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Abstract—The global prevalence of childhood and adoles-
cent obesity is a major concern due to its association with
chronic diseases and long-term health risks. Artificial intelli-
gence technology has been identified as a potential solution
to accurately predict obesity rates and provide personalized
feedback to adolescents. This study highlights the importance
of early identification and prevention of obesity-related health
issues. To develop effective algorithms for the prediction of
obesity rates and provide personalized feedback, factors such
as height, weight, waist circumference, calorie intake, physical
activity levels, and other relevant health information must be
taken into account. Therefore, by collecting health datasets
from 321 adolescents who participated in Would You Do It!
application, we proposed an adolescent obesity prediction system
that provides personalized predictions and assists individuals in
making informed health decisions. Our proposed deep learning
framework, DeepHealthNet, effectively trains the model using
data augmentation techniques, even when daily health data are
limited, resulting in improved prediction accuracy (acc: 0.8842).
Additionally, the study revealed variations in the prediction of the
obesity rate between boys (acc: 0.9320) and girls (acc: 0.9163),
allowing the identification of disparities and the determination of
the optimal time to provide feedback. Statistical analysis revealed
that the performance of the proposed deep learning framework
was more statistically significant (p<0.001) compared to the
other general models. The proposed system has the potential
to effectively address childhood and adolescent obesity.

Index Terms—Childhood obesity prediction, digital healthcare,
daily health informatics, artificial intelligence, deep learning

I. INTRODUCTION

CHILDHOOD and adolescent obesity rates have become
a growing concern worldwide in recent years. According

to the World Health Organization (WHO), the number of over-
weight children and adolescents aged 5–19 years has increased
from 32 million in 1990 to 42 million in 2013, globally
[1]–[5], as shown in Table I [6]. Obesity in childhood and
adolescence is associated with various health problems, such
as cardiovascular disease, type 2 diabetes, and musculoskeletal
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TABLE I
GLOBAL OBESITY TRENDS FOR CHILDREN, ADOLESCENTS, AND ADULTS

BY GENDER OVER THE PERIOD 2020–2035
[WORLD OBESITY FEDERATION]

Children and Adolescents Adults

Year Boy Girl Men Women

2020 103 (10%) 72 (8%) 347 (14%) 466 (18%)
2025 140 (14%) 101 (10%) 439 (16%) 568 (21%)
2030 175 (17%) 135 (14%) 553 (19%) 693 (24%)
2035 208 (20%) 175 (18%) 690 (23%) 842 (27%)

*Notation: Number of obese individuals (million) and proportion of all
genders
*Age: children, adolescents (5–19 years), adults (20 years and older)
*For children and adolescents, obesity is defined using the WHO classification
of +2SD above median growth reference.

disorders, and can lead to a higher risk of obesity and related
health problems in adulthood [7]–[9].

Predicting obesity rates is crucial because early identifica-
tion of individuals at risk can help prevent and manage obesity-
related health problems [10]–[12]. Artificial intelligence (AI)
technology has been widely used recently to implement digital
healthcare using various approaches [13], such as implement-
ing smart homes using the Internet of Things [14], [15],
building multimodality interfaces for real-world applications
[16]–[18], and providing feedback to users using biomedical
sources [19]–[21]. Furthermore, AI technology is potentially
beneficial to this field through its accurate and personalized
predictions of obesity rates for adolescents. AI algorithms can
be trained in large health information datasets and provide tai-
lored feedback to individuals, allowing them to make informed
health decisions [22]–[26].

The rising prevalence of childhood and adolescent obesity
has become a significant public health concern. Recently,
there has been an increasing focus on developing accurate
and effective approaches to predict obesity rates in children
and adolescents [27], [28]. A key factor in this effort is the
collection and analysis of relevant health data [29]. Various
health-related data, such as height, weight, waist circumfer-
ence, calorie intake, physical activity levels, and other relevant
health information, must be collected to accurately predict
obesity rates in children and adolescents [30]–[34]. These
data are essential to develop accurate algorithms to predict
obesity rates and provide personalized feedback to individuals.
The availability of such datasets can enable researchers and
healthcare providers to develop more effective interventions
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Fig. 1. Data configuration for acquiring daily health data, such as height, weight, body mass index (BMI), step count, sleep time, kcal intake, exercise, and
burned kcal. Data were collected by physical examination, a smartwatch (Samsung Galaxy Fit 2), and the WUDI! application (Injewelme Co. Ltd.) from 321
participants.

and prevention strategies for childhood and adolescent obesity
[11], [35], [36]. However, there are various challenges in col-
lecting and analyzing these data, such as ensuring data quality,
protecting privacy, and addressing ethical considerations [29],
[37], [38].

