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Is attention all you need in medical image analysis? A review.  
Giorgos Papanastasiou, Nikolaos Dikaios, Jiahao Huang, Chengjia Wang, and Guang Yang. 

 
Abstract— Medical imaging is a key component in clinical 

diagnosis, treatment planning and clinical trial design, 
accounting for almost 90% of all healthcare data. CNNs 
achieved performance gains in medical image analysis (MIA) 
over the last years. CNNs can efficiently model local pixel 
interactions and be trained on small-scale MI data. Despite 
their important advances, typical CNN have relatively limited 
capabilities in modelling “global” pixel interactions, which 
restricts their generalisation ability to understand out-of-
distribution data with different “global” information. The 
recent progress of Artificial Intelligence gave rise to 
Transformers, which can learn global relationships from 
data. However, full Transformer models need to be trained on 
large-scale data and involve tremendous computational 
complexity. Attention and Transformer compartments 
(“Transf/Attention”) which can well maintain properties for 
modelling global relationships, have been proposed as 
lighter alternatives of full Transformers. Recently, there is an 
increasing trend to co-pollinate complementary local-global 
properties from CNN and Transf/Attention architectures, 
which led to a new era of hybrid models. The past years have 
witnessed substantial growth in hybrid CNN-
Transf/Attention models across diverse MIA problems. In 
this systematic review, we survey existing hybrid CNN-
Transf/Attention models, review and unravel key 
architectural designs, analyse breakthroughs, and evaluate 
current and future opportunities as well as challenges. We 
also introduced an analysis framework on generalisation 
opportunities of scientific and clinical impact, based on 
which new data-driven domain generalisation and adaptation 
methods can be stimulated. 

Index Terms— Attention, Computed tomography, 
Convolutional neural networks, Magnetic resonance 
imaging, Medical image analysis, Positron emission 
tomography, Retinal imaging, Transformers.  

I. INTRODUCTION 

A. Medical image analysis and convolutions 

Medical imaging (MI) is a key component in clinical 

diagnosis, treatment planning, and clinical trial design, 

accounting for almost 90% of all healthcare data [1, 2]. Medical 

image analysis (MIA)-derived imaging biomarkers can 

improve early disease diagnosis, therapy design and treatment 

response monitoring, beyond visual radiology assessments. 

MIA is an important component of clinical research, innovation 

and application [3-6].  

The European Society of Radiology in coordination with the 

Radiological Society of North America, has recently provided 

recommendations for clinically validating MIA techniques [3-

5]. In the era of rapid artificial intelligence (AI) developments 
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and to establish the clinical translation of AI, it is important to 

review and develop guidelines for innovative AI models.   

Since the first “deep” convolutional neural network (CNN) 

developed by Krizhevsky et al. in 2012 which outperformed the 

previous state-of-the-art (SOTA, non-deep learning) algorithms 

on the ImageNet dataset [7], CNNs demonstrated numerous 

performance gains across all MIA tasks: segmentation, 

classification, reconstruction, synthesis, denoising, registration, 

and regression [2]. However, typical CNNs focus on modelling 

information through small convolutional filter footprints and 

shared weights, which comes at the cost of introducing local 

receptive fields thus, limiting their ability to directly model 

long-range (global) pixel interactions within images. Hence, 

despite their important advances, CNN-based networks are still 

focusing on local-scale modelling, with low generic “local-

global” modelling capabilities. Their limited ability to model 

both local and global information from images adds barriers to 

model generalisability (e.g. across MIA domains or pathology 

settings) and transfer learning (from one MI modality to 

another) properties of pure CNN models [2].   

B. Hybridisation with attention convolutions  

First introduced by Bahdanau et al. in 2014, the attention 

mechanism was initially designed to learn long-range 

dependencies in natural language processing and improve 

machine translation [8]. The attention mechanism allows to 

(soft-)search for a set of positions in a source sentence where 

the most relevant information is concentrated, encouraging the 

model to predict a target word based on the context vectors 

associated with these source positions and all the previous 

generated target words [8]. Following attention, the 

development of the self-attention mechanism in 2016 was 

designed so that each position (building block) within a self-

attention layer (known as query, key and value) can attend to 

all positions in the output of the previous layer [9-10], as an 

additional technique to enhance modelling of long-range 

dependencies.  

The introduction of self-attention and attention mechanisms in 

the Transformer models made it possible to increase the 

receptive field and thus, became an efficient solution for 

modelling long-range dependencies from images [10-12], with 

promising results in the field of MIA [13-16]. The Vision 

Transformer (ViT) models recruit consecutive multi-head self-

attention and attention mechanisms in image patches and have 

been suggested to even fully replace pure CNN models [10]. 

The basic concept in ViT is to convert input images to a series 

of image patches which in turn are transformed into vectors and 

can be represented as “words” in a normal Transformer. 

However, as the relationships between an image patch and all 
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other image patches are computed, the computational 

complexity of the multi-head self-attention modules in ViT 

becomes quadratic to image size, adding substantial challenges 

in the setting of analysing high spatial resolution images. Swin 

Transformers (ST) were designed to overcome these challenges 

by performing self-attention in non-overlapped image patches 

[11, 12]. Despite this, ST need to consecutively learn a stack of 

two successive self-attention blocks with regular and shifted 

windowing configurations, respectively. This adds 

computational complexity and limits their applicability in MIA 

tasks such as segmentation, classification, denoising, 

reconstruction and registration, where dense predictions at the 

pixel level and learning representations from high content 

images are necessary. This is one of the main reasons why full 

ViT and ST models have been limited to medical image 

classification and object detection tasks [10-17].  

To reduce the computational complexity and to address both 

local and global learning in MIA, self-attention and 

Transformer blocks were incorporated into CNN model 

architectures (thereafter called as “hybrid” CNN-

Transf/Attention models), giving rise to hybrid models. Current 

evidence shows that by combining local and global modelling 

capabilities, these hybrid CNN-Transf/Attention models 

consistently outperform previous SOTA techniques across 

different MIA tasks [13-21]. Hybrid models can potentially be 

also used to improve model interpretability [22-25].  

