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Exploiting Hierarchical Interactions for Protein
Surface Learning

Yiqun Lin, Liang Pan, Yi Li, Ziwei Liu, and Xiaomeng Li∗

Abstract— Predicting interactions between proteins is
one of the most important yet challenging problems in
structural bioinformatics. Intrinsically, potential function
sites in protein surfaces are determined by both geomet-
ric and chemical features. However, existing works only
consider handcrafted or individually learned chemical fea-
tures from the atom type and extract geometric features
independently. Here, we identify two key properties of
effective protein surface learning: 1) relationship among
atoms: atoms are linked with each other by covalent bonds
to form biomolecules instead of appearing alone, leading
to the significance of modeling the relationship among
atoms in chemical feature learning. 2) hierarchical feature
interaction: the neighboring residue effect validates the sig-
nificance of hierarchical feature interaction among atoms
and between surface points and atoms (or residues). In
this paper, we present a principled framework based on
deep learning techniques, namely Hierarchical Chemical
and Geometric Feature Interaction Network (HCGNet), for
protein surface analysis by bridging chemical and geomet-
ric features with hierarchical interactions. Extensive exper-
iments demonstrate that our method outperforms the prior
state-of-the-art method by 2.3% in site prediction task and
3.2% in interaction matching task, respectively. Our code is
available at https://github.com/xmed-lab/HCGNet.

Index Terms— Biology, Computer Vision, Point Cloud,
Protein-Protein Interaction, Surface Learning.

I. INTRODUCTION

PROTEINS composed of amino acids are large, complex
molecules that play critical roles in all living organisms.

Proteins can provide various functions with different struc-
tures for organisms, including causing biomedical reactions,
acting as messengers, and balancing fluid. From a biologi-
cal perspective, proteins can be described in four structural
levels, including primary, secondary, tertiary, and quaternary
structures. The amino acid sequence (primary) determines the
three-dimensional (3D) structure (tertiary) of the protein, and
its functions mainly depend on its 3D structure. Therefore,
exploring the functions of different proteins’ 3D structures
is crucial for understanding their working mechanism, which
benefits many applications, such as new drug development [1].
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Fig. 1. (a-d) show a protein’s amino acid sequence, surface, atoms, and
cartoon structure (a simplified representation based on the secondary
structure), respectively. (a) Due to the neighboring residue effect [2],
multiscale relationships among atoms and between surface points and
atoms should be considered in protein function analysis. (b-d) Our key
idea is to model the hierarchical feature interactions between chemical
(atom/residue) and geometric (surface) features for efficient protein
surface learning.

Proteins carry out their functions by interacting with other
proteins or molecules. Therefore, predicting protein-protein
or protein-biomolecule interaction (e.g., interaction sites and
interaction matching) becomes one of the most important
and challenging problems in structural bioinformatics. Pro-
teins often associate through hydrophobic patches on their
surfaces. Amino acid residues in the interaction interfaces
can give a general indication of hydrophobicity [3]. Various
studies about the electrostatic nature of the protein-protein
interface demonstrate that the associating surfaces interacting
with one another have charge complementarity [4], [5] or
electrostatic complementarity [6]–[8]. In addition, the size and
shape of protein interfaces, measured with solvent accessible
surface area (∆ASA) [9], varies in different types of protein
complexes. Earlier work [3] shows that the range of ∆ASA
in the heterocomplexes is smaller than in the homodimers,
and the larger molecules usually have larger interfaces. The
interaction between proteins also relies on shape comple-
mentarity [10], such as convex bulges and concave pockets.
Therefore, whether proteins interact with other molecules
and where the interaction sites are located depends on both
chemical features and 3D geometric shapes.

Existing research works on protein interaction predic-
tion [8], [11]–[13] utilize handcrafted chemical features (e.g.,
hydrophobicity and charges) and adopt deep neural networks
to learn geometric features (e.g., curvatures and normals)
from 3D structures. Recently, dMaSIF [14] is proposed to
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encode the atom type into a one-hot vector followed by multi-
layer perceptrons (MLPs) to learn chemical features. Their
experiments show that learned chemical features can perform
as well as or better than handcrafted ones.

Nonetheless, dMaSIF [14] has two main limitations. Firstly,
it does not consider the relationship among atoms. The chem-
ical feature of each atom is learned individually only from
the atom type. However, in a molecule, atoms are linked
together by covalent bonds to form functional groups that
cause chemical reactions of molecules [15]. This indicates
that the chemical feature is not determined by a single atom,
but by a group of atoms linked to each other. Secondly,
it ignores hierarchical feature interactions between surface
points and atoms. For each surface point, only the nearest 16
atoms around the surface point are gathered as the chemical
feature. However, the neighboring residue effect [2] points
out that amino acid residues can bring chemical shifts to
their neighboring residues; see Figure 1.a. This reveals that
the chemical properties of the protein surface are not only
determined by atoms in the residues near the surface but also
rely on atoms in some residues far away from the surface. The
same goes for atoms in chemical feature learning.