Several studies have examined the use of AI technology to
predict obesity rates among children and adolescents. Gupta et
al. [24] trained a general long-term memory network (LSTM)
using static and dynamic electronic health record data over a
period of 1–3 years to predict obesity for individuals between
3–20 years. On average, they achieved an area-under-the-curve
score of 0.88. Mondal et al. [35] employed a machine learning
(ML) classifier to categorize individuals into three groups
based on childhood health maintenance data: normal weight,
overweight, and obese. The experimental results demonstrated
the classification accuracies of 89%, 77%, and 89% for the
three respective scenarios. In addition, Cheng et al. [39] used
the Obesity Prediction in Early Life (OPEL) database as their
dataset. After pre-processing the data, they divided the children
who had clinical visits 2, 3, 5, and 8 times between ages 0
and 4 into male and female groups. They trained an LSTM
model and obtained a mean absolute error of 0.98 and a lasso
regression value of 0.72.

The primary objective of this study was to investigate the
application of AI technology in predicting obesity rates in
adolescents. The study evaluated the abilities of AI algorithms
to predict obesity rates and provide personalized feedback to
individuals. The overarching objective is to mitigate obesity
among adolescents by introducing a model with demonstrated
efficacy in predicting adolescent obesity. In addition, the study
explored the importance of data collection, a crucial aspect
in predicting obesity rates in adolescents. The types of data
required for accurate predictions, the challenges involved in
collecting and analyzing such data, and the potential ad-
vantages of data-driven approaches to combat childhood and
adolescent obesity were examined.

The study also proposes a prediction system that uses an
AI model to predict the likelihood of obesity in adolescents

proactively and offers customized feedback based on these
predictions. We adapt deep learning technology because pre-
vious research has not used it to predict obesity rates in ado-
lescents. The proposed model, DeepHealthNet, outperformed
other comparable machine learning-based models in accurately
predicting obesity rates. DeepHealthNet effectively employs
data augmentation techniques to train deep learning models,
even when available daily health data are limited, resulting
in improved predictive performance. Furthermore, the study
investigated variations in the prediction of the obesity rate
between boys and girls, to reveal any disparities and determine
the optimal time to provide feedback. The implementation of
the proposed system has significant potential to address the
issue of childhood and adolescent obesity.

II. MATERIALS AND METHODS

A. Participants

Initially, 321 participants (aged 10–12 years, 133 males
and 188 females), who were students of the same elementary
school in Seoul, participated in the use of the Would You Do
It! (WUDI!) mobile application [40]. Of these 321 participants,
187 (75 males and 112 females) officially underwent body
measurements by the Korea Sports Promotion Foundation
(KSPO) for the experiment, immediately before and after the
experimental period. The overall experimental protocols and
environments were reviewed and approved by the Institutional
Review Board of Chungbuk National University (CBNU-
202308-HR-0196).

The participants were healthy, with no neurophysiological
abnormalities, musculoskeletal disorders, or growth hormone
deficiencies. Before the experiments, they were briefed on how
to use the mobile application and the smartwatch and sync
the data using an animated tutorial. Parents and school per-
sonnel, including principal and class teachers, were informed
of the experimental protocols, paradigms, and purpose. After
ensuring that the parents and guardians of the participating
students had understood the information, their written consent
was obtained according to the Personal Information Protection

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3356580

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 3

Act of Korea, and their signature was obtained on a form that
specified their consent to the anonymous public release of data.
The physical and mental states of the participating students
were evaluated to compare the effect of the application used on
individual states. Furthermore, each participant was required to
maintain normal daily routines and be in normal health during
the experiments.

After submitting the signed consent form, each participant
received a Samsung Galaxy Fit 2 smartwatch, prepared for the
experiment to acquire detailed data on their activity and sleep
for better accuracy and further analysis. As the application
developer, Injewelme Co., Ltd., has officially partnered with
Samsung Health, the data collected by the Samsung device
were automatically synchronized from Samsung Health to
the provided application WUDI! for this experiment, via
application integration (Fig. 1).

Furthermore, prior to the experiment, each participant and
their parents had to log in to WUDI!. First, parents had to agree
to the service terms and enter basic information about their
child, including height and weight. As consent for the use of
the service is required from parents of minors under 14 years
of age according to Korean law, participants could obtain the
invitation code to activate their use of the WUDI! application
only after the parents had completed the registration correctly.
When the students installed WUDI!, they had to input the
MMS invitation code and then watch an animated tutorial that
showed how to properly use the mobile application and sync
the smartwatch.

B. Experimental Protocols for Data Acquisition

The body measurements of the participants were obtained
twice. For this experiment, KSPO supported by providing mea-
suring tools and two staff members in charge of the Songpa
Fitness Certification Center to the participating elementary
school immediately at the 3rd week of July 2021 and the
5th week of September 2021. Offline measurements consisted
of three parameters: 1) height, 2) weight, and 3) waist size,
to confirm and compare the body changes of the individuals
objectively. A simple survey was administered to students
asking what kind of gift they would like to receive as a
surprise. The purpose of this survey was to prepare for a
subsequent intervention to increase participation and attract
more attention to WUDI!.