However, the main drawback of these hybrid models is that they 

are enormously complex as they have been developed to 

address particular problems in MIA, which means that their 

domain generalizability (e.g. from CT to MRI, or from lung to 

cardiac applications) and transfer learning capabilities can be 

challenging processes. Given their substantial growth, it is 

important to methodically assess whether these techniques can 

generalise across imaging modalities, MIA tasks and clinical 

applications, or may be over-engineered to specific MIA 

problems.  

In this work, we review the evolution of the hybrid models for 

in vivo MI: magnetic resonance imaging (MRI), computed 

tomography (CT), positron emission tomography (PET), 

ultrasound, X-rays and retinal imaging. There are numerous 

recent surveys that describe technical details of CNN models 

and how these were used to address specific needs in MI [2, 26-

29], as well as some recent survey on ViT in MI [17, 30-33]. 

Differing from previous reviews, we developed a 

comprehensive systematic review based on the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines for hybrid CNN-Transf/Attention 

models in MI. We categorised published work on hybrid CNN-

Transf/Attention models in MI, analysed key architectural 

designs and quantitatively as well as qualitatively unravelled 

the evolution of CNN-Transf/Attention models. 

To improve clarity and understanding on these novel 

techniques, we critically review whether such hybrid models 

outperform their pure CNN counterparts. We review technical 

and computational complexities and discuss domain 

generalization strategies, based on the MI modality, 

downstream task, and clinical application. We focus on 

unravelling the importance and potential drawbacks of hybrid 

models. Finally, we discuss opportunities, challenges (with 

mitigations, where applicable) and future perspectives of the 

post-hybrid model era. We consider these review concepts as 

important pathways towards harmonising and translating these 

novel techniques into clinically meaningful MIA.   

II. METHODS  
A. Literature review strategy 

We performed a systematic review of CNN-Transf/Attention 

models in MI published between January 1, 2019 and July 1, 

2022 using Scopus, Web of Science and Pubmed, based on the 

PRISMA framework [34]. In our review, we refer to all hybrid 

models that involve any CNN and Transformer modules-

including adaptations of self-attention and attention 

mechanisms, as hybrid CNN-Transf/Attention models. We only 

considered MI modalities that involve in vivo body imaging and 

thus, excluded microscopy and digital pathology slide imaging 

studies. Therefore, we focused on MRI, CT, PET-CT, 

ultrasound, retinal imaging and X-rays.   

Initial filtering: To broaden the research, we initially mined 

all publications by searching the following keywords in the 

abstract, title, and manuscript keywords: (transformer OR self-

attention) AND (deep AND learning) OR (convolutional AND 

neural AND network). This led to 5,222 papers (see PRISMA 

flow in Fig. 1a). Subsequently, we focused the search by 

considering all different combinations of relevant keywords in 

the abstract, title and keywords of each paper, as follows: 

(transformer OR self-attention ) AND (deep AND learning ) 

OR (convolutional AND neural AND network) AND (medical 

AND imaging) OR (magnetic AND resonance AND imaging) 

OR (MRI) OR (computed AND tomography) OR (CT) OR 

(ultrasound) OR (positron AND emission AND tomography) 

OR TITLE-ABS-KEY (retin) OR TITLE-ABS-KEY (X-rays) 

OR TITLE-ABS-KEY (ray). By adding these terms, we 

removed all irrelevant to MI papers, which led to 656 papers 

from all three digital libraries. By excluding conference, review 

and archived (non-peer-reviewed) papers, we then removed all 

non-journal publications, leaving 352 journal papers for 

subsequent analysis.  

Title and abstract screening: All authors screened titles and 

abstracts across all 352 journal peer-reviewed papers and 

removed all irrelevant to the field of study papers, leaving 128 

papers for full text review.   

Full text screening: Following full paper review, the authors 

removed 16 journal papers (14 non-relevant to MI or hybrid 

model studies and 2 papers not written in English). In total, 112 

journal papers (thereafter, referred to as “articles”) were 

included in our review analysis. See also data extraction for 

paper content that was reviewed.   

B. Data extraction  

During evaluation of article full texts, we considered the 

following aspects: (1) year of publication; (2) MI modality; (3) 

CNN backbone; (4) Transf/Attention including all different 

attention subtypes; (5) MIA task (segmentation, classification, 

reconstruction, synthesis, denoising, registration, regression); 

(6) organ or physiology system investigated/ imaged; (7) use of 

public or private data; (8) data augmentation technique used; 

implementation details: (9) model optimizer, (10) loss function, 

(11) metric used to evaluate the results and (12) size of training 
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and testing data. We also considered (13) if computation 

expense (total number of parameters) was calculated and (14) 

whether performance was improved against non-hybrid 

baseline methods.  

Furthermore, we assessed the articles in terms of 

generalisability following 2 objective criteria: whether a CNN-

Transf/Attention architecture was a) trained on large datasets, 

b) analysed data from heterogeneous MI modalities (e.g., 

different MRI or CT “sequences”, or MRI and CT, etc.) and/ or 

multi-modal data (image and text, images and genetics) and/ or 

was applied to multiple (≥2) organ areas (e.g., brain and heart) 

and/ or multiple (≥2) datasets of the same modality and organ. 

Further, we identify challenges, opportunities and future trends 

that can be used as suggestions for future work in this field.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1a. PRISMA flowchart. The flowchart illustrates inclusion and 

exclusion of papers at each review stage. b. Publications per year across 

the top 18 countries (in terms of publications record). Publications with 

affiliations from multiple countries have been accumulated on a per 

country basis. 

III. RESULTS  

A. Research trends 

We studied published work on hybrid CNN-Transf/Attention 

models in MI and observed a consistent increase of these 

models in 2021 and 2022, against the first 2 years of our 

observation window: in the period 2019-2022, there were 7, 20, 

31 and 54 articles published, respectively.  

In Fig. 1a, we present the PRISMA flow used to search and 

review articles. In Fig. 1b, we initially measured the country 

origin as derived from each affiliation across all articles (all 

affiliations were considered across publications). Considering 

the entire review period (2019-2022), the first ten countries in 

were: China (74 publications), USA (34), UK (14), India (9), 

Germany (5), Hong Kong (4), Canada (3), Taiwan (3), South 

Korea (3) and Italy (3).   

