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Abstract—Radiology report generation (RRG) has gained in-
creasing research attention because of its huge potential to
mitigate medical resource shortages and aid the process of disease
decision making by radiologists. Recent advancements in RRG
are largely driven by improving a model’s capabilities in encoding
single-modal feature representations, while few studies explicitly
explore the cross-modal alignment between image regions and
words. Radiologists typically focus first on abnormal image
regions before composing the corresponding text descriptions,
thus cross-modal alignment is of great importance to learn a
RRG model which is aware of abnormalities in the image.
Motivated by this, we propose a Class Activation Map guided
Attention Network (CAMANet) which explicitly promotes cross-
modal alignment by employing aggregated class activation maps
to supervise cross-modal attention learning, and simultaneously
enrich the discriminative information. CAMANet contains three
complementary modules: a Visual Discriminative Map Genera-
tion module to generate the importance/contribution of each vi-
sual token; Visual Discriminative Map Assisted Encoder to learn
the discriminative representation and enrich the discriminative
information; and a Visual Textual Attention Consistency module
to ensure the attention consistency between the visual and textual
tokens, to achieve the cross-modal alignment. Experimental
results demonstrate that CAMANet outperforms previous SOTA
methods on two commonly used RRG benchmarks. 1

Index Terms—Radiology report generation, Cross-modal align-
ment, Class activation map

I. INTRODUCTION

Radiology report generation (RRG) aims to automatically
describes radiology images, e.g., X-Ray and MRI, by human-
like language. Generating a coherent report requires expertise
from radiologists, who are however among the most in-demand
medical specialists in most countries. Moreover, it can take at
least 5 minutes to describe a radiology image even for a pro-
fessional radiologist . Consequently, there had been growing
interest in automating RRG because of its huge potential to
efficiently and effectively assist the diagnosis process.

RRG is a challenging task but with the availability of large-
scale datasets and newly developed high-performance com-
puter vision and language models, some valuable insights and
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Finding:
The heart is normal in size. The
mediastinal and hilar contours appear
within normal limits. Each hilum is
mildly prominent, probably suggesting
mild prominence of central pulmonary
vessels, but there is no frank congestive
heart failure. No focal opacification is
seen aside from streaky left lower lung
opacity suggesting minor atelectasis.
There is no pleural effusion or
pneumothorax.

Fig. 1. A Chest XRay image with its report findings. By way of example,
manually aligned visual-textual features are marked in the same color.
improvements have been recently reported [1]–[4]. The perfor-
mance however is still far from satisfactory for methods to be
deployed in clinical practice. This is because, different from
the traditional image captioning task which mostly requires
generating one or two sentences, RRG demands 2-4 times
more text to adequately describe the findings in an image.
Also, radiology reports tend to contain sentences with more
sophisticated semantic relationships with their corresponding
image regions, calling for a need for more precise cross-modal
alignment, i.e., alignment between words and image regions.
An example is shown in Figure 1 where the cross-modal
alignments are marked in the same color. The problem is ex-
acerbated as there exist data biases in commonly used datasets
with significantly fewer radiology reports from X-ray images
containing abnormal regions, making it hard for the RRG
models to efficiently capture abnormal features. Also, such
abnormal regions often make up only a small proportion of
pathological images. Furthermore, even in pathological cases,
most report sentences may be associated with a description of
normal findings, as shown in Figure 1.

Previous approaches [1], [2], [5] often focus on improving
the visual representation capability or better learning the
semantic patterns by utilizing a learnable memory. Few studies
explicitly explore representation learning with information
about image abnormality detection and cross-modal alignment.
To bridge this gap, we propose a Class Activation Map guided
Attention Network (CAMANet) which distills the discrimi-
native information into the encoder and explicitly improves
cross-modal alignment by leveraging class activation maps [6].
This work makes four principal contributions:

1) We propose a novel end-to-end class activation map
guided attention model where the class-activation map
(CAM) is utilized to explicitly promote cross-modal
alignment and discriminative representation learning. To
the best of our knowledge, CAMANet is the first work
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to leverage CAMs in this way.
2) A Visual Discriminative Map (VDM) Generation mod-

ule to derive the visual discriminative map from the
CAMs based on the pseudo labels from an automatic
labeler.

3) We present a VDM Assisted Encoder which enriches the
discriminative information by utilizing a self-attention
mechanism and the VDM.

4) We design a visual-textual attention consistency module
which considers the VDM as the ground truth to super-
vise the cross-modal attention learning in the decoder,
promoting cross-modal alignment.

Experimental results demonstrate that CAMANet outper-
forms the previous state-of-the-art (SOTA) methods on two
widely-used benchmarks. Discussion and proposals are given
to inspire future work.

II. RELATED WORK

A. Image Captioning

Image captioning, aiming to describe an image with human-
like sentences, is considered as a high-level visual under-
standing problem taking advantage of both the techniques
of computer vision and natural language processing. Because
of the great success in machine translation and language
generation, recent SOTA approaches [7]–[11] also follow an
encoder-decoder architecture and have demonstrated a great
improvement in some traditional image captioning bench-
marks. In particular, the most successful models [8], [9], [12],
[13] usually adopt the Transformer [14] as their backbone due
to its self-attention mechanism and impressive capability of
modelling long-range dependency. However, these methods are
tailored for traditional scene images and not suitable for the
radiology images with long sentence report and fine-grained,
abnormal regions. Although several works [15], [16] have been
developed to tackle long text generation, they often fail to
capture specific medical observations and tend to generate
normal descriptions, resulting in unsatisfactory performance.

B. Radiology Report Generation

Following on from the success in image captioning, recent
SOTA RRG studies all adopt similar architectures: an encoder-
decoder to generate the report combined with a visual feature
extractor. For example, Jing et al. [17] proposed a hierarchi-
cal LSTM model to mitigate the long sentence generation
problem and developed a co-attention mechanism to localize
abnormal regions. Other works have utilized disease topic
information [4], [5] and obtain better results. Liu et al. [18]
extended these works by taking advantage of both the prior and
posterior knowledge, i.e., knowledge from the similar images
and a predefined topic bag. Chen et al. [1] designed a relational
memory and a memory-driven conditional layer normalization
to better learn the report patterns.

The aforementioned studies often neglect the importance
of cross-modal alignment and discriminative (disease-related)
representation learning. As the only work we know exploring
the cross-modal alignment in RRG, R2GenCMN [2], designed

a shared memory matrix, expected to be able to implicitly learn
the cross-modal alignment. However, learning the cross-modal
alignment in this way proves difficult since the model is only
trained under a cross entropy loss for report generation without
any other forms of supervision/guidance for the cross-modal
alignment learning. To address these problems, we propose a
visual-textual attention consistency module to explicitly force
the visual and textual modalities to focus on the same image
regions. In addition, we develop a VDM-assisted encoder to
enrich the discriminative information.

There are a few works [19], [20] exploring the image-word
matching in scene images, which are similar to the cross modal
alignment. However, these methods normally require a well
pre-trained fully-supervised detector, e.g Faster RCNN [21]
trained on ground truth labels to detect the object proposals
offline. In addition, they exploit bounding-box annotations
and utilize them to form the mapping during supervision.
Unfortunately, because they are time-consuming and costly to
obtain, there is no large dataset for the RRG with such valuable
ground truth labels to train an accurate detector and form
the extra supervision. As a result, object detection methods
become unsuitable for RRG, and instead we seek to integrate
and train the visual extractor in the entire architecture. Another
significant difference between our work and [19] is that the
supervision of [19] is applied on each word-region pair thus
making it difficult to learn, while our method improves the
cross-modal alignment by ensuring the consistency between
the block-level, derived visual and textual discriminative maps.

C. Class Activation Maps

First proposed by Zhou et al. [6], a class activation map
(CAM) was widely used for weakly supervised object de-
tection (WSOD) aiming to localize objects with only image-
level annotations. Bae et al. [22] improved the vanilla CAM
method in WSOD by dealing with negatively weighted actions
and instability in the thresholding process. Jiang et al. [23]
observed that previous CAM methods were inclined to locate
coarse-grained objects due to the low spatial resolution in the
final convolution layer and proposed a LayerCAM to collect
object information from coarse to fine levels. Xie et al. [24]
argued that previous works in WSOD generated a CAM based
on high-level features but a CAM from low-level features was
important also to include richer contextual object information.
Generally, the CAM technique is used mainly to localize the
class-specific image regions which are then utilized to obtain
the bounding boxes in WSOD .