WUDI! is a mobile application that allows student par-
ticipants to choose a character as an avatar, customize the
avatar with items purchasable with game coins, and complete
missions and mini-games to gain points to level up the avatar
and coins to purchase game items and lottery tickets for the
monthly draw. The missions consisted of three parts: “Play
Well”, “Sleep Well” and “Eat Well”. Play Well tracked the
activity of users, either by acquiring data from the smartwatch
when they wore it or obtaining GPS data, step count, and
moving minutes from the on-board sensors of the mobile
phone when they did not wear the smartwatch. Additionally,
the smart wearable device automatically recognizes exercise
(swimming, football, jumping rope, running, etc.), measures
burned calories, and takes photos of food on their smartphone

to obtain calorie information from the food they ate. Sleep
Well tracked the sleep of users, either acquiring data from
the smartwatch when they wore it during sleep or obtaining
the smartwatch usage information from the mobile phone with
the log record module to know when the usage ceased at night
and reactivated in the morning. Eat Well tracked the nutrition
intake, asking users to take a picture of the food when they
had a meal, and then analyzing the picture to understand the
content and caloric information of the meal through Vision AI
analysis.

Each mission was assessed daily, and there were rewards on
mission completion: points to level up and coins to purchase
items. Mini-games were designed for user motivation, allowing
them to play a limited number of rounds per day as a reward
for daily mission completion in terms of nutrition (Eat Well)
and activity (Play Well). Additionally, there were one-on-one
competitions and a guild system, intended to motivate the
application use by developing a sense of competition and
bonding with each other. A contender can randomly choose
another user to participate in the one-on-one competition to see
who burned more calories within a given period. A guild could
be formed with classmates, and there was a ranking board for
the guild and individual users so that users could compete
for individual ranks and guild ranks. In an approximately
three-minute tutorial, participants completed the installation
and registration of the two mobile applications, WUDI! and
Samsung Health, and learned the proper usage of WUDI!.

To parents, WUDI! provided the visualized statistics and
the predicted body change of their adolescent. In addition,
there was a weekly report summarizing the analysis of data
on activity, nutrition, and sleep of the previous week. Parents
could participate by updating their height and weight weekly,
which was used to track body changes during the experiment
and adjust the trend of change along with the official body
measurement before and after the experiment. There were two
additional functions to obtain more information from parents:
expert columns on health, skin, food and law, and an online
commerce platform with special prices offered by Samsung
Electronics.

The experimental period was about 6 months: a month
during summer vacation and the remaining 5 months dur-
ing the semester. The experiment was initially designed to
compare the difference in overall measurements between two
periods. After the initial body measurements, 321 participants
started using WUDI! on their own mobile phones from the
4th week of July 2022. During the experiment, participants
were free to use WUDI! voluntarily. However, there were two
interventions from Injewelme Co., Ltd.. First, there were two
monthly draws to award gifts based on the results of the survey
of the participants. Second, events were randomly scheduled
during the experimental period to double the rewards awarded,
such as points and coins, to maintain the high usage rate of
WUDI! during the experiment period. Participants were free
to undergo body measurements after the experiment. Conse-
quently, 187 participants completed both body measurements,
but there were some participants who continued to use WUDI!
without undergoing the second body measurement.
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Fig. 2. Overall system framework for obesity prediction for adolescents. DeepHealthNet was proposed for training and evaluating the prediction. It comprises
the outlier removal step, data preprocessing step for transforming health data, application of the SMOTE step to augment the data, training and validation
step, and prediction step.

C. Data Preprocessing

Preprocessing the raw data is essential to ensure that the
data are cleaned, formatted, and transformed into a suitable
format that can be effectively used for ML models (Fig. 2). The
characteristics used were height, weight, step count, burned
calories, calorie intake, and total sleep time. In cases where
height and weight were recorded multiple times in a day, the
last-day record was used. Outliers were removed if their values
showed a significant deviation from the offline measurements.
In cases where data was missing, the mean imputation tech-
nique was applied within each interval, utilizing the actual
values adjacent to the empty data points. The data were
then preprocessed into a time-series data format with multiple
features, based on individuals and dates. However, this resulted
in a significant number of missing values. All features were
not recorded on the same date; thus, daily records were crucial
to preserve the characteristics of time-series data. Therefore,
instead of deleting rows with missing values, we chose to
supplement missing values with the average of the nearest one
or two values (Fig. 2).

To perform labeling, we performed a preprocessing step that

reduced n days’ worth of data for an individual to a single row
by using the average value of n days. This step involved two
elements: how many days’ worth of data being reduced and the
length of the gap between the start dates of each bundle. For
example, if we reduce 10 days of data by averaging every two
days with two gaps, the data will be condensed into five data
points. However, we only selected a gap length that allowed us
to reduce all of the data up to the last day. For instance, if we
reduce 10 days’ worth of data into three bundles of three days
with three gaps, the data on the 10th day cannot be condensed
and hence are not included. The equation to calculate the
bundle number is as follows. D is the total number of record
dates, n is how many days’ worth of data are being reduced,
and m is the length of the gap between the start days of each
bundle. Only the integer result of the function is allowed.