Table I demonstrates all the articles grouped based on the MI 

modality, CNN backbone, Transf/Attention model and clinical 

application (organ) [13-21, 35-139]. Implementation details 

about the data augmentation technique, optimizer, loss function 

and the metrics used to evaluate the performance of each hybrid 

model across studies, are presented in Table II. Table III 

presents whether public and/ or private were analysed and 

information about the data size.     

B. Experimental settings and key architectural designs 

Medical imaging modality recruited 

We reviewed the publication record of the MI modality used 

per year (Fig. 2a). Most of the studies involved MRI (50 

studies), followed by CT (42), retinal imaging (14), X-rays (12), 

ultrasound (7) and PET-CT (5). Although MRI was less 

frequent than CT the first 2 years of our observation time frame, 

it outnumbered CT in the last two years (2021 and 2022).   

CNN model used    

In Fig. 2b, we demonstrate all CNN backbone models used 

across studies. Standard CNN architectures have been 

implemented in most of the studies (40 articles), followed by 

UNet (30), GAN (14), ResNet (14), DenseNet (7), None (i.e., 

no CNN backbone-only Transformer model used) (7), fully 

connected networks (FCN) (6) and VGG (3). 

Transformer and attention mechanisms  

Fig. 2c illustrates the evolution of Transf/Attention models 

recruited per year. It is obvious that self-attention mechanisms 

have been most widely used (64 studies out of 112 in total), 

followed by Transformer (22 studies), ViT (9 studies), channel- 

and spatial-attention (6), ST (4), attention (2) and other (11).  

It is known that to exploit the performance capabilities of full 

Transformer models, a combination of large data and 

supercomputer facilities are necessary [10-12]. In our review, 

there were numerous studies that either analysed relatively 

small (i.e., <2,000 images) data (~27%), and/ or private data 

alone (~29%) and/ or did not report the data size (~21%). 

Details are presented in Table III. Furthermore, computational 

resources were not reported in most studies, with only 29 out of 

83 reporting the number of model parameters and/ or time for 

training. Of note, only 8 out of 112 studies (~7%) described use 

of full original Transformer, ViT or ST models, with the rest 

~93% involving: self-attention, channel- and spatial-attention, 

attention and simplified and light Transformer versions 
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including transformer blocks (of stacked layers), layers, or 

encoders (Table I). 

Medical image analysis (downstream) task 

Further, we extracted all MIA (downstream) tasks across 

studies (Fig. 3a). Most of the studies aimed to solve    

segmentation tasks (43 studies), followed by classification (35), 

reconstruction (14), synthesis (10), denoising (7), localisation 

(5), regression (4), registration (3) and radiology report 

generation (2).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Publication record over time for the Medical Imaging modality (a), 

the CNN model type (b), and Transf/Attention architectures (c). In b), the 

CNN (ALL) term describes all standard CNN models captured across 

studies: CNN encoder-decoder (E-D), CNN layers, CNN decoder only and 

CNN (E-D) (3D). GAN describes either GAN or CycleGAN models. UNet 

(ALL) and DenseNet (ALL) represent 2D and 3D model variants. The term 

“Other” includes all other models identified across studies (a total of 6 

articles): EfficientNet, multi-linear perceptron (MLP), Deep Belief 

Network and long short-term memory (LSTM). In c), the Transformer, ViT 

and ST (ALL) include all model adaptations identified across studies: 

Transformer (full), Transformer encoder(s) only, Transformer blocks or 

layer(s), ViT (full), ViT encoder(s) only, ViT blocks, ST (full model), ST 

blocks, ST layers, respectively. The term “Other” includes all distinct 

architectural adaptations of Transf/Attention mechanisms extracted across 

studies: DistilGPT2 (1), channel self-attention (3), criss-cross self-

attention (2), cross-attention (2), cross spatial-attention (1), multi-head 

self-attention (1) and spatial self-attention (1).  

Organs analysed  

We reviewed the organ under investigation across all studies 

(Fig. 3b). Most of the 112 studies analysed medical images 

from the brain (53 studies), followed by lung (20), multiple 

organs (20), retina (13), chest (6), neck (6), abdomen (5), heart 

(5), breast (3) knee (3) and pancreas (3). All other organs were 

examined in equal to or less than 2 studies (Fig. 3b). Studies on 

the top 3 most frequently analysed organs (brain, lung, multiple 

organs) were constantly increasing each year (Fig. 3b). 

Transformers and medical imaging  

We reviewed which Transf/Attention mechanisms were 

implemented per MI modality (Fig. 4a). Self-attention was 

mostly recruited in CT (23 studies) and MRI imaging (22), 

followed by ultrasound (7), retinal imaging (6), X-rays (2) and 

PET-CT (2).  

Transformers were the most frequent choice in MRI (16), 

followed by CT (4), X-rays (3) and retinal imaging (1). ViT was 

mostly applied to X-rays and retinal imaging (3 studies each), 

followed by CT (2). Channel- and spatial-attention mechanisms 

were used in MRI, CT, and X-rays (2 studies each). ST was only 

used in MRI (4 studies).  

CNN and Transf/Attention combinations  

In Fig. 4b, we show that the incorporation of self-attention 

mechanisms was the dominant choice distributed across all 

CNN model types. Transformers were the second most frequent 

type and was used across all CNN model types, apart from 

VGG. ST was the third most common type and was only used 

in conjunction with standard CNN and UNet structures. Based 

on our findings, mainly “light” (simplified) Transformer 

blocks, encoders or layers were used across studies (Table I). 

Novel transfer learning strategies, multi-centre data and/ or 

increasingly available supercomputer facilities may encourage 

the use of full Transformer architectures in future work [140, 

141]. However, the current hybrid models have showed 

performance breakthroughs across studies, highlighting them as 

powerful and relatively simplified (against large pre-trained 

models) techniques on the MIA tasks reviewed. 

For standard CNN and UNet structures, all Transf/Attention 

mechanisms were used, except for standard attention 

mechanisms and ViT (Fig. 4b). For GAN models, only self-

attention mechanisms were implemented. These results 

demonstrate that there was a large degree of variability in terms 

of CNN-Transf/Attention combinations across studies. 

