel size 7 and
convolves over the channel direction. The [·∥·]D in Eqn. 2 denotes the
matrix concatenation along the temporal direction, and the subscript
D in Eqns. 3 and 4 show that the pooling layers are applied in the
temporal dimension as well. The function σ(·) ∈ RN×C×1 outputs
the channel-wise attention weights which are further expanded to the
same shape of X to scale X . The scaled X , denoted as X̃ , is then
served as input to the temporal-wise attention.

Similarly, let the output of the temporal-wise attention be ˜̃X .˜̃X = X̃ ⊗ σ(conv(7)D (g(X̃))), (5)

where g(X̃) = [p1(X̃) ∥ p2(X̃)]C , (6)

where p1(X̃) = max poolC(X̃), (7)

and p2(X̃) = mean poolC(X̃). (8)

Eqns. 7-8 indicate that we first operate max pooling and mean
pooling in the channel dimension, therefore, both p1(X̃),
p2(X̃) ∈ RN×1×D . Then the pooled matrices are then concatenated
along the channel dimension and g(X̃) ∈ RN×2×D (Eqn. 6). The
1D convolutional layer convolves over the temporal dimension and
outputs a single channel such that conv(7)D (g(X̃)) ∈ RN×1×D .
Finally, this convolved matrix is activated by Sigmoid and used to
scale the temporal domain of the input X̃ .

We set the kernel size in the convolutional attention block to 7
to allow a wide coverage of the interactive learning. This choice
was also validated by heuristic experiments using kernel sizes of 3,
5 and 7. Furthermore, the concatenation of the two pooling layers
was tested against using either pooling layer as well as applying a
convolutional layer to each pooling layer and concatenating them
afterwards. These experiments were inferior to the current setting.
There is published work showing learning channel-wise attention
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Fig. 4: DCA-Net overview. The top figure illustrates the ResNet+DCA module block which replaces the normal ResNet block in the backbone
model. The convolutional attention convolves over the channel dimension for the channel-wise attention and over the temporal dimension
for the temporal-wise attention.

first gives slightly better performance than the parallel or channel-
last order [52]. Therefore, by linking the two convolutional attention
blocks with channel-first order, the DCA module first learns the
inter-channel interaction and then learns the temporal-wise interaction
based on the channel-attended output.

B. Model assessment and implementation details
We applied DCA-Net to the MIMIC-III WDB processed PPG

using ECG labels for binary classification. The 38320 PPG segments
are split into training, validation and test sets with a ratio of
64%:16%:20%. The model parameters are learnt using the training set
and validated on the validation set to avoid over-fitting. The test set is
only used to report the results. We evaluated the model performance
using the specificity, sensitivity/recall, precision, accuracy, AUROC
(area under the receiver operating characteristic curve) and AUPRC
(area under the precision-recall curve). We regard AUPRC more
valuable than AUROC in our case since it is more sensitive towards
imbalanced data. We further ran the model for 10 random repetitions
and took the mean and standard deviation of the above assessment
measures.

The DCA-Net was implemented using PyTorch [35] version 1.11.0
with CUDA version 11.7. The loss function is binary cross entropy.
We further experimented with adding loss weights to adjust the class
imbalance. The model was optimised by Adam optimiser with the
default hyper-parameter setting and trained using a batch size of 64.
We applied a step-wise learning rate scheduler to reduce the learning
rate to 0.1 times every 10 epochs. Early-stopping was also applied

– if the validation loss does not reduce compared with the current
lowest loss for 5 consecutive epochs, the training terminates. We
always save the model with the lowest loss and apply it to the test
set for assessment.

C. Computation complexity

The number of trainable parameters in our proposed DCA-Net is
7.23 millions, which is the same with its backbone 1D ResNet-34
and the state-of-the-art model ECA-Net. However, ResNet-34 does
not contain any attention mechanism and ECA-Net in 1D setting only
attends one dimension of the time-series (rather than both temporal
and spatial dimensions). The convolutional attention block does not
add any number of trainable parameters to its backbone model,
therefore, achieves higher computational efficiency compared with the
MLP attention mechanism such as employed by CBAM and SENet.
The number of trainable parameters with MLP attention block in an
equivalent architecture would be 7.39 millions.