Bundles =
D − (n− 1)

m
(1)

The labels consisted of three categories: weight mainte-
nance, weight gain, and weight loss. The first set of data was
labeled as weight maintenance by default due to the absence of
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Algorithm 1: Training procedure of DeepHealthNet
• Input: Training raw data
X = {xi}Di=1, {xi} ∈ RP×H : Training data for daily health,
where D is the total number of days, P is the number of
participants, and H is the number of health parameters (i.e.,
height, weight, BMI, step count, sleep time, kcal intake, exercise,
burned kcal)
Ω = {Oi}Di=1: Class labels, where
Oi ∈ {Increase,Maintenance,Decrease} and D is the total
number of days

• Output: Trained DeepHealthNet

• Step 1: Preprocessing the input data
1 Input Xbin: Merging data after the outlier removal
2 Transform n days’ worth of data for an individual to a single row

by using the average value of n days
3 Calculate the bundle features using Eq. (1) from the input data
4 Assign the class label according to the features of each bundle
5 Augment the data using SMOTE (Eq. (2))
6 Output Xbin: Preprocessed data with class labels
• Step 2: Training the network

7 Input Xbin: a set of preprocessed data
8 Input Ω = {Otr}Dtr=1: multiclass labels, where

Otr ∈ {Increase,Maintenance,Decrease}, D is the total
number of days

9 The network parameters are initialized to random values for
multiclass labels

10 Calculate feature maps extracted using Eq. (3)–Eq. (4)
11 Generate the loss value using Eq. (5)–Eq. (9)
12 Output XN : Weights and loss values (multiclass)

• Step 3: Fine-tune parameters
13 Minimizing loss values by tuning the network parameters

a comparison group. The reason that the weight change is set
as the main element of labeling is that it is a factor that changes
a lot in a short period of time among the key and weight that
make up the BMI. In most cases, there was no significant
weight change between the previous and current groups when
labeled using this method. So there was an imbalance between
classes due to the large number of weight maintenance labels.
Therefore, we used data augmentation using the synthetic
minority oversampling technique (SMOTE) to solve the data
imbalance. SMOTE is a popular data augmentation technique
used to balance a class distribution by generating synthetic
samples of the minority class [41], [42]. It calculates the
difference vector between a minority class sample and its
nearest neighbor and generate new data points by scaling the
difference vector by a random ratio. x0 represents one of the
candidates for integration as a minority class through SMOTE.
IB(x0,r) represents the coverage of the minority class within
a range with a radius of r, centered at x0. pX(x) represents
the original probability density of the minority class.

IB(x0,r) =

∫
B(x0,r)

pX(x)dx (2)

z, the newly generated point, can be obtained by adding a
uniform random variable w multiplied by the vector difference

between xk (a neighboring point) and x0:

z = (1− w)x0 + wxk (3)

The expression for the density function of point z can be
represented as follows. N and K represent the number of
minority class samples and neighboring samples, respectively.

pZ(z) =

(N −K)

(
N − 1

K

)∫
x

pX(x)

∫ ∞

r=∥z−x∥
pX

(
x+

(z − x)r

∥z − x∥

)
×

(
rd−2

∥z − x∥d−1

)
B
(
1− IB(x,r);N −K − 1,K

)
drdx

(4)

D. Deep Learning Model Architecture

The proposed architecture of the deep learning model
consists of a neural network with multiple hidden layers to
effectively capture complex patterns in the input data (Algo-
rithm 1). The input layer, which is determined by the specific
dimensions of the input data, receives the data for processing
by the neural network. The first hidden layer comprises 128
densely connected nodes, where each node receives input
from all nodes in the previous layer. These nodes apply their
individual weights and biases to the inputs received, allowing
them to learn and contribute to the representations of the
network.

The second hidden layer consists of 256 densely connected
nodes, mirroring the connectivity pattern of the previous layer.
Each node in this layer receives input from all nodes in the
preceding layer and performs its own computations to extract
higher-level features. This hierarchical structure enables the
network to learn increasingly abstract representations as in-
formation flows through the layers.

The third hidden layer consists of 128 densely connected
nodes. Similarly to the previous layers, each node in this
layer receives inputs from all nodes in the preceding layer.
This layer further refines the learned features and contributes
to the overall understanding of the input data. The output
layer, which depends on the specific task at hand, generates
the final outputs of the network. In this case, the number
of nodes in the output layer corresponds to the three classes
under consideration, namely “Increase”, “Maintenance”, and
“Decrease”. Each node in the output layer represents the
likelihood or probability of the input belonging to its corre-
sponding class. For activation functions, the rectified linear
unit (ReLU) function [43] is commonly used in dense layers,
including both the hidden layer. ReLU introduces non-linearity
into the network, allowing it to learn complex relationships
and adapt to various data patterns. However, depending on
the requirements of the problem, other suitable activation
functions can be utilized. The equation for the ReLU activation
function is as follows:

f(x) =

{
0 for x < 0
x for x ≥ 0

(5)

f(x) = max(0, x) (6)
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The proposed model employs the cross-entropy loss func-
tion, which is widely used for multiclass classification prob-
lems [44]. Cross-entropy loss measures the dissimilarity be-
tween predicted probabilities and the true class labels, guiding
the network to minimize this discrepancy during training. By
optimizing cross-entropy loss, the model aims to improve its
performance for the prediction of obesity rates. The exper-
iment was conducted by fixing the loss function with 300
epochs, in which the loss function optimally converges. The
equation for the cross-entropy loss function is expressed as
follows: y represents the true one-hot encoded label vector
and ŷ represents the predicted probability distribution between
classes. p is the predicted probability observation of the class.