Moreover, large variability was observed in the data 

augmentations, loss functions and metrics used to evaluate 

findings (Table II). 
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TABLE I 

All articles grouped based on the clinical application (organ), MI modality, 

CNN and Transf/Attention model. To keep the information concise, details 

are prioritised for the top 4 organ areas (brain, lung, multiple organs and 

retina) in terms of prevalence, the top 2 MI modalities present per organ 

and the top 3 CNN (ALL) model types per organ. Transf/Attention 

modules were categorised to: a) Self-Attention, b) Transformer, ViT or ST 

(full models) and c) Light Transformer, ViT or ST: Encoder(s), Block(s) 

or Layer(s). All other organs, MI modalities, CNN and Transf/Attention 

modules are grouped under the term “Other”. Studies occurring in >1 Table 

cell correspond to model combinations. Missing rows of CNN models 

corresponds to absence of this technique per MI modality. MI: medical 

imaging, ViT: Vision Transformer, ST: Swin Transformer.  

 

Downstream tasks and clinical applications 

Fig. 4c illustrates all Transf/Attention components used across 

each downstream task. Self-attention was implemented across 

all organ areas (Fig. 4d). Transformer architectures were used 

in the brain, lung, multiple organs, heart, retina, neck, and 

pancreas. ViT and ST were mainly applied to a relatively 

limited clinical application space: lung and retina, and brain and 

heart, respectively. Similarly, channel- and spatial attention 

have been used in multiple organs, brain, lung and chest. 

C. Performance and generalization opportunities  

Most proposed hybrid models have outperformed baseline and 

previous SOTA comparison methods, across downstream tasks. 

Although the evaluation metrics used differed considerably 

across image analysis tasks and studies making direct 

comparisons challenging (Table II), there was a clear 

performance improvement when Transf/Attention mechanisms 

were used across studies. Some of the studies demonstrated 

either large (≥ 5%) differences against the best baseline models 

[21, 35, 46, 79, 101, 108, 117, 121, 122, 126, 127, 135], or 

moderate (<5%) but consistent improvements across different 

metrics evaluated [13, 18, 39, 53, 54, 56, 57, 62, 70, 78, 91, 94, 

105] and/ or data used [98, 100, 103, 105, 108].  

In the following paragraphs, we detail studies that followed our 

2 objective generalisation criteria (see Methods): whether a 

model was a) trained on large data (>2,000 images, Table I) 

and/ or b) analysed data from heterogeneous modalities, and/ or 

multiple modalities and/ or multiple organ areas and/ or 

multiple datasets of the same modality and organ. Table IV 

shows the dataset diversity in terms of patient size and data size 

across all articles that satisfied our generalisation criteria. 

Although there were studies that involved large patient data 

(>1,000 patients), some articles presented analyses from 

relatively small cohorts or did not report patient size.       

Fig. 3. Publication record over time for the medical image analysis task 

(a), and the organ/ anatomical area (clinical application) under 

investigation (b), respectively. The term “whole body” (Table I, Fig. 3b) 

by Xue et al. [118] and Dong et al [136] describes simultaneous imaging 

covering the entire body using a single PET-CT session, a dedicated full 

body technique that has been recently developed [2]. The term “multiple 

organs” describes all studies that imaged more than one organ in the same 

imaging setting [15, 19, 35, 41, 65, 66, 76, 70, 71, 76, 100, 108, 109, 111, 

113, 117, 124, 127], including whole body studies [118, 136].   

Segmentation 

Image segmentation is an important aspect in the field MIA, as 

it is a necessary intermediate step towards extracting a region 

of interest within the organ under investigation [142-146]. 

Although UNet models revolutionised medical image 

segmentation [147, 148], image segmentation remains an open 

challenge as it relies on strong supervision, hence, a large 

fraction of labelled data are required. However, there is a 

considerable “data challenge” barrier, as labels are commonly 

limited for MI data [2, 146]. To address this, several approaches 
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have been proposed, such as disentangled representations for 

semi-supervised learning which can generate accurate 

segmentations by only using a small fraction of labelled data 

[146], or GAN techniques to obtain accurate paired synthesis of 

images and segmentation masks [149].    

Cheng et al. proposed a multi-task methodology for 

simultaneous glioma segmentation from MRI images and 

parallel classification of genetic profiles for neuro-oncology 

patients [53]. They developed a CNN model with serial ResNet 

blocks in the encoder and decoder. Between the encoder and 

decoder, 2 Transformer layers were engineered. Unlike most of 

the MRI and CNN studies, the authors used multi-parametric 

MRI data for image segmentation (4 different MRI sequences). 

The authors compared their method against 10 baseline CNN 

models and demonstrated superior performance for both tasks. 

In the context of small but heterogeneous data analyses, Wang 

et al. designed a CNN encoder-decoder model with residual 

connections and self-attention modules connected with CNN 

layers in the encoder [57]. The authors demonstrate that their 

method outperformed all baseline models in identifying 

COVID-19 lung abnormalities from CT images. They also 

developed a zero-shot learning strategy based on the same 

hybrid model, in which a UNet model was applied to predict 

pseudo-labels in a non-labelled CT dataset, which in turn 

guided semi-supervised learning. Rajamani et al [18] 

engineered a deformable attention module into a UNet model. 

Their model (called “DDANet”) was trained and tested on a 

large publicly available CT COVID-19 dataset, achieving 

superior performance for lung infection segmentation 

compared to baseline models. As future work, the authors 

discuss that their model can be further validated to detect small 

and irregular lesions for other MI segmentation problems.  

Next to limited labelled data, another challenge in medical 

image segmentation is the analysis of “less anatomical” and 

more “biophysical” imaging data, in which imaging physics are 

modified so that anatomical information at the pixel level is 

“sacrificed”, to “emphasize” perfusion, functional, temporal or 

other biophysical information [2, 150-153]. Most segmentation 

algorithms are focusing on imaging sequences that contain 

enough anatomic (to efficiently guide semantic) representations 

during training [2, 153]. Shi et al. developed a powerful method 

that is capable to analyse 4 different parametric perfusion maps: 

a) cerebral blood volume, b) cerebral blood flow, c) time to 

maximum peak and d) mean transit time (of contrast 

enhancement) [78]. They developed two parallel subnetworks 

to analyse blood flow (a, b) and time (c, d) parameters, 

simultaneously. Each subnetwork included a CNN model with 

skip connections between the encoder and decoder. A cross-

attention module was incorporated between the encoder and 

decoder for feature fusion. The model was compared against 

baseline methods (achieving higher and comparable 

performance, depending on the metric) and evaluated on both 

public and in-house data.  