D. Baseline models

To set the baseline performance level, we considered a set of non-
neural network models including Logistic Regression (LR), Random
Forest Classifier (RFC), Support Vector Classifier (SMV) and XG-
Boost Classifier (XGB). To choose the backbone model, we evaluated
ResNet-18, ResNet-34 and ResNet-50, among which ResNet-34 gave
the best performance and therefore, was selected as the backbone
model for DCA-Net. To further compare the performance of our
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proposed DCA-Net, we implemented the current state-of-the-art
model ECA-Net which was shown to have outperformed other related
CNN with attentions. We adapted ECA-Net to 1D space and use the
same backbone model with our proposed DCA-Net. The non-neural
network model was implemented using scikit-learn version 1.0.2 [36]
with a training ratio of 80% and test ratio of 20%. We applied class
weights to adjust to the balanced classes. For the neural network
baselines, they were trained exactly the same with DCA-Net as stated
in Section IV-B. Notably, the test sets remain the same for all models
implemented.

V. EVALUATION ON PHYSIONET 2015 CHALLENGE
DATASET

There are very limited public waveform datasets that have paired
ECG and PPG signals. The 2015 PhysioNet Challenge [8] provided
one such dataset for the task of Reducing False Arrhythmia Alarms in
the ICU, where the ECG signals were labelled. The PhysioNet dataset
consists of 750 waveform records for training and each recording
contains PPG and two ECG leads. All ECG in the dataset triggered
bedside alarms in ICUs and they were taken from roughly 5 minutes
before the onset of the alarm to the onset of the alarm. Therefore, all
records meet the 2 minutes long requirement applied in the training
dataset. These recordings were further examined by a team of expert
annotators to identify the false alarms. We regarded the false alarms
as normal signals and true alarms as abnormal ones.

The PPG signals went through the same processing pipeline as the
training dataset. However, these signals were resampled to 250Hz,
rather than 125Hz which was used in the MIMIC-III WDB. We
added a resampling step to the pre-processing after the signal cleaning
and before quality control (between Steps 3) and 4) in the PPG
pre-processing pipeline). We applied the same quality assessment to
remove the ECG with poor qualities and maximise the pre-processing
consistency with MIMIC WDB. This left us with 108 signals for
validation. Table I summarises the datasets used in this study.

VI. RESULTS

A. PPG classification using MIMIC

The best benchmark AUROC we obtained from the non-neural
network baseline models is around 0.88 and AUPRC is around
0.65 (Table II). The highest AUPRC, AUROC and accuracy scores
are all from different models. None of the traditional machine
learning models in Table II offered consistent performance across the
assessment measures we considered. Although SVC has the highest
AUPRC, it took over 10 times longer than the second-best (regarding
the AUPRC score) model XGB. Apart from SVC, all non-neural
network models performed poorly on the abnormal class with low
sensitivity/recall. In particular, the worse performance is from the
logistic regression classifier (LR) which may suggest the data contain
non-linear relationships with the label.

For the backbone neural network models we tested (ResNet-18,
34 and 50), there is a clear performance drop from ResNet-34 to
ResNet-50 (Table III). This may be a sign of the model being over-
parameterised. Although there is no significant improvement from
ResNet-18 to 34, due to the better performance of ResNet-34 on the
abnormal class which can be seen from the sensitivity/recall scores
in Table III, we selected ResNet-34 as our backbone model to add
attention modules. The ECA-Net and our proposed DCA-Net were
all based on the ResNet-34 backbone.

Comparing the bottom block with the top block in Table III, we
observed significant improvement by adding the attention modules to
the backbone model. Since AUROC is less sensitive to imbalanced

datasets, we only provided it for reference and measured the perfor-
mance mainly based on AUPRC.

Our proposed DCA-Net has the best average accuracy, AUROC
and AUPRC scores. The AUPRC of DCA-Net is significantly better
than the ECA-Net with a p-value=0.01 in a one-side T-test. Moreover,
DCA-Net performs more stably than ECA-Net due to the smaller
standard deviations across all assessment measures.

All results shown in Tables II and III are from the test set of
MIMIC-II WDB which consists of 7664 segments, 20% of the whole
dataset.

1) Temporal attention interpretation: We extracted the temporal
attention from each layer in the DCA-Net. Fig. 5 shows an example
of correctly classified normal and abnormal PPG segments and their
temporal attention weights in each ResNet layer. It appears that the
first layer focuses on the peaks of the waveform – the normal case
(Fig. 5a) has its attention evenly distributed on the peaks while the
attention for the abnormal case (Fig. 5b) highlights the three larger
peaks located in the beginning, the middle and the end of the signal.
Layers 2 and 3 are attending the non-peak areas or smaller peaks. The
deepest layer, layer 4 appears to be always focusing on the beginning
and the end of the signals.