CL(y, ŷ) = −(y log(p) + (1− y) log(1− p)) (7)
CL(y, ŷ) = −Σ(y log(ŷ)) (8)

In addition, the negative log-likelihood (NLL), minimum
negative log-likelihood (MNL), and maximum likelihood esti-
mation (MLE) are calculated simultaneously below. p(y) is
a scalar rather than a vector. It is the value of the single
dimension where the y is the truth of the ground. Thus, it
is equivalent to cross-entropy.

NLL(y) = −log(p(y)) (9)

MNL(y) = min
θ

∑
y

− log(p(y; θ)) (10)

MLE(y) = max
θ

∏
y

p(y; θ) (11)

E. Comparison Models

Several ML classification methods can be used to pre-
dict obesity rates in adolescents using AI technology. We
demonstrated that the proposed model outperforms traditional
machine learning classification models. The following are
some commonly used classification methods for this task:

· Naı̈ve Bayes classifier (NB) [45]: The NB classifier is
a probabilistic method that assumes that the features are
independent of each other. It is effective for datasets with a
large number of features and is computationally efficient.

· Regularized linear discriminant analysis (RLDA) [46]:
RLDA is a statistical method used to find a linear combination
of features that can effectively divide classes. It is effective for
datasets with a small number of features and assumes that the
data are normally distributed.

· Random forest (RF) [47]: This is an ensemble learning
method that combines multiple decision trees to improve the
accuracy of the classification. RF can handle a large number
of features and is useful for feature selection. It handles
imbalanced datasets effectively.

· Decision tree (DT) [48]: A DT is a tree-like structure
that represents the decision-making process. It is a popular
method for classification and can handle both numerical and
categorical data. Decision trees are easy to interpret and
visualize.

· Support vector machine (SVM) [49]: SVM is a supervised
learning algorithm that uses a hyperplane to separate data

points into different classes. It is effective for handling high-
dimensional data and can handle nonlinearly separable data
by using kernel functions [50].
· Long short-term memory (LSTM) [51]: LSTM is a type of

recurrent neural network. It can handle sequential data, such
as time-series data, and is effective in capturing long-term
dependencies in the data.

F. Statistical Analysis

A statistical analysis was performed to evaluate the perfor-
mance of ML models in predicting obesity rates in adolescents.
To ensure the validity of the analysis, normality [52] and
homoskedasticity tests [53] were performed on the data, con-
sidering the small sample size. The Shapiro-Wilk test was used
to verify the normality of the data, and the results showed that
the null hypothesis of normality was satisfied. Additionally, we
confirmed homoskedasticity using Levene’s test [53] for each
comparative group.

We conducted a paired t-test to compare the performance
of various ML models [54]. This statistical test allowed us to
determine the statistical significance between the models and
identify the most effective model for predicting obesity rates
in adolescents. The results of the paired t-test were analyzed
to provide information on the performance of the ML models
and to guide the selection of the best model to predict obesity
rates.

G. Performance Measurement Metrics

Several evaluation metrics can be used to assess the per-
formance of classification models. We use evaluation metrics,
such as accuracy, precision, recall, and F1-score, to assess the
performance of the model [55], [56]. These metrics were used
to measure the ability of the model to accurately predict the
obesity status of adolescents. The results of the evaluation
were analyzed to determine the effectiveness of SMOTE
and the performance of the ML models. Accuracy, denoting
the proportion of correctly classified cases, gives a broad
perspective on the overall correctness of the model (Eq. (12)).
In contrast, precision emphasizes the ratio of true positive
(TP) predictions among all positive predictions, shedding light
on the model’s ability to minimize false positives (Eq. (13)).
Recall, also known as sensitivity, computes the proportion of
TP predictions among all actual positive instances, indicating
the model’s capacity to identify positive cases (Eq. (14)).
Furthermore, the F1-score, which amalgamates precision and
recall, provides a balanced metric considering both false pos-
itives (FP) and false negatives (FN) (Eq. (15)). TP represents
true positive, which refers to cases where both the real and
predicted labels are true. True negatives (TN) represent true
negatives, indicating cases where both the real and predicted
labels are false. FP represents false positive, indicating cases
where the real label is false, but the predicted label is true.
Finally, FN denotes false negative, indicating cases where the
real label is true, but the predicted label is false.
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TABLE II
PERFORMANCE EVALUATION OF DEEPHEALTHNET USING PERFORMANCE METRICS, SUCH AS ACCURACY, F1-SCORE, RECALL, AND PRECISION