On a retinal MIA study, Mou et al. developed a versatile 

curvilinear structure segmentation network, based on dual self-

attention modules which can address both 2D and 3D retinal 

imaging data [105]. In their model named as “CS2Net”, they 

devised two channel- and spatial self-attention mechanisms to 

generate attention-aware features and capture long-range 

contextual information. By performing extensive experiments 

on 9 (2D and 3D) datasets, they demonstrated SOTA 

performances in detecting curvilinear structures from different 

imaging modalities. They showed that their technique can work 

as a generalized approach for retinal morphology analyses. Of 

note, such hybrid models can be impactful, since retinal 

imaging is not only used to assess ophthalmic pathologies, but 

also changes in retinal morphologies that may occur early in a 

broad spectrum of diseases, such as Alzheimer’s [154], cardiac 

pathologies [155], cerebral small vessel disease [156] and 

others. Wang et al. have proposed the MsTGANet, a UNet 

model enhanced with a Transformer block that consists of a 

series of multi-head self-attention mechanisms incorporated in 

the encoder, to capture both local and global pixel interactions 

early in the learning process [45]. A series of channel- and 

spatial attention modules were also inserted between different 

positions of the encoder and decoder, to efficiently fuse feature 

semantics during training. At inference, the model predicted 

labels in non-labelled data, which were then used as pseudo-

labels to augment the dataset, as a semi-supervised learning 

strategy (in which pseudo-labels were then used to guide semi-

supervision). The model outperformed previous SOTA 

methods in supervised and semi-supervised segmentation tasks.  

Xu et al. replaced 2 layers in the encoder and 1 layer in the 

decoder of a UNet model with self-attention mechanisms [108]. 

Their hybrid model achieved SOTA performance in segmenting 

several fetal anatomies, when compared to 6 other models. 

Segmenting fetal structures from ultrasound is particularly 

challenging due to moving and fuzzy anatomical organ 

boundaries [157]. Sinha et al. developed a generalizable hybrid 

model for segmentation of numerous abdominal, 

cardiovascular and brain structures by analysing different MRI 

sequences [111]. The authors used a ResNet model for initial 

feature extractions which were then fed into a stack of spatial 

and channel self-attention mechanisms. They demonstrated 

superior performance against 6 previous SOTA baselines. The 

model was capable to perceive a broad spectrum of anatomical 

(different organs) and semantic (different MRI sequences) 

information and can therefore be potentially useful to be further 

validated in future single- and multi-centre MRI studies [2, 29].     

Xie et al developed a 3D UNet architecture which consisted of 

2 cascading UNets both enhanced with self-attention [121]. The 

overall model was trained on a chronic obstructive pulmonary 

disease (COPD) CT dataset. Following training, the hybrid 

model was evaluated on COPD data and on an unseen COVID-

19 dataset. The model outperformed previous techniques in 

detecting several lung nodules in COPD and COVID-19 data. 

Following further validation using CT data from other organs, 

this hybrid approach can potentially have applicability in terms 

of detecting small and irregular lesions across different diseases 

and organ areas. Other studies focused on segmentation of 

large-scale MRI data [58-62].   

Classification 

In their noteworthy study, Zhou et al. proposed a cross-

supervised method called REFERS, which generates X-ray 

image labels from radiology reports, to perform lung pathology 

detection through image classification [52]. The authors 

employed ViT blocks composed of multi-head self-attention 
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mechanisms, to learn joint representations from multiple 

radiograph views and corresponding radiology reports.  

 
Fig. 4. Publication record showing combinations between the Transformer 

model/ component type and a) the Medical Imaging modality, b) the CNN 

model type, c) the Medical Image Analysis task and d) the Organ area. 

RRG: Radiology report generation.  

 

 

Subsequently, the model performs feature fusion and employs 

two additional subnetworks for bidirectional visual to textual 

feature mapping. REFERS was first pre-trained on a source 

domain X-ray dataset and then fine-tuned on 4 well-established 

datasets (target domain with text labels). During fine-tuning, 

the authors performed fully supervised learning on the target 

domain (using structured radiograph labels). Differing from 

other models, their technique did not require labels during pre-

training. The authors also showed that their model 

outperformed powerful baseline models on all datasets under 

extremely limited supervision (1% labelled images during fine-

tuning). Their model was consistently accurate in detecting 

several lung pathologies thus, having tremendous potential for 

real-world applications where labelling is substantially limited.    

TABLE II 

All the articles grouped based on the downstream MIA task, the number of 

data augmentation techniques, optimiser, loss function and metric used to 

evaluate results. To keep the information concise, details are prioritised for 

the top 2 downstream tasks. All other MIA tasks are organised under the 

“Other MIA tasks”. MIA: medical image analysis, NR: not reported, SGD: 

stochastic gradient descent, ACC: accuracy. 
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To address large-scale analysis from different domains, Wood 

et al. developed a DenseNet-based supervised learning 

framework for detecting clinically relevant abnormalities from 

clinical T2-weighted and diffusion-weighted head MRI scans 

[39]. The DenseNet model was trained using a Transformer-

based neuroradiology report classifier to generate a labelled 

dataset of 70,206 examinations from 2 UK hospitals. The 

Transformer model was trained using a small dataset (N= 

5,000) of neuroradiology reports. The authors showed accurate, 

fast and generalisable classification of abnormal against normal 

brain MRI between hospitals. This work demonstrated the merit 

of CNN and Transformer synergy when combined under the 

same MIA pipeline.  
TABLE III  
All the articles grouped based on the downstream MIA task, data set 

(public, private, both) and the data size. To keep the information concise, 

details are prioritised for the top 2 downstream tasks. All other MIA tasks 

are organised under the “Other MIA tasks”. MIA: medical image analysis, 

NR: not reported.  