To this end, we propose a novel Hierarchical Chemical and
Geometric Feature Interaction Network (HCGNet) to learn
both chemical and geometric features in a hierarchical and
interactive way. Our key idea is to capture the multiscale
relationship among atoms to learn chemical features and
hierarchically model their interactions with geometric features.
Specifically, we introduce a dual hierarchical framework to
extract chemical features and geometric features, respectively.
By designing a chemical feature propagation module, the
hierarchical chemical features from atoms (or residues) can
be propagated to surface points for protein surface learning;
see Figure 1.b-d. Our experiments show that HCGNet outper-
forms prior state-of-the-art (SoTA) methods in protein surface
learning. To summarize, the main contributions are as follows:

• We highlight the importance of hierarchical relationships
among atoms and between chemical and geometric fea-
tures, which are new insights for protein surface learning
and have been overlooked in previous works.

• We propose HCGNet to model hierarchical interactions
in chemical feature learning and between chemical and
geometric features for effective protein surface analysis.

• Our method outperforms prior SoTA method by 2.3%
in site prediction task and 3.2% in interaction matching
task. HCGNet is flexible and has the potential to be used
in other protein-biomolecule interaction tasks, such as
protein-ligand and protein-DNA/RNA.

II. RELATED WORK

Discovering the properties and functions of proteins at differ-
ent structural levels will bring significant benefits to protein
design and engineering. By leveraging large public protein
databases, biological scientists are able to analyze proteins
for a variety of downstream applications, for instance, protein
structure prediction [16]–[19], protein-protein interaction [11],
[13], [14], [20], [21], ligand binding affinity [22], [23], and
protein docking [11], [24]–[26].

Feature learning on protein representation. The amino
acid sequence is the simplest way to represent a protein. A
straightforward way to process protein sequences is to directly
apply techniques in natural language processing, including
Word2Vec [27] and Doc2Vec [28]. Recently, UniRep [29]
adopted multiplicative LSTMs [30] to learn features for each
amino acid residue and averaged all residue features into a
representative vector. However, sequence-based methods can
not handle the detailed analysis of protein structures due to
missing spatial information.

The three-dimensional (3D) structures of proteins are more
important than sequences in protein function prediction for
rich structural details. Atoms can be treated as points with
chemical properties in 3D space. Compared with regular
1D sequences and 2D images, 3D representation learning
has difficulties like spatial sparsity and disorder of index-
ing. Recent works [31], [32] are proposed to voxelize atom
points into regular grids and adopt 3D convolution networks
for analysis. However, voxel-based methods still suffer from
high computational costs and limited resolution, resulting in
insufficient analysis of structural details. Another effective way
is regarding the 3D protein structure as a graph composed
of vertices (atoms) and edges (chemical bonds). Fout A., et
al. [33] handcraft features — distance and angle for edges,
protrusion index, and residue depth for vertices, and utilize
graph convolution networks, leading to better performance
than SVM-based methods in interaction prediction. HOLO-
PROT [22] jointly learns protein representation from both
amino acid sequences and atom graphs to capture finer details.

In addition to amino acid sequences and atom graphs, re-
searchers [11], [14] propose that surface can be a more natural
way to analyze protein’s functions because surfaces contain
both chemical and geometric features, revealing information
about protein interactions. Although they introduce chemical
features to surface points in a handcrafting or learning way,
neither of these works considers the neighboring residue effect
and the multiscale relationship among atoms.

Deep learning on point clouds. Point clouds have become a
more and more popular form of 3D data with the development
of sensing devices and diverse learning techniques. To solve
the problem of irregularity and disorder, Charles et al. [34]
propose PointNet to apply shared MLPs on each point and ag-
gregate features with a global max-pooling. PointNet can also
be used as a local operator for hierarchical processing [35],
and a lot of works [36]–[38] followed, developing various
point convolution operators. Moreover, kNN graphs can be
constructed from point clouds, and graph convolution networks
can be applied for feature learning [39], [40]. Recent works
expand a local patch of point clouds to an estimated [41] or a
learned [42] 2D plane, and then regular 2D convolutions can
be further adopted.

Although protein atoms can also be represented by a set of
points, there are three main differences compared to general
point clouds. a.) Points are regarded as homogeneous particles
continuously distributed in the real world. Due to the limitation
of sensing devices, points are collected discretely, with noise,
and sometimes assigned with colors or reflection intensity.
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(a) Protein (b) Surface Points

(c) Atom Points (d) Residue Points

Fig. 2. A protein can be represented by three pointsets, including
surface points for geometric shape analysis, and atom and residue
points for chemical property analysis.