CAMs can identify the discriminative regions in an image
by employing a global average pooling layer (GAP). Conse-
quently, this technique is widely adopted in some weakly su-
pervised semantic segmentation (WSSS) methods to generate
pseudo-labels and provides performance gains. For instance,
Sun et al [25] proposed a ECS-Net which regards the derived
CAM as the segmentation supervision to drive the model to
learn a robust representation. Chen et al. [26] pointed out
the inconsistency between the pseudo masks generated by the
CAM and the binary-cross-entropy loss in WSSS and designed
the ReCAM module to cope with this problem. Ru et al. [27]
combined the studies of CAMs and Transformers to refine the
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Fig. 2. The architecture of CAMANet: An image is fed into the Visual Extractor to obtain patch features which are then utilized to generate the VDM via
the VDM Generation module. The proposed VDMAE leverages the VDM to derive a discriminative representation and enrich the discriminative information.
Combined with word embedding, visual tokens are sent to the transformer to produce the report. After that, the VTAC module generates a TDM from the
cross-modal attention scores and considers the VDM as the ground truth to supervise the cross-modal alignment learning.

initial pseudo-labels generated by a CAM via an affinity from
an attention module, showing promising results in WSSS.

Different from these works, here we use a CAM to enhance
the discriminative representation capability and the cross-
modal alignment. Specifically, we utilize the CAM technique
to derive a visual discriminative map focusing on the discrim-
inative (important or abnormal) regions which is then used
to enrich the discriminative information in the encoder. This
acts as the ground truth to supervise the cross-modal attention
learning. To the best of our knowledge, we have not seen
CAMs being leveraged in this way for the RRG task.

D. Pretrained Language and Vision-Language Models in RRG

Recently, several large language models (LLMs) [28]–
[30] have been proposed for the radiology domain. However,
they are single-modal (language) models, e.g., Radiology-GPT
[28], focusing on text-to-text or text-to-choice tasks, e.g, from
radiology findings to radiology impressions and do not support
images as input, while RRG aims to generate the findings from
an image and is a cross-modal task, with no text available
during the inference. Therefore, these LLMs cannot normally
be applied directly to RRG.

Although not directly applicable, to still take advantage
of the power of pre-trained language models (PLMs), the
recent work PromptRRG [31] leverages PLMs as a separate
text encoder with prompt learning to distill prior knowl-
edge into the model for RRG. Pre-trained vision-language
models (PVLMs) demonstrate improved performance when
applied to the downstream tasks, e.g., image classification and
visual-question answering, in the natural scene domain. There
are several attempts [32], [33] exploring the performance
of PVLMs in RRG. However, although they leverage extra
datasets and utilize both the findings and impressions sections
of reports, these methods have shown unpromising results in
RRG possibly since the simple pre-training scheme cannot
cope with the intrinsic problems in RRG, aforementioned,
and inadequate pretraining on paired medical data for a cross-
modal task such as RRG.

III. METHOD

Before detailing our method, in Section III-A we provide
some background of RRG including problem formulation and
general architecture. In Section III-B, we elaborate each pro-
posed component of CAMANet. The final objective function
is described in Section III-C. An overview of the CAMANet
architecture is illustrated in Figure 2. Generally, an image is
first fed into the visual feature extractor to obtain a sequence
of visual tokens. Then, the proposed visual discriminative map
(VDM) generation module takes these visual tokens as input
to derive the visual discriminative map focusing on possi-
ble abnormal regions. This VDM, combined with the visual
tokens, are then sent to the VDM assisted encoder module
to enrich the abnormal information and then generate the
report in the decoder. The VTAC module generates a textual
discriminative map (TDM) from the cross-modal attention
scores and considers the VDM as the ground truth to supervise
cross-modal alignment learning.

A. Background

Given a radiology image I , the purpose of RRG is to gener-
ate coherent findings (report) R from I . Recent SOTA meth-
ods often adopt an encoder-decoder framework to generate the
report. In particular, a visual extractor, e.g. DenseNet121 [34],
is first employed to extract visual features V i ∈ RH×W×C

that are then flattened to a sequence of visual tokens V s ∈
RHW×C . H , W , C are the height, width and the number of
channels respectively. This process is formulated as:

{vs1, vs2, ..., vsk, ..., vsNs−1, v
s
Ns} = fvfe(I), (1)

where vsk denotes the patch feature in the kth position in V s,
and Ns = H ×W . fvfe is the visual feature extractor.

These visual tokens are then fed into the transformer based
encoder-decoder to generate a report R. Specifically, at time
step T , the encoder maps the visual tokens into an intermediate
representations li ∈ R1×D. An embedding layer is applied
to obtain the word embedding lr ∈ R1×D of each word w
in the report R. D is the number of dimensions of hidden
states. After this, the decoder takes these two sequence features
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as source inputs and predicts the current output (word). In
general, we express the encoding and decoding processes as:

{li1, li2, ..., liNs} = fen(v
s
1, v

s
2, ..., v

s
Ns), (2)

{lr1, lr2, ..., lrT−1} = fem(w1, w2, ..., wT−1), (3)

pT = fde(l
i
1, l

i
2, ..., l

i
Ns ; lr1, l

r
2, ..., l

r
T−1), (4)

Where the fen, fem and fde denotes the encoder, embedding
layer and the decoder respectively. wi and pT are the ith word
in the report and the word prediction at time step T .

The encoder and decoder both consist of several transformer
layers where a cross-attention is further added after the self-
attention in each decoder layer to enable cross-modal fusion.

B. CAMANet

Learning the cross-modal alignment and discriminative rep-
resentation is challenging but essential for RRG. To achieve
this, CAMANet uses a Visual Discriminative Map Assisted
Encoder and a Visual-Textual Attention Consistency module
which take advantage of the CAM technique.

1) Visual Discriminative Map Generation: The first step is
to generate a visual discriminative map indicating the discrim-
inative regions in an image. This map is then used in the VDM
Assisted Encoder (VDMAE) and the Visual-Textual Attention
Consistency (VTAC) modules to enable the discriminative
representation learning and cross-modal alignment.

We propose a way to leverage the class activation map
(CAM) technique to localize discriminative regions. CAM
requires the image category labels to form a classification
task, so as to obtain the patch contributions (importance) to
each category. The category labels are often unavailable for
RRG datasets because of the time and expense required to
create them. To overcome this problem in CAMANet, we
utilize CheXpert [35], an automatic labeller, to generate a
pseudo label y for each image. We can form a multi-label
classification task given that y is a multi-hot vector encoding
the presence of 14 common observations in Chest X-ray
images from the automatic labeller. As shown in the upper
lef red box in Figure 2, a classification head is added, taking
the extracted visual tokens from the visual extractor as input,
to predict the presence ỹi ∈ 0, 1 for ith disease formulated as:

vg =
1

Ns

Ns∑
j=1

vsj , (5)

{ỹ1, ỹ2, ..., ỹNc} = Φ(Softmax(Wc · vg)), (6)

Φ(o) =

{
0 if o ≤ 0.5,

1 if o > 0.5,
(7)

where vg and Wc are the global visual feature and weights of
the classification head. N c is the number of disease categories.

After the forward process of the visual extractor, we can
obtain the class activation map mi = {mi

1,m
i
2, ...,m

i
Ns} for

ith category with ỹi = 1. Remember that the classification is
for the multi-label scenario, hence each sample may show the
presence of multiple observations. To this end, we aggregate
the class activation maps for all the categories present and
generate a visual discriminative map dv to target important

regions. In particular, we first use the ReLU activation function
to zero out negative contributions. Min-max normalization
is then applied to each class activation map. Equation 8
formulates this process on the class activation map of ith

category mi:

m̃i
j =

σ(mi
j)−min(σ(mi))

σ(max(mi))− σ(min(mi))
, (8)

where m̃i
j is the normalized contribution of jth patch for ith

category and σ denotes the ReLu activation function. Then,
the final visual discriminative map dv ∈ R1×Ns

is obtained
via maximum pooling over all the class activation maps:

dv = MaxPool({mk| ỹk = 1}). (9)

Note that we chose the class activation map techniques
to generate the visual discriminative map due to their high
efficiency, and any weakly supervised techniques producing
patch-level scores could be applied here.