Zhang et al. devised a 3D ResNet block that operated as initial 

feature extractor before feeding feature information into a self-

attention block [21]. The authors performed several 

classification experiments for identifying Alzheimer’s disease 

and mild cognitive impairment from MRI data, showing  

superior performance against baseline methods. Despite they 

focused on using T1-weighted data (mainly used for anatomical 

imaging and does not contain “functional” [158] or “perfusion” 

[159, 160] tissue information), they analysed data from both 

1.5T and 3T MRI scanners, which is known that they have 

differences in the signal-to-noise ratio, imaging content and 

artefacts [1, 2, 158-160]. Since their technique was assessed on 

public data (ADNI), for 2 different brain pathologies and 

analysed data from different field MR scanners, it can 

potentially be useful to be validated across further MRI data.   

Another study by Let et al. [35], proposed a CNN encoder-

decoder network connected with a self-attention mechanism 

(called PreSANet) to detect cancer recurrence, distant 

metastasis and overall patient survival for head and neck cancer 

patients. The model was trained on public data and was 

validated on various unseen datasets demonstrating good 

(~70%) generalisability. Mondal et al. pre-trained a ViT 

encoder connected with a FCN layer, to discriminate COVID-

19 positive cases from other pneumonia types and normal 

controls [55]. The model was trained on the ImageNet dataset, 

fine-tuned on a large collection of chest X-ray and tested on 

both CT and X-ray lung data.  

Zhao et al. proposed a UNet model with residual blocks 

enhanced with self-attention, to classify malignant from benign 

thyroid nodules from ultrasound images. The model was 

evaluated on a large-scale dataset via extensive experiments 

and achieved high performance (89%) [86]. Wu et al. developed 

a ViT encoder and performed accurate diabetic retinopathy 

grading from retinal images using a large Kaggle dataset [89]. 

Duong et al. developed an Efficient backbone model connected 

with a full ViT and demonstrated accurate and generalisable 

detection of tuberculosis from heterogeneous X-ray public 

sources [90]. Lin et al. developed a deformable ResNet model 

with self-attention incorporated to detect irregular and diffused 

lung nodules due to COVID-19 infection and showed SOTA 

performance in large and diverse public datasets [92]. Shome et 

al. developed a Transformer encoder connected with an MLP 

block to perform multi-classification of COVID-19 infection 

against other pneumonia types and nornal lung, from large X-

ray datasets [93]. Other studies focused on large-scale analysis 

of MRI brain (schizophrenia, Alzheimer’s Disease) [36, 63], 

chest X-ray (tuberculosis) [42] and retinal diseases [133]. There 

were also studies demonstrating innovative architectures and 

high diagnostic accuracies in the setting of image classification, 

however, using smaller datasets [49, 84]. 

Reconstruction  

Medical image reconstruction aims to form an image 

representation from raw signals acquired by the scanner [2]. 

Reconstruction of fast acquisitions (of periodically moving 

organs such as the heart) and/ or low doses (e.g., CT), has 

important clinical applications. Using relatively small but 

highly diverse data, Zhou et al. developed a CNN-based method 

enhanced with self-attention for ultrasound image 

reconstruction of various organs and tissues [117]. Another 

study demonstrated accurate brain reconstruction by using a 

CNN with Transformer layers on large MRI data (>30,000 MR 

images) [56]. Tan et al. devised a CNN model with residual 

connections in which channel- and spatial-attention modules 

were engineered to reconstruct X-ray images of the lung, from 

a large dataset (>55,000 images) [80]. Other studies focused on 
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MRI reconstruction and demonstrated accurate and 

generalisable hybrid models by analysing large and diverse 

imaging data [15, 114, 129, 139].  

 

Synthesis  

Image synthesis is an important field as it can address the need 

of data augmentation across different modalities [2, 161]. Yang 

et al. developed a CycleGAN with self-attentions for 

unsupervised MR-to-CT synthesis, outperforming 2 plain 

CycleGAN baselines [16]. In the field of MR-to-CT synthesis, 

Dalmaz et al. developed a series of residual Transformer blocks 

between the encoder and decoder of a CNN [66] and Tomar et 

al. developed a GAN model with ResNet blocks and self-

attention modules for cardiac and brain image synthesis [107].  

Wei et al. developed a first-of-its kind GAN model with self-

attention in the generator and discriminator, that was able to 

synthesise PET-derived myelin content through the analysis of 

multi-sequence MRI data [20].  

Denoising  

Denoising is an important step prior to image quantification as 

it can enhance signal-to-noise-ratio and remove artefacts [2, 26-

29]. Li et al. combined a 3D CNN model with self-attention 

blocks and an autoencoder perceptual loss (used as a self-

supervised learning module) with CNN-based and GAN-based 

models. They achieved improved denoising performance 

against baseline models for chest and abdominal CT images 

[124]. Huang et al. proposed an end-to-end CycleGAN model 

with criss-cross self-attention and channel-attention 

mechanisms to reduce noise, remove artefacts and preserve 

anatomical structures in low-dose dental and abdominal CT 

images [19]. To denoise low-count PET images, Xue et al. 

developed a 3D GAN model with self-attention, achieving 

improved performance against baseline methods [118]. Their 

method was evaluated on large-scale PET data and showed that 

it can improve PET image quality, reduce motion artefacts and 

provide accurate diagnostic information. 

Localisation  

Image localisation focuses on detecting the location of an area 

of interest within MI data [26, 27]. Tao et al. proposed a ResNet 

model for initial feature extraction followed by a series of self-

attention and cross-attention mechanisms for vertebrae CT 

localisation and segmentation [13]. They demonstrated accurate 

and generalisable performance across 2 CT datasets. Li et al. 

developed a DenseNet model parallelised with a ViT block to 

extract local and global pixel dependencies which were fused 

before fed into a CNN model. Their technique outperformed 

baseline models on classification and localisation of several 

lung abnormalities when trained and tested in a large X-ray 

dataset (of >112,000 images) [81]. Xie et al. used a pre-trained 

VGG model enhanced with self-attention to enhance feature 

extraction before feeding this information into 2 subsequent 

CNN models [112]. They demonstrated accurate fovea 

localisation in 2 different retinal imaging datasets.  

Regression 

In the task of brain age estimation from MRI, He et al. 

developed a hybrid model consisting of a CNN and a full 

Transformer, to capture the relationships between pairs of 

images with different chronological ages from patients [47]. 

Their method outperformed 8 SOTA baselines as tested on 8 

public datasets (N=6,049 patients in total).   