For the normal signal, the attention heat maps present more regular
patterns than the abnormal heat maps, and the attention values are
more evenly distributed, having smaller variances – the abnormal
heat maps have brighter colour patches. This indicates the model
pays more attention to certain areas in the abnormal case than in the
normal case.

B. PhysioNet 2015
Finally, we tested the DCA-Net on an external dataset, PhysioNet

2015 challenge dataset. Due to the small sample size, the model is
not re-trained or fine-tuned. It is a direct application of the model
that was trained on MIMIC-III WDB. The results are shown in Table
IV.

Although the performance level dropped on this external dataset
which is not surprising due to their differences in data acquisition,
sampling frequency, labelling mechanisms and class ratios, we still
observed fair performance of the model, especially for the class
weight adjusted setting – the recall on the minority class is 77.86.
It suggests the model is still able to identify most of the abnormal
signals.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper, we proposed a novel task – intelligent ECG ac-
quisition via monitoring the PPG signals. This is the first attempt
in applying ECG labels to guide the training of PPG where the
alarms raised by PPG can be used to alert abnormal ECG so that
informative signals can be collected at more ‘favourable’ times (when
a cardiovascular abnormality happens). We used the large-scale public
dataset MIMIC-III WDB which has rich paired ECG and PPG data
to experiment with this proof-of-concept.

We further proposed a PPG classification model, dual-
convolutional-attention network (DCA-Net), with a novel attention
module added to the backbone model ResNet and compared it
with several traditional non-neural network machine learning models
and neural network models. DCA-Net achieved the highest AUPRC
score among all models considered. Due to the employment of dual
convolutional attention, not only we increased the performance level,
but also reduced the number of parameters overhead compared with
the previous state-of-the-art models.

From the analysis results, we can see a clear improvement path
from the non-neural network models to neural network models and
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TABLE I: Dataset overview.

Dataset Sample size Sampling frequency Signals Train/Validation/Test Positive labels
MIMIC-III WDB 38320 125 Hz PPG and ECG leads II, V and AVR 64% / 16% / 20% 17.66%
PhysioNet 2015 108 250 Hz PPG and ECG leads II and V 0 / 0 / 100% 38.89%

TABLE II: Non-neural network baseline models. The numbers under each column are percentages.

Model Specificity (%) Sensitivity/Recall (%) Precision (%) Accuracy (%) AUROC (%) AUPRC (%)
LR 80.40 22.91 20.03 70.25 51.56 28.28

RFC 97.99 27.72 74.70 85.58 88.40 58.50
SVC 87.75 70.43 55.21 84.69 87.52 65.43
XGB 95.23 45.08 66.96 86.38 88.07 60.87

TABLE III: Results of the neural network models. The numbers shown are the average score in percentage for 10 random repetitions with
their standard deviation shown in brackets. The best average accuracy, AUROC and AUPRC are highlighted with bold font.

Model Specificity (%) Sensitivity/Recall (%) Precision (%) Accuracy (%) AUROC (%) AUPRC (%)
ResNet-18 93.74 (0.34) 64.23 (2.73) 68.77 (0.81) 88.53 (0.34) 91.47 (0.46) 67.78 (1.44)
ResNet-34 93.17 (0.39) 67.12 (1.78) 67.85 (0.77) 88.57 (0.15) 91.59 (0.16) 67.89 (0.88)
ResNet-50 93.42 (0.35) 62.21 (2.03) 66.97 (0.73) 87.91 (0.20) 90.55 (0.26) 65.95 (1.04)
ECA-Net 92.38 (1.97) 71.09 (4.91) 67.10 (3.26) 88.62 (0.81) 91.85 (1.71) 69.04 (1.14)

DCA-Net (ours) 93.34 (0.46) 67.92 (1.45) 68.67 (1.10) 88.86 (0.20) 91.88 (0.24) 70.12 (0.78)
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(a) A true normal case
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(b) A true abnormal case

Fig. 5: Examples of normal (a) and abnormal (b) PPG segments correctly classified by DCA-Net and their temporal attention weights in
layers 1-4 (heat maps from the bottom up). The brighter colours indicate heavier weights.

to neural network models with attention, which indicates the merit
of deep neural network models and attention mechanisms. Moreover,
with the help of attention, we are able to visualise the learning of deep
neural networks. This application offers another step away from the
conventional ‘black-box’ impression of the neural network models.