Models 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold Accuracy F1-Score Recall Precision
NB 0.3700 0.3704 0.3719 0.3724 0.3711 0.3721 0.3708 0.3706 0.3719 0.3727 0.3714 0.2536 0.5546 0.3714

RLDA 0.4965 0.4969 0.4966 0.4957 0.4967 0.4978 0.4956 0.4967 0.4960 0.4953 0.4964 0.4939 0.4995 0.4964
RF 0.5470 0.5473 0.5478 0.5474 0.5475 0.5479 0.5464 0.5478 0.5486 0.5492 0.5477 0.5365 0.5530 0.5477
DT 0.6614 0.6618 0.6613 0.6614 0.6602 0.6605 0.6603 0.6596 0.6607 0.6613 0.6608 0.6616 0.6881 0.6608

SVM 0.6851 0.6839 0.6841 0.6853 0.6850 0.6851 0.6847 0.6855 0.6834 0.6836 0.6846 0.6850 0.6891 0.6846
LSTM 0.6948 0.6965 0.6984 0.7018 0.7015 0.7021 0.7021 0.7033 0.7024 0.7045 0.7008 0.7000 0.7037 0.7008

DeepHealthNet 0.8847 0.8854 0.8820 0.8836 0.8838 0.8824 0.8833 0.8825 0.8851 0.8842 0.8837 0.8797 0.8958 0.8837

Accuracy =
TP + TN

TP + FN + FP + TN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 score = 2× Recall × Precision

Recall + Precision
(15)

In addition, it is crucial to evaluate the models on different
subsets of the data using 10-fold cross-validation to obtain
reliable performance estimates. This approach could support
obtain a more robust assessment of the performance and
generalization ability of the model. In this study, the models
were trained on 90% of the data and tested on the remaining
10% of the data.

III. EXPERIMENTAL RESULTS

A. Predicted Performances using Proposed and Comparison
Models

The experimental results presented in Table II demon-
strate the superior performance of the proposed deep learning
framework. It achieved an impressive average accuracy of
0.8837, outperforming all compared models. The F1-score,
which measures the balance between precision and recall, was
also high at 0.8797. The recall value, which indicates the
proportion of true positives identified, was 0.8958, while the
precision value, representing the accuracy of positive predic-
tions, matched the overall accuracy at 0.8837. Compared to
the other models, the LSTM model exhibited a relatively high
accuracy of 0.7008. Among traditional ML classifiers, SVM
demonstrated a commendable performance with an accuracy
of 0.6846. In contrast, the NB model exhibited the lowest
accuracy of 0.3714, which is comparable to random chance ac-
curacy. Therefore, DeepHealthNet significantly outperformed
all models compared in terms of accuracy, F1-score, recall,
and precision. Across different folds, the standard deviation
remained consistently below 0.02 for all models. Therefore,
there was no significant variance or instability during the
training process. Performance metrics were consistently dis-
tributed, suggesting the robustness and reliability of the models
throughout the training phase. Overall, the experimental results
confirmed the effectiveness of DeepHealthNet, which consis-
tently demonstrated superior accuracy and outperformed the
models compared in terms of various performance measures.

TABLE III
STATISTICAL ANALYSIS OF DIFFERENCES BETWEEN THE PROPOSED AND

COMPARED MODELS IN TERMS OF GRAND-AVERAGE PREDICTED
PERFORMANCES (ACCURACY, F1-SCORE, RECALL, PRECISION)

Comparison models Accuracy F1-Score Recall Precision
NB vs. DeepHealthNet p<0.001 p<0.001 p<0.001 p<0.001

RLDA vs. DeepHealthNet p<0.001 p<0.001 p<0.001 p<0.001
RF vs. DeepHealthNet p<0.001 p<0.001 p<0.001 p<0.001
DT vs. DeepHealthNet p<0.001 p<0.001 p<0.001 p<0.001

SVM vs. DeepHealthNet p<0.001 p<0.001 p<0.001 p<0.001
LSTM vs. DeepHealthNet p<0.001 p<0.05 p<0.05 p<0.05

Fig. 3: Confusion Matrix
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Fig. 3. Confusion matrices of each class (Increase, Maintenance, and
Decrease) across all the participants using DeepHealthNet

Furthermore, the results of the statistical analysis presented
in Table III indicate the differences between the proposed deep
learning framework and the comparison models in terms of
various performance metrics. The obtained p-values indicate
the level of statistical significance and help assess whether the
observed differences are coincidental or truly meaningful. As
the p-values were consistently less than 0.001 for accuracy, F1-
score, recall, and precision, there is a highly significant statisti-
cal difference between the proposed deep learning framework
and the comparison models in terms of these measures.