Registration  

Image registration is the process of aligning the spatial 

coordinates of different images into a common geometrical 

coordinate system. Image registration has wide applications in 

multi-modal and longitudinal MIA [162, 163].  Yang et al. 

developed a plain Transformer encoder with an attention-based 

decoder model for brain MRI registration, demonstrating 

accurate results against baselines across 3 different datasets 

[75]. Song et al. proposed a CNN model with Transformer 

blocks consisted of modified multi-head self-attention for brain 

MRI registration, producing SOTA registration performance 

[77]. Although analysing brain images from different MRI 

sequences is challenging, the brain is a static organ that is less 

prone to misregistration across modalities. Further work is 

required to expand towards organ areas that are subject to 

periodic (e.g., heart) and non-periodic (e.g., abdomen) motion, 

and to register images from different modalities.   
TABLE IV  

Dataset diversity in terms of patient size and data size for all the articles 

that satisfied our generalisation criteria. NR: not reported.  

IV. DISCUSSION  

A. Current opportunities and challenges 

We studied all the articles from the perspective of 4 

professionals (co-authors GP, ND, CW, GY) with extensive 

experience in deep learning and MI. We identify general 

challenges and opportunities, from the multi-disciplinary 

perspective of developers and end-users of these hybrid models 

in MI. To the best of our knowledge, there is no previous review 

focusing on these topics and given the heterogeneous 

architectures of these models, more extensive studies are 

required in the future to develop data-driven generalization best 

practices for both developers and end-users. The following 

points can therefore guide future work and systematic reviews 

towards solidifying these hybrid models in further, larger and 

multi-centre studies.    

Challenges (with mitigations, where applicable): 1) We 

highlighted studies that have the potential to work as 

generalisation frameworks. However, additional validation is 

required to transfer a method to real-world data for the same 

organ/ imaging modality or from one organ/ imaging modality 

to another, due to data content differences. Hybrid models in 

studies that involved small (N≤ 100, Table IV) or even medium 

size patient (N ≤ 1000) cohorts may have been susceptible to 

within-subject image correlations and must be carefully 

validated in further diversified cohorts. 2) Model architectures 

varied considerably when similar hybrid models were 

compared. For example, in studies for which a UNet with self-
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attention were developed, there were large disparities in terms 

of how these individual components were combined. 3) The 

previous point indicates that a trial-and-error logic is currently 

followed for model development, based on which architecture 

performs optimally for a given dataset. Nevertheless, this is in 

the opposite direction from developing generalised models and 

best practices. It is important for the community to initiate 

discussions about the development of generalisation 

frameworks, based on certain data-driven boundary conditions: 

e.g., UNet-full Transformer for cardiac segmentation would be 

a preferred design if a particular data size, data content (e.g. T1-

weighted MRI) and in-house computational capabilities are 

satisfied. Thus, solid domain generalization strategies to 

methodically address “why” and “how“ to develop model X for 

data Y are required. 4) Developing harmonised implementation 

protocols is particularly challenging. Implementation aspects 

such as data augmentation, optimisers, loss functions and pre-

processing differed substantially even between studies working 

on the same problem (e.g., CT for lung segmentation). 5) It will 

be challenging to develop robust interpretation mechanisms for 

complex local-global pattern recognition models that are not 

solely based on visualization maps. 6) There is an increasing 

trend in terms of developing causal logic in novel deep learning 

models, a field known as “Causal Representation Learning, 

CRL” [164]. The aim of CRL is to address open problems in 

the field such as model generalisation and transfer learning 

[164, 165]. Central to CRL is the discovery of high-level causal 

variables (objects in an image) from low-level observations 

(embeddings) [164]. One of the main challenges that must be 

addressed is how to factorise causal structures from deep 

learning embeddings [164, 165]. CNN-Transf/Attention 

models have an additional level of complexity due to learning 

embeddings from both local and global interactions. Thus, there 

must be a careful consideration regarding how to combine 

CNN-Transf/Attention models with causality and benefit from 

the advances of each other [164].     

Opportunities: 1) Based on performance gains achieved, hybrid 

model studies can give emphasis on studying generalisation 

perspectives and standardisation protocols for multi-centre 

large-scale analyses. 2) Given diagnostic performance 

improvements across diverse studies, there is a potential to 

enhance early diagnosis and preventative medicine. 3) As of 

2022, cardiovascular diseases, cancer, stroke, COVID-19, 

chronic respiratory diseases, diabetes, neurological diseases are 

the leading causes of death in the USA [166]. Most studies 

(>90%) in our review focused on at least 1 of the organ/ 

pathology areas corresponding to these leading causes, showing 

the potential to improve diagnosis and patient outcomes. 4) 

Technical versatility on multi-modal analyses can be achieved 

through CNN-Transf/Attention (images, natural language, 

molecular profiles, clinical history), which can yield useful 

complementary information. 5) By combining CNN and 

attention models to learn local-global information e.g., from 

images and text [39, 52] or images and genetics [53], it is 

possible to enhance precise diagnosis via potentially extracting 

accurate complementary patient-level information from 

different modalities. 6) We strive to inspire and guide 

benchmark studies to extensively evaluate promising hybrid 

methods described in our review. For instance, benchmark 

studies can focus on a specific pathology assessment/ imaging 

modality (e.g., stroke from brain MRI) and methodically 

compare promising hybrid models (as demonstrated in our 

review) and pure CNN counterparts. Particular attention needs 

to be paid to hybrid methods from studies that involved small 

or medium sized cohorts (see Table IV). 7) Focus on integrating 

CNN-Transf/Attention with CRL to enhance model 

generalisability and trustworthiness in the clinical domain. For 

example, it is known that causal generative models (such as 

conditional GANs and diffusion models) can be powerful 

causal inference engines for generating counterfactuals [164, 

165]. Integrating Transf/Attention modules into generative 

models can be useful to better understand how attention 

mechanisms contribute to model (factual) outcomes and 

counterfactual generation. 8) Develop robust transfer learning 

methods to fully explore the benefits of CNN-Transf/Attention 

models on out-of-distribution datasets.    

Importance and drawbacks  

The combination of local and global receptive fields together 

with reasonable computational power requirements highlights 

the development of CNN-Transf/Attention models as an 

important research direction in MIA. The large diversity of 

architectures even under the same downstream tasks or 

applications, means that for some of these methods, limited 

scalability may be one of the main drawbacks [52]. 