2) VDM Assisted Encoder: Since the dataset is dominated
by normal samples, e.g., normal images and descriptions,
the RRG model struggles to capture abnormal information
and describe abnormal regions. To mitigate this problem, we
propose a visual discriminative map (VDM) assisted encoder,
the VDMAE, to enrich the discriminative information. This is
achieved by learning a discriminative representation in terms
of the VDM dv , which is distilled into the encoder. We show
this procedure by the green rectangle in Figure 2. Specifically,
the discriminative representation r

′ ∈ R1×C is obtained by
matrix multiplication between the visual discriminative map
dv ∈ R1×Ns

and the image patch features followed by a
normalization layer to stabilize the distribution,

r = dvV s, (10)

r
′
= LayerNorm(r). (11)

where V s ∈ RNs×C is the extracted visual token sequence
obtained by Equation 1.

After obtaining the discriminative representation, we add it
as an extra input token to the encoder and leverage the power
of an attention mechanism to gradually incorporate the VDM
features for representation learning. Then Equation 2 becomes:

{r⋆, li1, ..., liNs} = fen(r
′
, vs1, ..., v

s
Ns), (12)

where r⋆ denotes the encoded discriminative representation.
Through the self-attention mechanism in the encoder, other
visual tokens can fully interact with this to learn the useful
discriminative information.

3) Visual-Textual Attention Consistency: Human experts
demonstrate excellent consistency when generating the report,
i.e., they pay attention to important regions first and are able
to accurately describe what they see. To exploit such char-
acteristics, we design a Visual-Textual Attention Consistency
(VTAC) module to explicitly learn the cross-modal alignment
using the visual discriminative map dv as the ground truth to
supervise the cross-modal attention learning in the decoder, as
demonstrated in the upper right blue rectangular in Figure 2.
When generating a finding, like human behaviour, we expect
that the decoder model should attend to the same regions as
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Fig. 3. An illustration of the visual-textual attention consistency. The decoder
model is expected to pay attention to the same regions as the vision model
to achieve consistency.

the visual classifier which is trained to focus on the important
regions described in the previous sections. Figure 3 shows
an illustration of this visual-textual attention consistency. In
this example, the VDMAE module will produce an attention
map focusing on the relevant regions for a sample presenting
“Consolidation”, and the decoder model is expected to pay
attention to the same regions as the vision side in the cross-
modal attention when generating the next word “consolida-
tion” given the previous words and visual tokens.

Nonetheless, each word in the report has its own attention
to the image in the cross-modal attention. This raises a
question of how to utilize a single visual discriminative map
to supervise multiple attentions from different words. To deal
with this problem, we also form a textual discriminative map
dt by aggregating the attentions from important words. These
important words are selected based on the similarities between
their word embeddings and encoded visual discriminative
representation r⋆ which contains rich visual discriminative
information. In detail, we first compute the cosine similarities
between the embedding of each word and the visual discrim-
inative representation via:

sj =
lrj · r⋆

|lrj ||r⋆|
, (13)

where sj denotes the similarity between jth word and the
discriminative representative and · is the dot product operation.

We expect the embeddings of important words to have
higher similarity to the visual discriminative representation
in the latent space. Therefore, the top k% words with the
higher similarities are selected to generate a textual discrimi-
native map. Specifically, taking the visual tokens and textual
tokens representations from the last layer, the cross-modal
attention layer in the last decoder outputs the attention scores
A⋆ ∈ RNr×Ns

between each visual-textual-token pairs. Nr

denotes the number of words in the report. After selecting
top k% important words through Equation 13, we can now

form the cross-modal attention score matrix of the important
words A = {a1,a2, ...,aγ} from the whole cross-modal
attention scores A⋆, where ai ∈ R1×Ns

denotes the attention
scores (similarities) between ith selected important word and
each visual tokens (image regions). Then, the generation
of the textual discriminative map dt ∈ R1×Ns

is derived
via Equation 14 and Equation 15, which is similar to the
generation of the visual discriminative map,

ãij =
σ(aij)−min(σ(ai))

σ(max(ai))− σ(min(ai))
(14)

dt =MaxPool([ã1, ã2, ..., ãγ ]), (15)

where ãij is the normalized attention score of ith word for
jth image region. γ = ⌈k%×Nr⌉ is the number of selected
words to generate the textual discriminative map.

However, since Equation 15 ignores the relative importance
of the selected words, we use the calculated similarity to gen-
erate the weights of each word via wj = σ(sj). By considering
the relative importance, Equation 15 then becomes:

dt = MaxPool([w1ã1, w2ã2, ..., wγãγ ]). (16)

After obtaining the textual discriminative map, dt ∈ R1×Ns

,
the visual-textual attention consistency is achieved by making
dt to be close to the visual discriminative map dv through a
Mean Squared Error (MSE) loss:

Lmse =
1

Ns

Ns∑
j=1

||dt
j − dv

j ||, (17)

Note that we detach the encoded visual discriminative
representation r⋆ in the decoder. The reason is that adding
it as an extra visual token into the decoder will result in
a size difference between the visual discriminative map and
textual discriminative map (Ns vs Ns+1), since there are no
discriminative tokens available before generating the VDM. As
mentioned in the Introduction, commonly used datasets suffer
from severe data biases. The VTAC module therefore aims to
explicitly promote the cross-modal alignments by ensuring the
language model focusing on the same discriminative visual
regions as the vision backbone. The vision and language
backbone are complementary eventually achieving consistency
to pay greater attention to the same discriminative regions,
instead of only relying on cross-modal attention in the de-
coder in the base model which exhibit almost no cross-modal
alignment (we show this in the next section). By enforcing the
model to focus more on the discriminative regions, the model
can better capture the abnormal features and descriptions, so as
to alleviate the data bias. Additionally, to explicitly improve
the cross-modal alignment in the VTAC module, the model
is required to learn how to select the important words whose
cross-modal attention scores will be aggregated to generate the
textual discriminative map. This encourages the model gain
a better understanding of the global context, e.g., sentence
discourse relations, of a report.

C. Objective Function

Given the entire predicted word token sequence {pi} as
the generated report and the associated ground truth report
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{wi}, CAMANet is jointly optimized with the cross-entropy
loss Lce, the binary cross entropy loss Lbce for the multi-label
classification in visual discriminative map generation and the
mean square error loss Lmse in the VTAC module:

Lce = − 1

Nr

Nr∑
i=1

wi · log(pi), (18)

L = Lce + λLbce + δLmse. (19)

Here λ an δ are two hyper-parameters which balance the loss
contributions.

IV. EXPERIMENTS

A. Datasets

We validate the effectiveness of CAMANet on two com-
monly used RRG datasets, i.e., IU-Xray and MIMIC-CXR.
IU-Xraycontains 7,470 X-ray images and 3,955 corresponding
reports. The majority of patients provided both the frontal and
lateral radiology images. MIMIC-CXR is a large chest X-ray
dataset with 473,057 X-ray images and 206,563 reports Both
of these two datasets are publicly available. We follow the
same data splits as [1], [2], to divide the IU-Xray dataset into
train (70%), validation (10%) and test (20%) sets and remove
samples without both view of images. The official data split
is adopted for the MIMIC-CXR dataset.