Atoms are indeed discretely distributed, free of noise, and
have individual chemical properties and radii; b.) Points are
captured from object surfaces, and there are almost no points
inside, while atoms are distributed not only on protein surfaces
but also inside the protein; c.) Geometric features play a
decisive role in general point cloud analysis, while chemical
features are as important as geometric features in protein
structure analysis. Inspired by the above observations, we
propose a novel learning architecture to bridge chemical and
geometric features with hierarchical interactions, leading to
SoTA performance in various protein analysis tasks.

III. OUR APPROACH

In this section, we first introduce protein data, then review
some preliminaries about point cloud network design [35],
and finally describe our proposed hierarchical chemical and
geometric feature interaction network (HCGNet).

A. Protein Representation

Proteins are polymers composed of amino acid residues, which
are formed by atoms. In the Protein Data Bank (PDB [43]),
each residue is recorded with the amino acid type and a list
of atoms, and each atom contains the spatial coordinates and
atom type. In the preprocessing, each protein is generated into
three pointsets, including atom, residue, and surface pointsets.
A visual example is shown in Figure 2.

Atom pointset. We denote A as the atom pointset with M1

points, where ith atom point (pai
, fai

) ∈ R3 × R6 consists of
a 3-dim XYZ coordinate vector pai

to indicate the 3D spatial
location, and a 6-dim one-hot vector fai to represent the atom
type (i.e., C, H, O, N, S, Se).

Residue pointset. Suppose that the protein is composed of M2

amino acid residues, where ith residue is formed by Ni atoms.
Regarding the indices of atoms are denoted as {d1, . . . , dNi

},
the center position of the residue is calculated by averaging

(𝑁, 𝐶)

(1, 𝐶) (𝐾, 𝐶) (1, 𝐶′)
ball query

(𝐾, 𝐶′)MLPs max

(1, 𝐶′)(1, 𝐶)

Linear

(1, 𝐶′)

(a) SA Module

(b) Residual SA Module

SA

point set

centroid

centroid output

outputneighbors

residual connection

Fig. 3. (a) In SA module, a set of neighbor points are grouped
and followed by MLPs and max pooling for feature aggregation. (b) In
residual SA module, SA is firstly used to extract the local feature for the
centroid point, and then the residual connection is applied by adding
input and output features. The linear layer is not necessary when C is
equal to C′.

3-dim coordinates of all internal atoms:

pri
=

1

Ni

Ni∑
k=1

padk
. (1)

Hence, the residue pointset is represented by R =
{

pri

}M2

i=1
⊂

R3, which is used as the downsampled pointset to aggregate
features from atom points for hierarchical chemical feature
learning, which will be described in Section III-C.

Surface pointset. To perform effective learning on the protein
surface, we follow [14] to generate N(N ≈ 2.5M1) surface
points from atoms with a fast sampling algorithm. Let S be
the surface pointset, where ith surface point (psi

, fsi) ∈ R3 ×
R10 contains a 3-dim XYZ coordinate vector psi

and a 10-
dim feature vector fsi . fsi are Gaussian and mean curvatures
estimated at 5 scales ranging from 1Å to 10Å.

B. Preliminaries of Point Cloud Processing

As mentioned, a protein can be represented by three pointsets,
which can be processed in the way of point cloud learning.
PointNet++ [35] is one of the most popular methods in
point cloud processing and has been widely used in many
computer vision tasks such as shape classification and scene
understanding. It consists of two main modules, set abstraction
(SA) module to encode features and downscale points and
feature propagation (FP) module to upscale points and decode
features. These two modules and the modified version are used
as basic point (de)convolution operators in our framework.

Set abstraction (SA) module groups neighbor points around
a centroid point and then uses a mini-PointNet [34] to encode
local patterns into feature vectors. Let P =

{
(pi, fi)

}Np

i=1
⊂

R3 × RC be a pointset with Np points and C refers to
the dimension of the feature vector. Given a centroid point
(p′, f′), use ball query to group neighbor points’ features as
N (p′,P) =

{[
p − p′; f

] ∣∣ ∥p − p′∥2 ≤ r, (p, f) ∈ P
}

with
r ∈ R being the chosen radius and [·; ·] is the concatena-
tion operator. Then we apply shared multi-layer perceptrons
(MLPs) followed by a max pooling layer on N (p′,P) and
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concat
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Representation
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Fig. 4. The backbone of HCGNet is mainly composed of two branches for geometric (top) and chemical (bottom) feature learning. Two branches
encode features from surface points and atom points in a multiscale way, respectively. Chemical feature propagation modules (middle) are proposed
to propagate features from the chemical branch to the geometric branch also in a hierarchical way. Moreover, different task-oriented heads can be
followed to handle different downstream tasks, such as site prediction and interaction matching. “d.s.” indicates point cloud downsampling. rs and
ra are the initial query radii for two branches, respectively.

output the local feature f̂′ at p′:

f̂′ = SA(p′,P)

= MAX
{

MLP(̂f)
∣∣∣ f̂ =

[
p − p′; f

]
∈ N (p′,P)

}
.