Furthermore, full Transformer architectures were limited in our 

reviewed work, mainly due to relatively small data analysed in 

some studies, limited computational power and/ or lack of solid 

transfer learning approaches for pixel-level predictions [52, 55, 

141, 167]. Further work is required in the field of transfer 

learning techniques for model generalisation on out-of-

distribution data, to utilise the benefits of full Transformer-

based hybrids.  

B. Future perspectives of the post-hybrid model era 

Full transformers, ChatGPT and beyond 

The recent developments of ChatGPT large language models 

(LLM) induced a phenomenal disruption in the field of data 

analysis and AI. To date, the latest ChatGPT version is based 

on the GPT-4 (launched on March 2023), reported as the largest 

LLM trained (>170 trillion parameters) [168-170]. The main 

strength of GPT-4 model is that it has been trained on a diverse 

and broad (in terms of topics) set of internet text including 

books, articles and websites, using reinforcement learning from 

human feedback that either rewards or “punishes” the model 

[170]. One of its main capabilities, is that it can perform data 

predictions through conversational tasks (“responses” to user 

“queries”). ChatGPT models perform Transformer-based and 

self-supervised learning-derived predictions [170, 171].  

There have been some first promising approaches involving 

GPT models for MIA, although mainly limited to image-to-text 

mapping [104, 172, 173]. Wang et al. used pre-trained CNN 

models to extract outputs from X-rays of the lung and applied 

report generator GPT models to summarise the results and 

derive a diagnosis in text [172]. Another study by Chen et al. 

used a pre-trained GPT-2 model with a visual encoding part that 

involved attention, to perform accurate image captioning as 

evaluated on natural images and X-ray data [173].  

Although it can be anticipated that GPT models may expand 

towards MIA, as e.g., to enhance image-level predictions based 
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on large-scale radiology reports or clinical notes [52], there are 

several limitations that need to be considered. First, to the best 

of our knowledge, there is no GPT-based MIA yet on dense 

image-level predictions for the MIA tasks we have presented. 

Local receptive fields that are based on CNN feature extractors 

may be necessary to perform detailed image analyses, pointing 

towards the direction of heavier “hybrid models” in the future 

(CNN-GPT). On that note, it is unknown whether existing self-

supervision modules within GPT models may be enough to 

predict complex organ and tissue pathologies from “high-

content” data such as medical images, without the incorporation 

of “computer vision” CNN components. Furthermore, one 

important limitation of GPT models is the so called 

“hallucination effect”, which describes the tendency of GPT 

models to “invent” a term eventually giving “incorrect” 

responses [174]. This can be the case for domains in which GPT 

models have been less or not yet specialized. Due to regulatory, 

ethical and organisational considerations from clinical and 

private MI data owners, we are still at infant stages regarding 

multi-centre large-scale data analyses that need to be available 

as data sources for such open code or multi-centre fine-tuning 

strategies. In addition, the co-existence of available MI and text 

data is commonly low.  

Transfer learning coming from the future 

An important yet unsolved aspect in MIA is the democratisation 

of modelling techniques and data. Transfer learning strategies 

focusing on increasing performance while reducing 

computational power [141], can serve as democratisation 

vehicles. Transfer learning could also potentially aim towards 

improving model generalizability in large-scale multi-centre 

trials (opportunity 1), where data across different centres could 

be used for pre-training/ fine-tuning and external validation. 

However, it is known that in the absence of large publicly 

available (e.g., tomographic data: MRI, CT, PET) databases, 

transfer learning has been limited in MIA, compared to “smaller 

new” models trained de novo. Moreover, most transfer learning 

studies are based on models pre-trained on the large ImageNet 

[141], which may degrade model robustness to distribution 

shifts between natural and medical images [2, 167].  

Among a large amount of studies demonstrating new models, 

we highlighted articles that showed robust pre-training with 

wide fine-tuning on large domain datasets with SOTA 

performance on testing data [52, 55]. In their influential study, 

Liu et al. recently proposed “ConvNext” as a new pure CNN 

technique which involved several ST-inspired adaptations in 

the model design and transfer learning method [141]. Some of 

these ST-inspired adaptations were: same augmentation 

protocol, network width increase, bottleneck model inversion, 

kernel size enlargement, use of fewer activation functions and 

normalisation layers. Using ConvNext, they outperformed ST 

on ImageNet classification tasks while using comparable 

computing resources. Radford et al. adapted Transformer and 

ResNet/ ViT models for jointly pre-training paired text and 

images, respectively [167]. By training on web data of 400 

million image-text pairs, they demonstrate that can learn image 

captions from text which can be used as labels for image 

classification, showcasing a scalable and efficient process to 

learn image representations. Following pre-training, the text 

model can describe new visual concepts allowing zero-shot 

transfer to new tasks and data. Democratising data access 

(especially for tomographic data such as MRI, CT, PET that are 

less widely available) could stimulate further work on large 

hybrid models for single (i.e., MIA) [141] and multi-modal 

(e.g., MIA, radiology reports) [167] analyses respectively, and 

could support future work to improve model design, pre-

training and fine-tuning (both on domain data) techniques.  

Conclusions 

In conclusion, hybrid models led to performance gains while 

demonstrating a big range of generalisation opportunities based 

on either their large-scale, multi-modal, heterogeneous and/ or 

broad span of clinical applications. The main challenge of these 

techniques is to align their large architectural diversity with the 

current technical and clinical needs in precision and 

preventative medicine. Based on the opportunities that we have 

emphasised, we aim to encourage further work on data-driven 

generalisation frameworks, to develop criteria for the future 

design of these powerful hybrid techniques. We also seek to 

inspire further work in the field of transfer learning for 

generalisation on out-of-distribution data so that models and 

data can be further democratised.  

Our review demonstrates the benefits from the co-pollination of 

CNN and Transformer-inspired models which can open new 

horizons to further exploit CNN and full Transformers and 

LLM. Next to these opportunities, our review demonstrated that 

the benefits of CNN-Transf/Attention outweigh the challenges 

and may therefore be “all you need” for future validation and 

standardisation processes in clinical imaging.    
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