B. Evaluation Metrics

Four widely used text generation evaluation metrics:
BLEU{1-4} [36], Rouge-L [37], METEOR [38] and
CIDEr [39] are employed to gauge the model performance.
BLEU score is assessed based on n-gram precision. It cal-
culates the overlap of n-grams between the generated and
reference texts with a brevity penalty to prevent very short
generated sentences. Rouge-L uses the longest common subse-
quence (LCS) between the generated and reference texts to cal-
culate a score. METEOR takes the synonyms and stemming
into the consideration when calculating the score and combines
precision and recall into a single metric, giving more weight
to recall. CIDEr is a consensus-based scorer. It calculates the
term frequency-inverse document frequency (TF-IDF) for n-
grams in the generated and ground truth captions to capture
the consensus and penalizes common n-grams that are not
informative. To measure the model capability of capturing the
abnormalities, we follow previous works to report the clinical
efficacy metric where CheXbert [40] (a recent SOTA automatic
labeler supporting the GPU acceleration) is applied to labeling
the generated reports and the results are compared with ground
truths in 14 different categories related to thoracic diseases and
support devices. We use the micro-average precision, recall
and F1 score to model the model performance for the clinical
efficacy.

C. Implementation Details

Following the same setting of previous work [1], [2],
[41], we utilize both images of a patient on IU-XRay by
concatenating the visual tokens, and one view for MIMIC-
CXR. Images are firstly resized to (256, 256) and then cropped

to (224, 224) (random crop in training and center crop in
inference). During the training, we randomly apply one of
the operation from {rotation, scaling} to further augment
the datasets. We employ the DenseNet121 [34] pre-trained
on ImageNet [46] as our visual extractor and a randomly
initialized memory driven Transformer [1] as the backbone for
the encoder-decoder module with 3 layers, 8 attention heads
and 512 dimensions for the hidden states. The visual extractor
produces 7× 7 visual tokens, thus Ns = 49.

The Adam [47] is used to optimize CAMANet. The learning
rates are set to 1e − 3 and 2e − 3 for the visual extractor
and encoder-decoder on IU-Xray, while MIMIC-CXR has a
smaller learning rate with 5e − 5 and 1e − 4 respectively. λ
and δ in Equation 18 are set to 1 and 0.15 on IU-Xray, and 1
and 0.5 on MIMIC-CXR. The proportion of important words
k in Equation 16 is 0.25 and 0.3 on IU-Xray and MIMIC-
CXR. Note that the optimal hyper-parameters are determined
by evaluating the models on the validation sets.

The same as the most promising studies [1], [2], [41], [43],
reported, we adopt Beam Search as the sampling method when
generating the reports in the validation and test sets. The
beam size is set to 3 to balance effectiveness and efficiency.
We implement our model via the PyTorch [48] deep learning
framework on Nvidia RTX6000 GPU cards.

D. Comparisons to SOTA methods

We compare CAMANet to previous studies, including the
models widely used in conventional image captioning [7],
[10], [11], and those proposed for a medical domain [17],
[41]. We also compare our method with recent SOTA methods
designed for RRG [1]–[3], [5], [42]–[45]. They are selected
because they share the most similar experimental settings
with CAMANet, e.g., the dataset split and the size of the
beam search. CMAS-RL takes a two-stage strategy with
a cooperative multi-agent system to implicitly capture the
abnormalities. CMCL proposed a competence-based multi-
modal curriculum learning schema to train the model from
easy samples to difficult ones. SentSAT + KG pre-defined a
knowledge graph to distill the prior konwledge into the model.
KERP decomposed the RRG into explicit medical abnormal-
ity graph learning and subsequent natural language modeling.
R2Gen designed a relational memory to record key textual
information of the generation process. R2GenCMN utilizes
a cross-modal memory matrix to record cross-modal patterns
to enhance the encoder-decoder framework. XPRONet used a
prototype-based cross-modal memory matrix and a multi-label
contrastive loss to improve the cross-modal memory matrix
learning.

As Table III demonstrates, our proposed method achieves
the best performance on all the evaluation metrics MIMIC-
CXR datasets except for the RG-L metric on which CAMANet
scores slightly lower (-0.2%) than CMCL. Nevertheless,
CAMANet surpasses CMCL on all the remaining six evalu-
ation metrics by a notable margin, indicating that CAMANet
can generate more semantic reports rather than bias to one
indicator such as precision or recall. Similar pattern can be
seen on IU-Xray dataset where CAMANet obtains the best
scores in four of the seven evaluation metrics and is slightly
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TABLE I
COMPARATIVE RESULTS OF CAMANET WITH PREVIOUS STUDIES. THE BEST VALUES ARE HIGHLIGHTED IN BOLD AND THE SECOND BEST ARE

UNDERLINED. BL AND RG, MTOR AND CIDR ARE THE ABBREVIATIONS OF BLEU, ROUGE, METEOR AND CIDER RESPECTIVELY.

Dataset Method BL-1 BL-2 BL-3 BL-4 RG-L MTOR CIDR

IU-Xray

ADAATT [11] 0.220 0.127 0.089 0.068 0.308 - 0.295
ATT2IN [10] 0.224 0.129 0.089 0.068 0.308 - 0.220
SentSAT +KG [5] 0.441 0.291 0.203 0.147 0.304 - 0.304
HRGR [41] 0.438 0.298 0.208 0.151 0.322 - 0.343
CoAT [17] 0.455 0.288 0.205 0.154 0.369 - 0.277
CMAS −RL [42] 0.464 0.301 0.210 0.154 0.362 - 0.275
R2Gen [1] 0.470 0.304 0.219 0.165 0.371 0.187 -
KERP [43] 0.482 0.325 0.226 0.162 0.339 - 0.280
CMCL [44] 0.473 0.305 0.217 0.162 0.378 0.186 -
R2GenCMN∗ [2] 0.475 0.309 0.222 0.170 0.375 0.191 -
XPRONet [3] 0.525 0.357 0.262 0.199 0.411 0.220 0.359
CAMANet(Ours) 0.504 0.363 0.279 0.218 0.404 0.203 0.418

MIMIC

RATCHET [45] 0.232 - - - 0.240 0.101 -

-CXR

ST [14] 0.299 0.184 0.121 0.084 0.263 0.124 -
ADAATT [11] 0.299 0.185 0.124 0.088 0.266 0.118 -
ATT2IN [10] 0.325 0.203 0.136 0.096 0.276 0.134 -
TopDown [7] 0.317 0.195 0.130 0.092 0.267 0.128 -
CMCL [42] 0.344 0.217 0.140 0.097 0.281 0.133 -
R2Gen [1] 0.353 0.218 0.145 0.103 0.277 0.142 0.146
R2GenCMN [2] 0.353 0.218 0.148 0.106 0.278 0.142 -
XPRONet [3] 0.344 0.215 0.146 0.105 0.279 0.138 0.154
CAMANet(Ours) 0.374 0.230 0.155 0.112 0.279 0.145 0.161

inferior to XPRONet on the remaining three metrics. Nonethe-
less, CAMANet surpasses the XPRONet on all the evaluation
metrics on the MIMIC-CXR dataset. The possible reason is
that XPRONet learns and records the cross-modal prototypes
during the training, improving the modelling of informative
cross-modal features. Nonetheless, learning the cross-modal
prototypes is easier in the small dataset IU-Xray, but is of great
difficulty in large dataset such as MIMIC-CXR which is almost
115 times the size of IU-Xray. This further demonstrates that
CAMANet possess better generalization capability.

Moreover, CAMANet outperforms the previous SOTA ap-
proaches by a notable margin. For instance, CAMANet sur-
passes the second-best BLEU-4 and CIDEr scores by 1.9%
and 5.9% respectively on the IU-Xray dataset. Similarly, a
2.1% and 0.6% improvements can be seen on BLEU-1 and
BLEU-4 scores of CAMANet compared to the second-best
performing method on MIMIC-CXR. Note that the MIMIC-
CXR dataset is much larger and challenging and making even
a small improvement proves difficult.