(2)

As shown in Figure 3, to build a deep learning network, we
develop a residual version of SA (rSA) inspired by [44] by
adding the original feature f′ at p′:

f̂′ = rSA(p′, f′,P) = SA(p′,P) + f′. (3)

Feature propagation (FP) module. Points are downsampled
in an encoder-decoder network, and FP module is used to re-
cover the data size and propagate features from downsampled
pointset P ′ to the original pointset P . To be more specific, for
each point (p, f) ∈ P , we first select K nearest neighbor points
from P ′ as NK(p,P ′) =

{
(p′

k, f′k)
}K

k=1
. Then we interpolate

feature values using their relative distances:

finterp = Interp(p,NK(p,P ′)) =

∑
k wkf′k∑
k wk

, (4)

where wk = 1/∥p′
k − p∥2 ∈ R is the interpolation weight.

Furthermore, we adopt skip connection to combine propagated
features finterp and original features f together and use a shared
MLP to update each point’s feature:

f̂ = FP(p, f,P ′) = MLP ([finterp; f]) . (5)

C. Hierarchical Feature Interaction Network
As addressed in Section I, the multiscale relationship among
atoms and hierarchical feature interactions between surface
points and atoms are significant and overlooked by previous
works. In this section, we formally propose HCGNet to
model the above hierarchical relationships. An overview of
the network architecture is shown in Figure 4. Given a protein
represented by three pointsets (atom, residue, and surface), we

feed surface points into the geometric branch to encode hierar-
chical geometry-related features and atom/residue points into
the chemical branch to encode hierarchical chemistry-related
features. More importantly, the chemical feature propagation
module is introduced in a hierarchical way to enhance the
feature interaction between two branches to improve feature
representation learning. Finally, we obtain the representative
features of each surface point and design task-oriented heads
for different protein surface learning tasks.

Geometric branch is composed of three encoding layers and
two decoding (upsampling) layers to learn geometric features
from surface points in a hierarchical way, as shown at the
top of Figure 4. To formulate, in ith encoding layer, assume
the input is Si ∈ RNi×Ci with Ni points and a channel
size of Ci. A stack of rSA modules (see Section III-B) are
applied for local feature encoding. The channels of MLP in
kth rSA module are [Ck−1

i , Ck
i , C

k
i , C

k
i ], where Ck−1

i and
Ck

i are the output channel sizes of k − 1th and kth rSA
modules respectively, and C0

i = Ci. All rSA modules in
ith encoding layer have the same neighbor query radius ri,
which is twice the radius ri−1 of the previous encoding layer
(i.e., ri = 2ri−1). Let r1 = rs be the initial radius. In some
encoding layers, farthest point sampling (FPS [45]) is adopted
following the final rSA module to downsample half of surface
points for efficient learning. In decoding layers, FP modules
are used to propagate features from downsampled pointset
to the original pointset layer by layer. Skip connections are
used to combine low-level and high-level features to obtain a
better representation. The initial radius rs is set to 4Å in site
prediction and 2Å in interaction matching. The output channel
size of each module is given in Figure 4.

Chemical branch is composed of three encoding layers and
one decoding layer for multiscale chemical feature learning, as
shown at the bottom of Figure 4. Different from the geometric
branch, the first encoding layer (A1) is a shared MLP to



Y. LIN et al.: EXPLOITING HIERARCHICAL INTERACTIONS FOR PROTEIN SURFACE LEARNING 5

Surface Points Atom Points Residue Points
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(1, 𝐶′)

sum sum
concat

MLPMLP

MLP

sub-sample

Fig. 5. Implementation details of feature aggregation function g(·) in
CFP. g(·) operates on each surface point to query chemical features
from neighbor atoms (near) and residues (far). We use MLPs to trans-
form features and summation to aggregate features from neighbors.

encode atom features individually from one-hot atom type
vectors. In the rest of encoding layers (A2 and R1), the
neighbor query radii are ra and 2ra, where ra is the initial
radius and set to 4Å in site prediction and 3Å in interaction
matching. We use SA modules without the residual connection
for local feature encoding since the network is not as deep as
the geometric branch. Instead of using FPS to downsample the
pointset, residue points R =