However, when comparing the proposed deep learning
framework with the LSTM model in terms of recall and
precision, the obtained p-value was less than 0.05, indicating
a statistically significant difference. Although the proposed
model generally outperformed the LSTM, this finding suggests
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TABLE IV
PERFORMANCE EVALUATION OF BOY AND GIRL GROUPS USING PERFORMANCE METRICS, SUCH AS ACCURACY, F1-SCORE, RECALL, AND PRECISION

Boy group Girl group
Models Accuracy F1-Score Recall Precision Models Accuracy F1-Score Recall Precision

NB 0.3779 0.2612 0.4822 0.3779 NB 0.4076 0.3297 0.5216 0.4076
RLDA 0.5089 0.5043 0.5156 0.5089 RLDA 0.5087 0.5082 0.5099 0.5087

RF 0.6459 0.6472 0.6556 0.6459 RF 0.5840 0.5815 0.6005 0.5840
DT 0.7787 0.7787 0.7991 0.7787 DT 0.6914 0.6931 0.7302 0.6914

SVM 0.7965 0.7964 0.7993 0.7965 SVM 0.6909 0.6906 0.6987 0.6909
LSTM 0.6493 0.6491 0.6500 0.6493 LSTM 0.7675 0.7664 0.7678 0.7675

DeepHealthNet 0.9320 0.9318 0.9346 0.9320 DeepHealthNet 0.9163 0.9155 0.9206 0.9163

TABLE V
STATISTICAL ANALYSIS OF DIFFERENCES BETWEEN PROPOSED AND COMPARED MODELS IN TERMS OF GRAND-AVERAGE PREDICTED PERFORMANCES

(ACCURACY, F1-SCORE, RECALL, AND PRECISION)

Within boy group Within girl group between boy and girl group

Comparison models Accuracy F1-Score Recall Precision Accuracy F1-Score Recall Precision Comparison models Accuracy F1-Score Recall Precision

NB vs. DeepHealthNet p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 NB vs. NB p>0.01 p>0.01 p>0.01 p>0.01

RLDA vs. DeepHealthNet p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 RLDA vs. RLDA p>0.01 p>0.01 p>0.01 p>0.01

RF vs. DeepHealthNet p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 RF vs. RF p>0.01 p>0.01 p>0.01 p>0.01

DT vs. DeepHealthNet p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 DT vs. DT p<0.005 p<0.005 p>0.01 p<0.005

SVM vs. DeepHealthNet p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 SVM vs. SVM p<0.001 p<0.001 p<0.001 p<0.001

LSTM vs. DeepHealthNet p<0.001 p<0.05 p<0.05 p<0.05 p<0.001 p<0.05 p<0.05 p<0.05 LSTM vs. LSTM p<0.001 p<0.001 p<0.001 p<0.001

DeepHealthNet vs. DeepHealthNet p>0.01 p>0.01 p>0.01 p>0.01

that there are certain scenarios in which the LSTM might ex-
hibit comparable performance in terms of recall and precision.

B. Performance Measurement using Confusion Matrix

The study conducted a detailed analysis of the confusion
matrix for the proposed models to analyze their performance
for each class using k-fold datasets, as illustrated in Fig. 3.
The average accuracy of the proposed model was determined
to be 0.8837, with the “Decrease” class exhibiting the highest
true positive value at 0.9905. The “Increase” and “Mainte-
nance” classes showed a similar TP value of 0.9204 and
0.9720, respectively. Although there were some variations in
performance between different classes, overall performance
did not show significant differences. Therefore, the proposed
model was effective in predicting obesity rates in adolescents,
demonstrating comparable performance across all classes.

Among the models compared, the NB model achieved
the highest TP value of 0.9171 for the “Increase” class.
For the “Maintenance” and “Decrease” classes, the LSTM
model exhibited the highest TP values of 0.7765 and 0.9203,
respectively. These findings suggest that the NB model cor-
rectly identified instances of increased obesity rates, while
the LSTM model recognized instances of maintaining weight
or decreasing obesity levels. The high accuracy observed
in this experiment can be attributed to the availability of
sufficient existing data to measure obesity in adolescents over
a short period and to provide valuable feedback, such as
appropriate exercise recommendations, to manage obesity in
this population. Consequently, the proposed model provided
accurate predictions of obesity rates in adolescents, exhibiting
high precision.

Analysis of the confusion matrix confirmed the effectiveness
of the proposed model in predicting obesity rates in adoles-
cents. The proposed model demonstrated the highest TP in all
classes.

C. Comparison of Predicted Performances between Boy and
Girl Groups

Table IV presents the results of the obesity prediction by
dividing the dataset into the boy and girl groups. The study
aimed to explore whether there are differences in the manifes-
tation of obesity between boys and girls and whether it would
be more effective to analyze the prediction performance sepa-
rately for each group. The proposed deep learning framework
was utilized to assess the performance in predicting obesity in
both groups. The results revealed that the obesity prediction
performance achieved by the proposed model was 0.9320 for
the boy group and 0.9163 for the girl group. Results of boy
groups, there was an improvement in performance by 0.0157
compared to results of girl groups. The F1-scores for the boy
and girl groups were 0.9318 and 0.9155, respectively, further
indicating a comparable performance between the genders. In
particular, the prediction performance in the boy group was
approximately 2% higher than in the girl group. The proposed
deep learning framework demonstrated the highest predictive
performance for obesity, regardless of gender. Specifically,
SVM showed the highest performance (0.7965) in the boy
group, while LSTM (0.7675) outperformed the other models
in the girl group. The performance improved because the
separation of the data reduced the sample size and made the
features of each gender more visible.