We mainly attribute the superiority of CAMANet to the
improved cross-modal alignment achieved by the VTAC mod-
ule, and the enriched disease-related feature representations
by the proposed VDM assisted encoder. Further visualizations
are provided in Section IV-I. The following ablation studies
confirm the effectiveness of each component in CAMANet.
Use of Pseudo Labels CAMANet utilizes the pseudo labels
to generate the CAMs. Note that the visual extractor of
CAMANET is IMAGENET pre-trained. Methods SentSAT+
KG [5] and RATCHET [45] utilize pseudo labels to pre-
train the visual extractor; HRGR adopts two auxiliary datasets
with ground truth labels to pre-train the visual extractor;
whereas KERP utilizes some manually labelled data and
templates; CMCL [44] uses the pseudo labels to fine-tune
their visual extractor and determines the visual difficulty;
XPRONet [3] utilizes the pseudo labels to form a cross-modal

prototype-driven network. CAMANet still outperforms these
methods. Furthermore, the pseudo-labels we used are provided
with the MIMIC-CXR dataset.

E. Clinical Efficacy

To verify that our model can better capture the abnor-
mal information, we further compare the clinical efficacy
of CAMANet with recent SOTA RRG methods. Note that
clinical efficacy metrics only apply to MIMIC-CXR because
the labeling schema of CheXbert is designed for MIMIC-
CXR. As can be seen, CAMANet outperforms the previous
methods by a large margin on the precision and obtains
the best result on the F1-score. In addition, CAMANet is
also the second best-performing method by recall where the
score is slight lower (-0.02) than the R2GenCMN. Note that
R2GenCMN utilizes a large cross-modal trainable memory
matrix (2048×512) which is expanded to each sample during
the training to record the cross-modal patterns, significantly
increasing the GPU memory requirement. Nonetheless, CA-
MANet still shows obviously better results on precision and
F1-score with slight increase for the training cost.

TABLE II
CLINICAL EFFICACY COMPARISONS ON MIMIC-CXR. ⋆ MEANS THAT

RESULTS ARE OBTAINED BY USING THEIR PROVIDED TRAINED MODELS
AND RELEASED OFFICIAL CODE TO GENERATE THE REPORTS.

Methods Precision Recall F1-Score

R2Gen⋆ 0.406 0.213 0.280
R2GenCMN⋆ 0.440 0.325 0.374
XPRONet⋆ 0.463 0.285 0.353
CAMANet 0.483 0.323 0.387

F. Comparisons to PLMs and PVLM

We further compare our models with one recent approach
[31] leveraging PLMs with prompt learning, and four recent
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TABLE III
COMPARATIVE RESULTS OF CAMANET WITH SOME RECENT STUDIES

LEVERAGING THE PLMS AND FOUR PVLMS ON MIMIC-CXR DATASET.

Methods BL1 BL4 RG-L MTOR CIDEr

PromptRRG [31] 0.348 0.113 0.263 0.145 0.286
MedV iLL [32] - 0.066 - - -
V iLMedic [33] - 0.082 0.225 - -
METER [49] 0.308 0.088 0.232 0.122 0.179
FIBER [50] 0.307 0.093 0.240 0.123 0.128
CAMANet 0.374 0.112 0.279 0.145 0.161

PVLMs including two in medical/radiology domain [32],
[33] and two in traditional scene domain [49], [50]. As
can be seen in Table 2, CAMANet achieves competitive
results to PromptRRG where CAMANet obtains better or
same scores on three out of five evaluation metrics. Note that
PromptRRG replaces the embedding layer with PLMs and
leverages prompt learning to distill the prior knowledge into
the entire model. Although demonstrating improvements in
image retrieval and visual-question answering, the pre-trained
vision-language models listed fails to show promising results
in RRG possibly since the simple pre-training scheme cannot
cope with the intrinsic problems in RRG aforementioned and
inadequate pre-training paired strong annotation medical data
for a cross-modal task such as RRG. Another reason is that
the commonly used pre-training objectives, e.g., image-text
matching, could be more difficult to take effect in RRG (see
analysis of CLIP in ablation study).

G. Ablation Studies

Here, we firstly explore the influence of each component
in CAMANet including the VDMAE and VTAC module. The
following models are used to conduct the ablation studies:
noitemsep,nolistsep

• Base: The base model consists only of the visual extractor
and the base encoder-decoder without other extensions.

• Base+VDMAE: The standard encoder in the base model
is replicated with our proposed VDM assisted encoder by
adding the VDM Generation and VDMAE module.

• Base+VDMAE+VTAC: This is the full CAMANet con-
taining all our proposed components.

We present the main ablation study results in Table IV. A
remarkable improvement can be seen by adding the VD-
MAE module, e.g., CIDEr scores increase from 0.336 to
0.415, and 0.144 to 0.162 on IU-Xray and MIMIC-CXR
benchmarks respectively. Our method gains the most signif-
icant improvements when further integrating with the VTAC
module. In particular, the full model obtains an average of
22.8% improvement over all the evaluation metrics on IU-
Xray, and 10.5% on MIMIC-CXR. The improvements on
MIMIC-CXR are less obvious than IU-Xray since it is harder
to learn a robust discriminative representation and cross-modal
alignments in such a large dataset (50 times larger than IU-
Xray). Section IV-I presents some qualitative results to further
illustrate the model’s effectiveness.

To further demonstrate the effectiveness of our VTAC
module, we compare it with a recent, widely-used image-text
alignment technique CLIP [51] on the MIMIC-CXR dataset.
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Fig. 4. Effect of varying k on MIMIC-CXR. (BLEU-4 score).

Note that CLIP focuses on the image-text alignment while CA-
MANet is designed for a more fine-grained level, i.e., region-
word alignments. Specifically, we adapt the CLIP technique to
our base model by taking the averaged visual tokens and the
averaged textual tokens from the last decoder layer to form
an image-text matching task. We verify two set of CLIP loss
weights, i.e., 0.1 and 0.25 and demonstrate the comparison
in the last two rows in Table IV. As can be seen, adding the
CLIP loss significantly harms the performance compared with
its base model (Base+VDMAE) and reducing the contribution
of the CLIP loss reduces the negative influence. The reason
could be that images from different patients could have the
same or almost the same reports especially for the normal
cases in RRG. Furthermore, even in pathological cases, most
report sentences may be associated with a description of
normal findings. Therefore, image-text level alignment is more
difficult to take effect in RRG and may confuse the model
given normally unsatisfactory visual feature extractors in RRG.
Nonetheless, our proposed VTAC module focuses on region-
word alignments with each report, hence suffering less from
this problem and demonstrating improved performance.

H. Sensitivity of the Proportion of Selected Words

To investigate the sensitivity of the hyper-parameter k, we
vary the proportion of the selected important word tokens
from 0.15 to 0.35. As illustrated in Figure 4 and Figure 5,
CAMANet is not overly sensitive to this proportion. However,
it is still important to strike a balance when setting the value
of k as a small k may not encompass all the important
words, while too large a value may introduce irrelevant words.
For example, a performance drop can be seen on the IU-
Xray dataset when k increases from 15 to 20. This might
be caused by the introduction of unimportant (noisy) words
such as “there” and “are”. Further increasing k to 25 brings a
notable improvement, demonstrating that the newly introduced
words bring more benefits and offset any negative influence
from previously noisy words. The fluctuation on IU-Xray is
relatively greater than MIMIC-CXR, which is expected since
IU-Xray is significantly smaller and the reports contain larger
word variance compared to MIMIC-CXR.

I. Qualitative Results

To further verify the proposed method, we provide an exam-
ple in Figure 6 which shows the reports generated by different
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TABLE IV
THE EXPERIMENTAL RESULTS OF ABLATION STUDIES ON THE IU-XRAY AND MIMIC-CXR DATASETS.