{
pri

}
i

are used as centroids to
group neighbor atom points and obtain R1 = {(pri

, f1ri)}i:

f1ri = SA(pri
,A2), (6)

where A2 are output atom points of the first SA module and
f1ri is the aggregated feature vector at residue pri

. Then the
FP module and skip connection are used to combine all levels
of chemical features in the upsampling layer (A4). Hence, we
have chemical features in four levels: individual, local, global,
and mixed, from A1 to A4 (let A3 = R1).
Chemical feature propagation (CFP) module is introduced
to propagate features from chemical branch to geometric
branch. More specifically, to propagate features from A to
each surface point (ps, fs) ∈ S (subscripts of A and S are
ignored for simplification), we denote

f̂s = CFP(ps, fs,A) = h(cs, fs), and
cs = g (Nk1

(ps,A),Nk2
(ps,A′)) ,

(7)

where Nk1/k2
(·) are kNN selection functions with k equal to

k1 and k2, respectively. A′ is the sparse pointset sub-sampled
from A and used for querying far away chemical points. g(·) is
a feature aggregation function operated on chemical pointsets,
cs is the propagated chemical feature, h(·) is a multi-modality
fusion function to combine chemical and geometric features,
and f̂s is the fused feature. In practice, we regard residue points
as the sub-sampled centroids and assign each residue feature
by the feature of the nearest point in A to form A′. If the
chemical source is the residue set (e.g., A3 → S2), then A′ =
A. The detailed design of g(·) is shown in Figure 5, and we
directly concatenate the propagated chemical features and the
original geometric features together:

f̂s = h(cs, fs) = [cs; fs]. (8)

As shown in the middle of Figure 4, we adopt CFP modules
to bridge the chemical points (atoms or residues) and surface
points that have similar receptive fields to establish hierarchi-
cal interactions between chemical and geometric branches.

D. Task-Oriented Heads for Downstream Tasks

The outputs of the backbone are representative point-wise
features on the protein surface, which can be formulated as

S7 =
{
(psi

, f7si)
}N

i=1
= CFP(S6,A4), (9)

where S6 and A4 are the output pointsets of geometric and
chemical branches, respectively. Hence we can design task-
oriented heads to handle different tasks. In this work, two
tasks are included, interface site prediction and interaction
matching [11], [14].

Site prediction aims to identify interaction sites and non-
interaction sites from surface points. As shown in Figure 4, a
three-layer MLP is followed to predict the probability of being
an interaction site for each surface point (ps, f7s) ∈ S7. The
full model is end-to-end optimized with binary cross entropy
(BCE) loss and Dice loss [46]:

L(ŷs, ys) = λLBCE(ŷs, ys)+

(1− λ)LDice(ŷs, ys), and

ŷs = MLP(f7s),
(10)

where λ ∈ [0, 1] is trade-off coefficient, ŷs ∈ R is final
predicted probability, and ys ∈ {0, 1} is ground truth label.

Interaction matching aims to predict the interaction prob-
ability of each surface point pair, one from each protein
involved in a complex, which is key to protein docking.
Because we are about to measure feature complementarity
instead of similarity, as shown in Figure 6.a, two branches
are used to predict the representative feature (binder) and the
corresponding complemental feature (target), respectively. To
formulate, for each surface point (ps, f7s) ∈ S7, the output
binder feature b and target feature t are

b = MLPb(f7s) and t = MLPt(f7s), (11)

where MLPb and MLPt are MLP layers of binder and target
branches. During training, the input is a pair of proteins
(denoted as A and B, both are randomly rotated) from the
same complex. The backbone network first produces binder
and target features for the surface points of each protein. Given
point a from protein A with output features (ta,ba) and point
b from protein B with (tb,bb), the interaction probability of
these two points is formulated as

p(a, b) = Sigmoid
(

tTa bb + tTb ba

2

)
. (12)

If the relative distance between point a and point b is less
than 1Å before the random rotation of proteins, the point pair
(a, b) is labeled as a positive pair; otherwise, it is labeled as
a negative pair. Therefore, the objective function is defined as

L(a, b, yab) = LBCE
(
p(a, b), yab

)
, (13)

where yab ∈ {0, 1} is 1 if and only if (a, b) is a positive
pair. All positive pairs are selected, and the same number
of negative pairs are randomly sampled for training. Due to
the memory limitation, gradients are only recorded during the
forward pass of the first protein (i.e., 1A79 C in Figure 6.a).
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MLPb

MLPt

Task-Oriented Head

Fig. 6. (a) Illustration of interaction matching network. The backbone network is shown in Figure 4. The task-oriented head comprises two MLPs to
predict the representative feature (binder) and corresponding complementary feature (target). (b) An example: point pairs (colored in red) located
very close in the formed complex are labeled as positive pairs.