Although the AUROC of our models reached over 90%, the
AUPRC is less competitive. The AUPRC is pulled down by the
performance of the abnormal class which is a substantially smaller
class compared with the normal class. We can rationalise this perfor-
mance reduction by several factors. First of all, the dataset is very
imbalanced. We applied class weights adjustment to the loss function
which in turn boosted the recall level of the abnormal class. However,
this sacrificed the precision level and overall AUPRC. The second
reason which also affects the overall performance is the noise in the
ECG labels. Ideally, we would have ECG labelled by cardiac experts.
Given this is not the case in MIMIC WDB, we labelled ECG with
a published model that has high accuracy and trained on millions
of labelled ECG data. However, this would still introduce label
biases due to the differences between the dataset used to train the
ECG model and MIMIC WDB. Thirdly, PPG data are highly noisy.
Compared with ECG, the waveform structure of PPG is much simpler
and prone to noise. Although we spent a considerable amount of
effort in designing the PPG pre-processing pipeline, we still noticed
some noisy signals slipped through. Adopting more sophisticated
PPG processing can be a valuable future step.

In this study, we used signals each was 10 seconds long to suit
easier real-world applications. Moreover, since we are using the actual

waveform rather than derived features as model input, our model
should be able to capture the information well within 10 seconds
long signals. Classification using longer signals might be easier, but
it imposes fewer constraints to signal acquisition. Depending on the
actual use case, tailoring the signal length can be beneficial and is
worth exploring in future work.

We attempted the classification of PPG using the 2D power spec-
trum as model input and received poor performance. By eye-balling
the spectrum, we observed more noises than distinctive patterns which
might also be caused by the short length of signal adapted in this
study.

Another main challenge in this task is model validation. One
challenge lies in the dataset. It is difficult to find PPG with ab-
normality labels obtained from ECG or PPG with paired ECG that
has labels. The dataset provided by the PhysioNet 2015 Challenge
is the most similar to our training dataset which also has labels.
The DCA-Net showed fair performance on this dataset, however,
there is still a significant performance drop. The disparities between
the two datasets including the sampling frequency, class ratio and
the available ECG leads can be accounted for this performance
drop. Most importantly, the labels provided by Physionet 2015 do
not align perfectly with our task as they are true or false ICU
alarms for arrhythmia. We considered the false alarm as normal in
ECG for our model validation despite that might not be the case.
Moreover, the data were collected at different geospatial locations
and by different machines which could lead to inherent differences
in data distributions and noise levels.
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TABLE IV: DCA-Net performance on the PhysioNet 2015 challenge dataset. ‘w/ c/w’ and ‘w/o c/w’ indicate during training, the loss
function was with and without class weights adjustment, respectively. The numbers shown are the average score in percentage for 10 random
repetitions with their standard deviation shown in brackets.

Model Specificity (%) Sensitivity/Recall (%) Precision (%) Accuracy (%) AUROC (%) AUPRC (%)

DCA-Net w/ c/w 56.97 (2.46) 77.86 (3.70) 53.53 (1.37) 65.09 (1.55) 71.31 (1.83) 57.16 (3.10)
w/o c/w 78.64 (4.03) 46.67 (3.72) 58.47 (4.00) 66.20 (2.20) 71.72 (1.65) 60.13 (3.46)

We tried several transfer learning techniques on the PhysioNet
dataset including fine-tuning the whole model and fine-tuning the
classification layer only, but we did not achieve improvement due
to the small sample size. One effective way to strengthen the model
power is to have a larger and more reliable validation dataset with
matched characteristics to the training data. Having some clinical
experts-labelled data although would be labour-consuming, would
benefit greatly from the model training which can be part of future
work. Furthermore, applying data augmentation techniques to reliably
labelled data to enlarge the data size can be an efficient way to
improve the statistical power of the model.

Last but not least, this work is a proof-of-concept exploration of
a novel application of PPG, using it to alarm abnormal ECG. We
do not specify the type of cardiac abnormality. The goal is to utilize
passively-measured PPG to initiate an ECG acquisition during periods
of elevated cardiac risk. A valuable next step would be extending
this application to specific cardiac diseases. Nevertheless, this task is
expected to be more demanding due to the even greater imbalance
in class ratios.

DATASETS

The two datasets used in this work are both publicly available
datasets. They can be downloaded with the following links (under
authorised access):
1. MIMIC-III Waveform Database [32]:
https://physionet.org/content/mimic3wdb-matched/1.0/
2. PhysioNet 2015 Challenge dataset [8]:
https://physionet.org/content/challenge-2015/1.0.0/
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