IU-Xray BL-1 BL-2 BL-3 BL-4 RG-L MTOR CIDR AVG.∆

Base 0.451 0.289 0.209 0.159 0.365 0.175 0.336 -
+VDMAE 0.473 0.321 0.238 0.177 0.402 0.189 0.415 11.8%
+VDMAE+VTAC 0.504 0.363 0.279 0.218 0.407 0.203 0.418 22.8%
MIMIC-CXR BL-1 BL-2 BL-3 BL-4 RG-L MTOR CIDR AVG.∆

Base 0.324 0.203 0.138 0.100 0.276 0.135 0.144 -
+VDMAE 0.357 0.227 0.148 0.107 0.277 0.142 0.162 7.7%
+VDMAE+VTAC 0.374 0.230 0.155 0.112 0.279 0.145 0.161 10.5%
+VDMAE+CLIP(0.1) 0.342 0.211 0.142 0.102 0.278 0.138 0.154 3.5%
+VDMAE+CLIP(0.25) 0.331 0.204 0.137 0.098 0.272 0.134 0.145 0.0%
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Fig. 5. Effect of varying k on IU-Xray. (BLEU-4 score).

models. CAMANet appears to better capture the disease in-
formation and generate the abnormal description, e.g., “...This
accentuates the size of the cardiac silhouette which appears
mildly enlarged...”, compared to the base model. Moreover,
we visualize its generated visual discriminative map (VDM),
textual discriminative map (TDM) and the cross-modal atten-
tion map from the last decoder in Figure 7 to explore whether
the cross-modal alignment is truly enhanced by the proposed
VTAC module. It can be seen that the Base model cannot
learn any useful cross-modal alignments when generating
the reports. Similar to the Base model, Base+VDMAE also
fails in the cross-modal attention. This is expected since the
discriminative representation is detached from the decoder.
Nonetheless, owing to the enriched disease information, the
Base+VDMAE model still can capture some abnormal single-
model patterns, and therefore achieves improved performance
compared to the Base model. It is clear that after adding
the VTAC module, CAMANet demonstrates potent cross-
modal alignment capability where the medical terms, e.g.,
‘lung’, focus on the associated discriminative image regions,
while trivial words, e.g., ‘without’, pay attention only to the
background. Visualizations of the VDM and TDM further
verify the effectiveness of employing a VDM as a form of
pseudo label to supervise the cross-modal attention learning.

Finally we present further visualization results in Figure 8.
The visualizations show the reports predicted by CAMANet
and the associated ground truth. We also provide the vi-
sual discriminative map (VDM), textual discriminative map
(TDM), the cross-attention maps of some medical terms in the
inference mode and include important words in the training.

J. Multi-label Classification Performance

To further analyze whether the visual extractor can truly
provide a useful discriminative map, we also evaluate the clas-
sification performance of the visual extractor on the validation
and test sets of IU-Xray and MIMIC-CXR using precision
and recall metrics. As Table VII shows, CAMANet achieves
encouraging results on both sets of the IU-Xray which may
partially explain the remarkable improvements of CAMANet
on IU-Xray. Nonetheless, on MIMIC-CXR, CAMANet shows
reasonably good results in the validation set, while performing
worse in the test set with a precision score of 0.6747 and a
recall score of 0.3871. We summarize the possible reasons
below: (1) The IU-Xray dataset provides both the frontal
and lateral view of the radiology images for each patient
while MIMIC-CXR only has one view (frontal or lateral),
making image classification more challenging on MIMIC-
CXR; (2) the visual tokens are mainly tailored for the main
task of report generation, rather than image classification; (3)
Noisy and inaccurate pseudo-labels in a large dataset such
as MIMIC-CXR have a more detrimental effect compared to
smaller datasets. Nevertheless, an imperfect visual extractor
can still bring notable improvements for report generation on
MIMIC-CXR. During the experiments, we found that even if
a sample is wrongly classified, the model may still produce
an activation map focusing on the foreground, e.g, chest or
lung, rather than the background, reducing the reliance on
pseudo-labels. The second sample in Figure 8 demonstrates
that a sample with pseudo label “Consolidation, Pneumonia” is
wrongly classified as “Lung Opacity, Pleural Effusion, Support
Devices”. Therefore, the model fails to pay attention to the
specific, fine-grained abnormal regions. However, the model
can still generate a visual discriminative map and attention
maps (see the attention maps of word “pneumonia” and “con-
solidation”) focusing more on a relative coarse-grained “lung”
region since the wrong prediction still shares some semantic
information as pseudo-labels, i.e., lung-related diseases. In
addition, the wrong pseudo label of “Lung Opacity, Pleural
Effusion, Support Devices” contains the word of “Effusion”,
which appeared in the ground truth report, ”no large effusion
is seen”. This example shows that the activation map derived
from a wrongly classified sample could still be useful in di-
recting the model attention to the image region corresponding
to the relevant organ, and the description of the pseudo label
may find overlapping words in the ground truth report.
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Input Image
Ground Truth:
Low lung volumes are present. This accentuates the
size of the cardiac silhouette which is likely mildly
enlarged . Mediastinal and hilar contours are likely
within normal limits. A right brachiocephalic venous
stent is re-demonstrated. There is crowding of the
bronchovascular structures with probable mild
pulmonary vascular congestion. No pleural effusion
or pneumothorax is identified.

Base:
Single portable view of the chest is compared to
previous exam from. Low lung volumes are seen on
the current exam. The lungs are grossly clear of
confluent consolidation or large effusion. Cardiac
silhouette is enlarged but stable in configuration.
Osseous and soft tissue structures are unremarkable.

Base+VDMAE:
Lung volumes are low. Heart size is mildly enlarged.
Mediastinal and hilar contours are unremarkable.
Crowding of bronchovascular structures is present
without overt pulmonary edema. Patchy opacities in
the lung bases likely reflect areas of atelectasis. No
focal consolidation pleural effusion or
pneumothorax is present. No acute osseous
abnormalities detected.

Base+VDMAE+VTAC:
Lung volumes are low. This accentuates the size of
the cardiac silhouette which appears mildly
enlarged. Mediastinal and hilar contours are
unremarkable. Crowding of the bronchovascular
structures is present without overt pulmonary
edema. Patchy opacities in the lung bases likely
reflect areas of atelectasis. No large pleural effusion
or pneumothorax is present. There are no acute
osseous abnormalities.

Fig. 6. An example of the reports generated by different models. Most medical terms are highlighted to better differentiate the findings of report.

Base:

Base+VDMAE:

Base+VDMAE+VTAC:

lung chest

lung cardiachilar withoutVDM TDM

lung cardiachilar without

Input Image
cardiac clear

Fig. 7. The visualizations of cross-modal attention maps for some medical
terms by different models. The VDM and TDM are also shown and appear
consistent with the GT report because: (1) they correctly highlight the right-
lung; (2) the TDM hot-spots focus on the probable mild pulmonary vascular
congestion noted by the radiologist.

IU-Xray MIMIC-CXR

Subset Precision Recall Subset Precision Recall
Val 0.7551 0.7639 Val 0.7255 0.5413
Test 0.8000 0.7915 Test 0.6747 0.3871

TABLE V
THE MULTI-LABEL CLASSIFICATION RESULTS ON THE MIMIC-CXR AND

IU-XRAY. VAL AND TEST REFER TO THE VALIDATION AND TEST SET.

K. Computational Costs

a) Training and Testing Time: The batch size is set to
32 for IU-Xray and 64 for MIMIC-CXR. We train all the
models for 30 epochs. Table VI shows the average training
and testing time of one epoch for the Base and CAMANet on
IU-Xray and MIMIC-CXR. CAMANet only slightly increases
the training/testing time on MIMIC-CXR, while the increased
computational cost is negligible on IU-Xray.

b) The number of parameters: Here, we compare the
number of parameters of the Base and CAMANet models in
Table VII. The increase in number of learnable parameters is
negligible compared to the base model.

Dataset Train Test
Base CAMANet Base CAMANet

IU-Xray 0.41 0.42 1.28 1.32
MIMIC 56.35 60.06 13.27 13.46

TABLE VI
THE AVERAGE TRAINING/TEST TIME (MINUTES) OF ONE EPOCH FOR

DIFFERENT MODELS ON THE TRAINING/TEST SET.

Method Base CAMANet
#Param 46.07M 46.09M

TABLE VII
THE NUMBER OF PARAMETERS OF DIFFERENT MODELS.