IV. EXPERIMENTS

To validate the effectiveness of the proposed HCGNet, we
conduct experiments on two tasks in the field of structural
bioinformatics, which are introduced in [11] and aim to deal
with interactions between proteins. We implement our method
with PyTorch [47]. Momentum gradient descent optimizer is
used to optimize loss function in Eqn. 10 and Eqn. 13 with
an initial learning rate of 0.01 and a batch size of 8. Leaky
ReLU and instance normalization are applied in MLP layers.
Models are trained on a single NVIDIA GeForce RTX 3090
GPU for 300 epochs (∼24h) in site prediction and 150 epochs
(∼36h) in interaction matching.

A. Site Prediction

Setting. In this task, the surface points of a protein are
classified into interaction sites and non-interaction sites. Inter-
action sites are surface points that are more likely to interact
with other proteins. This task can benefit protein engineering,
such as drug discovery. We use the dataset proposed in [11],
which contains 3,314 proteins collected from the Protein Data
Bank [43] with 2,958 proteins for training and 356 for testing.
We follow [11] to split 10% data from the training set for
validation during training based on the pairwise matrix of
TM-scores (refer to Supplementary Note 4 in [11] for more
details). λ in Eqn. 10 is set to 0.5. To quantitatively compare
our proposed HCGNet with previous works, we follow [14] to
report ROC-AUC (area under the ROC curve) as the evaluation
metric, since it measures the ability to distinguish between
classes and is insensitive to class imbalance.

Results. As shown in Table I, HCGNet outperforms the SoTA
method (dMaSIF [14]; see also Figure 8.a) by 2.3% ROC-
AUC and is significantly ahead of other previous methods.
In addition, we visualize the results in Figure 7.a. Compared
with previous methods, our predicted interaction sites are more
precise with the help of hierarchical chemical features.

B. Interaction Matching

Setting. In this task, two proteins involved in a complex are
given to predict the interaction probability of point pairs (one

TABLE I
AREA UNDER THE ROC CURVE (ROC-AUC) IS EVALUATED TO

COMPARE OUR PROPOSED ARCHITECTURE WITH PREVIOUS METHODS

ON SITE PREDICTION AND INTERACTION MATCHING.

Method Site
Prediction

Interaction
Matching

DGCNN [40] 0.710 -
PointNet [34] 0.816 0.747
PointNet++ [35] 0.848 0.785
PointConv [38] 0.855 0.790
MaSIF [11] 0.850 0.787
dMaSIF [14] 0.870 0.794
HCGNet (ours) 0.893 0.826

from each). This task is the key to protein docking, which
aims to align the orientation of two proteins in a complex. We
use the dataset proposed in [11], including 4,614 protein pairs
for training and 912 for testing. 10% training data are used for
validation based structural alignments (refer to Supplementary
Note 6 in [11] for more details). In the evaluation stage, all
positive pairs are selected, and the same number of negative
pairs are randomly sampled for ROC-AUC calculation.

Results. As quantitative comparison shown in Table I, our
HCGNet performs better than the SoTA (dMaSIF [14]; see
also Figure 8.b) and all other previous methods with a re-
markable margin. Note that dMaSIF [14] reported a ROC-
AUC of 0.82 on interaction matching by selecting all positive
pairs and 400 negative pairs for evaluation. Based on this
evaluation strategy, our performance (0.837) is still better. In
Figure 7.b, we highlight the matched points in red. Visual
results show that our predicted pairs are more concentrated
in the associating areas. Compared to site prediction, our
proposed architecture has achieved more improvements in
interaction matching (see also the second ablation study).
The reason may be that interaction matching is aware of
binding partners, and hierarchical chemical features can help
the network to identify specific chemical complementarities
such as alkaline and acidic, positively charged, and negatively
charged. However, site prediction aims to predict general
interaction sites where the functional group is active and the
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Fig. 7. Qualitative results on site prediction and interaction matching tasks. (a) Our HCGNet can perform more precise segmentation of interaction
sites (red) than previous methods. (b) Matched points are highlighted in red. Compared with previous methods, our predicted point pairs can be
more helpful for the orientation alignment since most matched points are located in associating areas; see bounded areas in yellow.

TABLE II
THE IMPORTANCE OF CHEMICAL AND GEOMETRIC FEATURES.

ROC-AUC IS EVALUATED AND THE PERFORMANCE DROPS SHARPLY

WHEN TRAINING WITH ONLY CHEMICAL (CHEM.) FEATURES OR ONLY

GEOMETRIC (GEOM.) FEATURES IN BOTH TWO TASKS.

Method Site
Prediction

Interaction
Matching

chem. only 0.673 0.692
geom. only 0.759 0.722
chem. & geom. 0.893 0.826

geometric shape is obviously concave or convex.

C. Ablation Study

To further analyze our proposed architecture, ablative exper-
iments are conducted to explore the importance of chemical
and geometric features, the importance of different proposed
parts, and different designs of hierarchical learning networks
and hierarchical feature interaction.

Importance of chemical and geometric features. To illus-
trate the significance of chemical and geometric features, we
design two backbones: chem. only to use only the chemical
branch and propagate features in the final layer to surface
points for point-wise classification, and geom. only to use
only the geometric branch without any chemical feature
propagation. Experiments are conducted on the tasks of site
prediction and interaction matching. As shown in Table II, in
the absence of either chemical features or geometric features,
the performance drops dramatically in both two tasks, which
validates the importance of the interaction between chemical
features and geometric features.

TABLE III
THE IMPORTANCE OF CHEMICAL FEATURE LEARNING AND

HIERARCHICAL FEATURE INTERACTION. ROC-AUC IS EVALUATED FOR

COMPARING THE FULL MODEL WITH REMOVING DIFFERENT PROPOSED

PARTS, INCLUDING CFP, HIERARCHICAL CHEMICAL (CHEM.) FEATURE

LEARNING, AND HIERARCHICAL FEATURE INTERACTION (INTER.)
BETWEEN TWO BRANCHES.

Method Site
Prediction

Interaction
Matching

w/o CFP 0.874 -1.9% 0.803 -2.3%
w/o hierarchical chem. 0.884 -0.9% 0.813 -1.3%
w/o hierarchical inter. 0.886 -0.7% 0.820 -0.6%
Full model (HCGNet) 0.893 0.826

Importance of different proposed parts. To demonstrate the
effectiveness of different proposed parts, we conduct ablative
experiments by removing CFP, hierarchical chemical feature
learning, and hierarchical interaction between two branches,
respectively. In Table III, the performance drops without any
of the above parts, which implies the significance of modeling
multiscale relationships among atoms and hierarchical feature
interaction between surface points and atoms (or residues).
In addition, we notice that by removing hierarchical chemical
learning and CFP, the performance drops for interaction match-
ing (-1.3%/-2.3%) are more than site prediction (-0.9%/-1.9%)
since awareness of binding partner requires more precise
chemical features to predict chemical complementarity.

Design on hierarchical branches. As mentioned, hierarchical
analysis is significant for both chemical and geometric learn-
ing. We compare different radii of ball query in SA (or rSA)
modules from 2Å to 7Å in two tasks, as shown in Table IV.
We find that the best setting has similar initial radii in two
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Fig. 8. ROC curves comparing the performance of our method (blue)
and dMaSIF (red) [14] on the task of site prediction (a) and interaction
matching (b).

TABLE IV
COMPARISON OF DIFFERENT INITIAL RADII rs IN THE GEOMETRIC

BRANCH AND ra THE CHEMICAL BRANCH. ROC-AUC IS EVALUATED,
AND THE BEST SETTING HAS SIMILAR rs AND ra IN BOTH TWO TASKS.

rs (Å) ra (Å) Site
Prediction

Interaction
Matching

2 3 0.889 0.826
4 2 0.888 0.814
4 4 0.893 0.825
4 7 0.887 0.821
7 4 0.883 0.813

learning branches, (rs, ra) = (4, 4)Å in site prediction and
(rs, ra) = (2, 3)Å in interaction matching.

Design on hierarchical feature interaction. In HCGNet, the
feature propagation from the chemical branch to the geometric
branch is implemented as (A1,A2,A3,A4)→(S0,S1,S2,S6),
which indicates A1→S0, A2→S1, A3→S2, and A4→S6. In
Table V, we compare different chemical sources for the propa-
gation process. Although the feature propagation between two
branches can be arbitrary, we still recommend establishing
the interaction in the way of Figure 4, because the linked
surface points and chemical points (atoms or residues) have
similar receptive fields. If not, the network may be confused
by inconsistent receptive fields during training and bring worse
performance.

TABLE V
COMPARISON OF DIFFERENT PROPAGATION STRATEGIES. ROC-AUC IS

EVALUATED, AND THE CHEMICAL SOURCES REPRESENT THE ATOM

POINTSET PROPAGATED TO S0 , S1 , S2 AND S6 , RESPECTIVELY. -
INDICATES NO CHEMICAL FEATURE PROPAGATION TO THIS SURFACE

POINTSET.