L. Limitations and Future Works

Although the accuracy requirement of the pseudo labels is
not critical, CAMANet still needs pseudo labels to develop
the VDMAE and VTAC modules. We believe that CAMANet
could bring greater improvements when given more accurate
pseudo-labels. In addition, selected important words some-
times do not seem to capture the most important medical
terms or, such important medical terms are not ranked at the
top, possibly introducing noise in to the model. One possible
reason is that the selection of the important words rely on the
learning process which is based on the similarities between the
discriminative representation and the word embeddings, while
the learning of the discriminative representation is imperfect
due to the inaccurate pseudo labels and influence from the
main task, i.e., report generation (visual tokens are mainly
tailored for main task, i.e., report generation, rather than image
categorization.). Nonetheless, the inclusion of these commonly
used words could also be reasonable in some cases as they may
share the semantic information with these medical terms. For
example, for the sentence “there is pleural effusion”, since the
model generates the word one by one, words “there is” here
will indicate the presentation of an important medical term.

The failure cases include: (1) samples with very inaccurate
pseudo labels, e.g., heart diseases to be labelled as lung
diseases; (2) some images with rare descriptions fail to gen-
erate the abnormal findings as the severe data bias problem
is not completely solved; (3) some images fails to generate
the normal description such as “bony structures are intact”.
However, we think some failures are also reasonable. For
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CAMANet: pa and lateral views of the chest provided. lung
volumes are low. there is no focal consolidation effusion or
pneumothorax. the cardiomediastinal silhouette is normal. imaged
osseous structures are intact. no free air below the right
hemidiaphragm is seen .

GT: pa and lateral views of the chest provided. lung
volumes are somewhat low. allowing for this there is
no focal consolidation effusion or pneumothorax. the
cardiomediastinal silhouette is normal. imaged osseous
structures are intact . no free air below the right
hemidiaphragm is seen.
Top selected words: "pa, and, lateral, views, of, for,
there, cardiomediastinal, the, are, focal, lung, chest, no,
volumes”
Pseudo Label: No Finding
Prediction: No Finding

VDM TDM lung chestcardiom
-ediastinal

CAMANet: frontal and lateral views of the chest were obtained.
dual-lead left-sided pacemaker is again seen with leads
extending to the expected positions of the right atrium and right
ventricle. no focal consolidation pleural effusion or evidence of
pneumothorax is seen. the cardiac and mediastinal silhouettes are
stable. no overt pulmonary edema is seen.

GT: start dual lead left-sided pacemaker is stable in
position with leads extending to the expected positions of
the right atrium and right ventricle. the patient is status
post median sternotomy. there is minimal left base
atelectasis. no focal consolidation pleural effusion or
evidence of pneumothorax is seen. the cardiac and
mediastinal silhouettes are stable. no displaced fracture is
seen .
Top selected words: "lead, dual, left-sided, pacemaker, is,
stable, in, mediastinal, with, there, focal, atrium,
extending, right, position, no, are, right”.
Pseudo Label: No Finding
Prediction: No Finding

VDM TDM pacemaker mediastinal atrium

CAMANet: ap portable upright view of the chest. right ij central
venous catheter is seen with its tip in the low svc. there has been
interval placement of a right ij central venous catheter with its tip
in the mid svc region. there is a new consolidation in the right
lower lobe concerning for pneumonia. left lung is clear. no large
effusion or pneumothorax. cardiomediastinal silhouette appears
grossly stable. bony structures are intact.

GT: ap portable upright view of the chest. right ij central
venous catheter is seen with its tip in the expected
location of the mid svc. there is airspace consolidation in
the right lower lung concerning for pneumonia. the left
lung is mostly clear. no large effusion is seen. no
pneumothorax. cardiomediastinal silhouette is stable.
bony structures are intact.
Top selected words: "., there, with, start, pneumonia,
intact, cardiomediastinal, ap, silhouette, stable, structures,
the, central, view”.
Pseudo Label: Consolidation, Pneumonia
Prediction: Lung Opacity, Pleural Effusion,

Support Devices

VDM TDM pneumonia consolidationcardiom
-ediastinal

CAMANet: as compared to the previous radiograph there is
no relevant change. the monitoring and support devices are
constant. constant bilateral pleural effusions with subsequent
areas of atelectasis at both lung bases. no new parenchymal
opacities. unchanged size of the cardiac silhouette.

GT: as compared to the previous radiograph there is no
relevant change. unchanged extent of moderate bilateral
pleural effusions and moderate pulmonary edema.
unchanged monitoring and support devices. unchanged size
of the cardiac silhouette. no pneumothora.
Top selected words: "., there, start, monitoring, change,
bilateral, moderate, silhouette, as”
Pseudo Label: Cardiomegaly, Edema, Pleural Effusion,

Support Devices
Prediction: Atelectasis, Pleural Effusion,

Support Devices

VDM TDM monitoring silhouettebilateral

Pseudo: No Finding
Predict: No Finding

Pseudo: Consolidation 
Pneumonia

Fig. 8. Some examples of generated reports by CAMANet and the associated VDM, TDM, Cross-modal attention maps and selected important words.
Duplicated words in the selected important words have been removed.

example, the radiologists’ behaviours towards the inclusion of
some normal descriptions, e.g, “bony structures are intact”,
are different as it seems acceptable to not mention the “bony
structures are intact” if no abnormal findings are detected.
This, however, could confuse the model.

One future work could be how to design a more accurate
method for selecting important words. In addition, alleviating
the negative influence of noisy pseudo-labels plays an essential
role in further improving the performance. Moreover, we
utilize vanilla CAM in this work and more sophisticated CAM
methods are highly expected to bring more promising results.

V. CONCLUSIONS

In this work, we propose a novel class activation map guided
RRG framework, CAMANet, which explicitly leverages cross-
modal alignment and disease-related representation learning.
Our visual discriminative map assisted encoder distills the

discriminative information into the model via a derived dis-
criminative representation and the self-attention mechanism.
The generated VDM is then regarded as the ground truth in
the proposed visual-textual attention consistency module to
supervise the cross-modal attention learning, aimed at explic-
itly promoting cross-modal alignment. Experimental results
on two widely used RRG benchmarks prove the superiority
of CAMANet over previous studies. The ablation studies
further verify the effectiveness of individual components of
CAMANet. Moreover, a number of illustrative visualizations
and discussions are provided to inspire future research.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.



IEEE TRANSACTIONS AND JOURNALS TEMPLATE 12

REFERENCES

[1] Z. Chen, Y. Song, T.-H. Chang, and X. Wan, “Generating radiology
reports via memory-driven transformer,” in Proceedings of the 2020
Conference on EMNLP, 2020, pp. 1439–1449.

[2] Z. Chen, Y. Shen, Y. Song, and X. Wan, “Cross-modal memory networks
for radiology report generation,” in ACL (Long), 2021, pp. 5904–5914.

[3] J. Wang, A. Bhalerao, and Y. He, “Cross-modal prototype driven network
for radiology report generation,” in Proceedings of the 17th European
Conference on Computer Vision, Tel Aviv, Israel, October 23–27, 2022,
Part XXXV. Springer, 2022, pp. 563–579.

[4] G. Liu, T.-M. H. Hsu, M. McDermott, W. Boag, W.-H. Weng,
P. Szolovits, and M. Ghassemi, “Clinically accurate chest x-ray report
generation,” in Machine Learning for Healthcare Conference. PMLR,
2019, pp. 249–269.

[5] Y. Zhang, X. Wang, Z. Xu, Q. Yu, A. Yuille, and D. Xu, “When
radiology report generation meets knowledge graph,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020,
pp. 12 910–12 917.

[6] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
2921–2929.

[7] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and
L. Zhang, “Bottom-up and top-down attention for image captioning and
visual question answering,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 6077–6086.

[8] L. Guo, J. Liu, X. Zhu, P. Yao, S. Lu, and H. Lu, “Normalized
and geometry-aware self-attention network for image captioning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020, pp. 10 327–10 336.

[9] Y. Pan, T. Yao, Y. Li, and T. Mei, “X-linear attention networks for image
captioning,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020, pp. 10 971–10 980.

[10] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-
critical sequence training for image captioning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 7008–7024.

[11] J. Lu, C. Xiong, D. Parikh, and R. Socher, “Knowing when to look:
Adaptive attention via a visual sentinel for image captioning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 375–383.

[12] M. Cornia, M. Stefanini, L. Baraldi, and R. Cucchiara, “Meshed-
memory transformer for image captioning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2020, pp.
10 578–10 587.