Chemical Sources Site
Prediction

Interaction
Matching

(A1, -, -, -) 0.884 0.813
(A4, A3, A2, A1) 0.888 0.818
(A1, A3, A3, A4) 0.887 0.820
(A1, A2, A3, A4) 0.893 0.826

TABLE VI
COMPARISON OF MODEL PARAMETERS. WE COMPARE THE MODEL

PARAMETERS OF TRAINING ONLY WITH CHEMICAL FEATURES (CHEM.
ONLY), TRAINING ONLY WITH GEOMETRIC FEATURES (GEOM. ONLY),
REMOVING CFP (W/O CFP), REMOVING HIERARCHICAL CHEMICAL

LEARNING (W/O HIERARCHICAL CHEM.), AND REMOVING

HIERARCHICAL FEATURE INTERACTION (W/O HIERARCHICAL INTER.).

Method Site
Prediction

Interaction
Matching

chem. only 0.673 0.67K 0.692 5.08K
geom. only 0.759 24.4K 0.722 29.3K
w/o CFP 0.874 27.6K 0.803 32.9K
w/o hierarchical chem. 0.884 27.3K 0.813 32.5K
w/o hierarchical inter. 0.886 24.9K 0.820 29.9K
Full model (HCGNet) 0.893 28.3K 0.826 33.6K

V. DISCUSSION

A. Biomolecular Surface Learning

Biomolecules, including proteins, are composed of atoms and
most chemical interactions occur on biomolecular surfaces.
This means the surface features (e.g., chemistry, geometry)
play an important role in interaction-related tasks. In this
work, we point out that the relationship among atoms and
the feature propagation from atoms to surfaces are significant
for protein surface learning, which should be the same for
other biomolecules’ surface learning. More importantly, we
propose a general framework HCGNet mainly focusing on
the design of chemical learning and feature propagation.
HCGNet can handle different downstream tasks, such as site
prediction and interaction matching, by equipping different
task-oriented heads. We believe that HCGNet can also handle
tasks in other biomolecules, such as DNA/RNA and ligands,
with only minor modifications to the proposed framework.
The remaining difficulties are the task definition and dataset
construction. We look forward to and will work towards the
unification of frameworks for biomolecular surface learning.

B. Processing Efficiency

Compared with dMaSIF [14], HCGNet has more parame-
ters (28.3K vs. 2.8K) and requires more GPU memories
(407MB/protein vs. 132MB/protein) due to the design of deep
network. However, due to the hierarchical design, the inference
time of HCGNet (17ms) is comparable with dMaSIF [14]
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(16ms), and much less than other compared methods1, in-
cluding DGCNN [40] (50ms), PointNet [34] (130ms), Point-
Net++ [35] (410ms), PointConv [38] (45ms), and MaSIF [11]
(180ms). In addition, we should point out that 28.3K is
not a big number in deep learning networks (e.g., ∼12M
in ResNet18), and our proposed CFP, hierarchical chemical
learning and interaction indeed do not introduce many training
parameters but bring considerable improvements; see Sec-
tion V-C. All the above results are tested under the same
environment setting of Ubuntu 20.04, RTX 3090, CUDA 11.1,
and PyTorch 1.8.

C. Model Parameters
In Table VI, we compare the performance and training pa-
rameters of networks in the ablative experiments, which shows
that introducing CFP, hierarchical chemical learning and inter-
action can bring significant improvements (1.9%/0.9%/0.7%;
2.3%/1.3%/0.6%) with few increments of training parameters
(0.7K/1.0K/3.4K; 0.7K/1.1K/3.7K) in both two tasks.

D. Scalability
The proposed framework is scalable to some extent. When

processing larger molecules or more complicated downstream
tasks, it would be better to increase the model capability
by increasing the depth/width of chemical and geometric
branches. However, increased computational requirements and
overfitting could be possible issues when doing so.

VI. CONCLUSION

In this work, we highlight the importance of the multiscale
relationship between atoms and the hierarchical interaction
between chemical and geometric features. To this end, we
propose HCGNet, a novel learning architecture for protein
surface analysis. HCGNet takes atoms and surface points of
a given protein as the input. Then two hierarchical branches
are used to learn chemical features from atoms and geometric
features from surface points in parallel. In addition, features
are hierarchically propagated from the chemical branch to
the geometric branch for multi-modality feature fusion. Our
experiments demonstrate that HCGNet significantly improves
the performance over the SoTA method in two challenging
protein analysis tasks: site prediction and interaction matching.
Limitations and future work. Although HCGNet is a general
framework for joint learning from chemical and geometric
features, the hyperparameters and the model design should
be specifically tuned for different downstream applications.
Hence, it is more important to develop a unified framework
and collect numerous data for general biomolecular surface
learning, which will left as our future work.

1For the inference time of DGCNN, PointNet++, MaSIF, and dMaSIF, we
report the results presented in [14].
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