[13] J. Ji, Y. Luo, X. Sun, F. Chen, G. Luo, Y. Wu, Y. Gao, and R. Ji,
“Improving image captioning by leveraging intra-and inter-layer global
representation in transformer network,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 2, 2021, pp. 1655–
1663.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[15] J. Krause, J. Johnson, R. Krishna, and L. Fei-Fei, “A hierarchical
approach for generating descriptive image paragraphs,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 317–325.

[16] L. Melas-Kyriazi, A. M. Rush, and G. Han, “Training for diversity in
image paragraph captioning,” in Proceedings of the 2018 Conference on
EMNLP, 2018, pp. 757–761.

[17] B. Jing, P. Xie, and E. Xing, “On the automatic generation of medical
imaging reports,” in ACL (Long), 2018, pp. 2577–2586.

[18] F. Liu, X. Wu, S. Ge, W. Fan, and Y. Zou, “Exploring and distilling
posterior and prior knowledge for radiology report generation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2021, pp. 13 753–13 762.

[19] Y. Zhou, M. Wang, D. Liu, Z. Hu, and H. Zhang, “More grounded image
captioning by distilling image-text matching model,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2020, pp. 4777–4786.

[20] K. Chen, J. Gao, and R. Nevatia, “Knowledge aided consistency for
weakly supervised phrase grounding,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
4042–4050.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in Neural
Information Processing Systems, vol. 28, 2015.

[22] W. Bae, J. Noh, and G. Kim, “Rethinking class activation mapping
for weakly supervised object localization,” in European Conference on
Computer Vision. Springer, 2020, pp. 618–634.

[23] P.-T. Jiang, C.-B. Zhang, Q. Hou, M.-M. Cheng, and Y. Wei, “Layercam:
Exploring hierarchical class activation maps for localization,” IEEE
Transactions on Image Processing, vol. 30, pp. 5875–5888, 2021.

[24] J. Xie, C. Luo, X. Zhu, Z. Jin, W. Lu, and L. Shen, “Online refinement
of low-level feature based activation map for weakly supervised object
localization,” in Proceedings of the IEEE International Conference on
Computer Vision, 2021, pp. 132–141.

[25] K. Sun, H. Shi, Z. Zhang, and Y. Huang, “Ecs-net: Improving weakly
supervised semantic segmentation by using connections between class
activation maps,” in Proceedings of the IEEE International Conference
on Computer Vision, 2021, pp. 7283–7292.

[26] Z. Chen, T. Wang, X. Wu, X.-S. Hua, H. Zhang, and Q. Sun, “Class
re-activation maps for weakly-supervised semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022, pp. 969–978.

[27] L. Ru, Y. Zhan, B. Yu, and B. Du, “Learning affinity from attention: End-
to-end weakly-supervised semantic segmentation with transformers,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022, pp. 16 846–16 855.

[28] Z. Liu, A. Zhong, Y. Li, L. Yang, C. Ju, Z. Wu, C. Ma, P. Shu, C. Chen,
S. Kim et al., “Radiology-gpt: A large language model for radiology,”
arXiv preprint arXiv:2306.08666, 2023.

[29] K. Singhal, T. Tu, J. Gottweis, R. Sayres, E. Wulczyn, L. Hou,
K. Clark, S. Pfohl, H. Cole-Lewis, D. Neal et al., “Towards expert-
level medical question answering with large language models,” arXiv
preprint arXiv:2305.09617, 2023.

[30] B. Boecking, N. Usuyama, S. Bannur, D. C. Castro, A. Schwaighofer,
S. Hyland, M. Wetscherek, T. Naumann, A. Nori, J. Alvarez-Valle et al.,
“Making the most of text semantics to improve biomedical vision–
language processing,” in European conference on computer vision.
Springer, 2022, pp. 1–21.

[31] J. Wang, L. Zhu, A. Bhalerao, and Y. He, “Can prompt learning benefit
radiology report generation?” arXiv preprint arXiv:2308.16269, 2023.

[32] J. H. Moon, H. Lee, W. Shin, Y.-H. Kim, and E. Choi, “Multi-
modal understanding and generation for medical images and text via
vision-language pre-training,” IEEE Journal of Biomedical and Health
Informatics, vol. 26, no. 12, pp. 6070–6080, 2022.

[33] J.-b. Delbrouck, K. Saab, M. Varma, S. Eyuboglu, P. Chambon, J. Dun-
nmon, J. Zambrano, A. Chaudhari, and C. Langlotz, “Vilmedic: a
framework for research at the intersection of vision and language in
medical ai,” in Proceedings of the 60th ACL: System Demonstrations,
2022, pp. 23–34.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 4700–4708.

[35] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Mark-
lund, B. Haghgoo, R. Ball, K. Shpanskaya et al., “Chexpert: A large
chest radiograph dataset with uncertainty labels and expert comparison,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 590–597.

[36] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in ACL, 2002, pp. 311–
318.

[37] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out, 2004, pp. 74–81.

[38] M. Denkowski and A. Lavie, “Meteor 1.3: Automatic metric for re-
liable optimization and evaluation of machine translation systems,” in
Proceedings of the sixth workshop on Statistical Machine Translation,
2011, pp. 85–91.

[39] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider: Consensus-
based image description evaluation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
4566–4575.

[40] A. Smit, S. Jain, P. Rajpurkar, A. Pareek, A. Y. Ng, and M. Lungren,
“Combining automatic labelers and expert annotations for accurate radi-
ology report labeling using bert,” in Proceedings of the 2020 Conference
on EMNLP, 2020, pp. 1500–1519.

[41] Y. Li, X. Liang, Z. Hu, and E. P. Xing, “Hybrid retrieval-generation
reinforced agent for medical image report generation,” Advances in
Neural Information Processing Systems, vol. 31, 2018.



IEEE TRANSACTIONS AND JOURNALS TEMPLATE 13

[42] B. Jing, Z. Wang, and E. Xing, “Show, describe and conclude: On
exploiting the structure information of chest x-ray reports,” in ACL,
2019, pp. 6570–6580.

[43] C. Y. Li, X. Liang, Z. Hu, and E. P. Xing, “Knowledge-driven encode,
retrieve, paraphrase for medical image report generation,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 6666–6673.

[44] F. Liu, S. Ge, and X. Wu, “Competence-based multimodal curriculum
learning for medical report generation,” in ACL (Long). Association
for Computational Linguistics, 2021, pp. 3001–3012.

[45] B. Hou, G. Kaissis, R. M. Summers, and B. Kainz, “Ratchet: Medical
transformer for chest x-ray diagnosis and reporting,” in International
Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2021, pp. 293–303.

[46] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition. Ieee, 2009, pp. 248–255.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations, (Poster), 2015.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[49] Z.-Y. Dou, Y. Xu, Z. Gan, J. Wang, S. Wang, L. Wang, C. Zhu,
P. Zhang, L. Yuan, N. Peng et al., “An empirical study of training end-
to-end vision-and-language transformers,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2022, pp.
18 166–18 176.

[50] Z.-Y. Dou, A. Kamath, Z. Gan, P. Zhang, J. Wang, L. Li, Z. Liu, C. Liu,
Y. LeCun, N. Peng et al., “Coarse-to-fine vision-language pre-training
with fusion in the backbone,” Advances in neural information processing
systems, vol. 35, pp. 32 942–32 956, 2022.

[51] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.


	Introduction
	Related Work
	Image Captioning
	Radiology Report Generation
	Class Activation Maps
	Pretrained Language and Vision-Language Models in RRG 

	Method
	Background
	CAMANet
	Visual Discriminative Map Generation
	VDM Assisted Encoder
	Visual-Textual Attention Consistency

	Objective Function

	Experiments
	Datasets
	Evaluation Metrics
	Implementation Details
	Comparisons to SOTA methods
	Clinical Efficacy
	Comparisons to PLMs and PVLM
	Ablation Studies
	Sensitivity of the Proportion of Selected Words
	Qualitative Results
	Multi-label Classification Performance
	Computational Costs
	Limitations and Future Works

	Conclusions
	References