Table V presents an analysis of the statistically significant
differences within each gender group for the compared models
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Fig. 5: Average accuracy by Day Session
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Fig. 4. Comparison of classification accuracy per nth-day sessions. (a) Classification accuracy per day session using DeepHealthNet and the compared models.
The red bar indicates the highest accuracy across all day sessions. (b) Comparison of classification accuracy using DeepHealthNet by gender. In the 164th-day
session, the boy group achieved the highest accuracy, and the girl group exhibited the highest accuracy in the 137th-day session.

and the proposed deep learning framework. The aim of this
analysis was to examine whether there were differences in
the obesity prediction performance between the boy and girl
groups and to determine if the proposed model outperformed
the compared models within each group. Statistical analysis re-
vealed that the obesity prediction performance of the proposed
deep learning framework was more statistically significant
(p< 0.001) compared to the other general models, even when
considering the boy and girl groups separately. This highlights
the superiority of the proposed model in accurately predicting
obesity in both genders.

Furthermore, the results presented in Table V can be used
to examine whether there were significant differences in the
obesity prediction performance between the boys and girls
groups for each of the compared models. The results showed
that for models such as DT, SVM, and LSTM, there was
a statistically significant difference in performance between
the boy and girl groups (p<0.005 and p<0.001). However,
while there were no statistically significant differences for the
other compared models (i.e., NB, RLDA, RF, and the proposed

model), their obesity prediction performance was significantly
lower. Overall, the proposed deep learning framework demon-
strated a higher obesity prediction performance than the other
models, without significant differences between the gender
groups. This indicates that the proposed model can effectively
address the issue of unbalanced data according to gender.
The preprocessing module employed in the framework helps
mitigate this issue, ensuring reliable and accurate predictions
regardless of the gender distribution in the dataset.

D. Performance Comparison using Each Day Session

Fig. 4(a) illustrates the obesity prediction performance for
each day session. The graph illustrates the relationship be-
tween the day session and the corresponding predictive per-
formance of the proposed model. As day sessions progressed,
the predictive performance of obesity gradually improved.
According to the proposed model, around the 60th-day ses-
sion, the performance reached saturation, indicating that the
model had learned and captured the underlying patterns in the
data. In particular, the highest obesity prediction performance

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3356580

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 10

was achieved in the 162nd-day session, recorded as 0.8848.
However, performance gradually decreased after the 170th-day
session.

In contrast, the prediction performance of the other com-
pared model groups showed different patterns. For example,
in the case of LSTM, the highest performance was observed
in the 106th-day session, but subsequently the performance
exhibited fluctuations with alternating increases and decreases.
These findings suggest that the proposed model can consis-
tently predict the obesity levels of the target population for
future time intervals, typically spanning approximately 5 to
6 months. However, the performance of the other compared
models showed uncertainty in determining the appropriate
time duration to collect new data sets to achieve accurate
predictions. The performance of the compared models varied
and the required period of data collection to achieve reliable
predictions is unclear. These results emphasized the effec-
tiveness and long-term predictive capabilities of the proposed
model in predicting obesity levels over an extended period.

Fig. 4 (b) shows the temporal evolution of obesity prediction
performance using the proposed model, specifically for each
gender group. The patterns depicted in Fig. 4(b) show the
trajectory of obesity prediction performance for both genders.
The graph shows the variations in performance over several
days for boys and girls. In the 164th-day session, the boy group
achieved the highest result (0.9712), similar to the 162nd-
day session, which encompassed the entire data sample. In
contrast, the group of girls exhibited the highest performance
(0.9549) in the 137th-day session. The day session that repre-
sented the highest performance between the two gender groups
had a one-month difference. This suggests that significant
physical changes, including BMI, occurred over approximately
four months for the girl group. In contrast, six months of daily
health data were required to accurately predict BMI for the boy
group, indicating a slower pace of physical change compared
to the girl group. These contrasting trends in physical changes
between the male and female groups were reflected in the
deep learning model. The findings confirmed that the obtained
data were also considered, given the faster rate of physical
change in the girl group compared to the boy group. The
results of this section also show the practicality of being able
to quickly apply to real life with the optimized date shown
in the experiment without having to experiment with all day
sessions when applied in real-world.

E. Convergence Curve for Model Training

The convergence process of the proposed model was exam-
ined to validate its stability and reliability. This process was
visualized through the error change curve and the accuracy
values across different epochs, as depicted in Fig. 5. The
proposed model achieved convergence with saturation after ap-
proximately 100 epochs in terms of training accuracy. Beyond
this point, the accuracy values remained consistently high,
exceeding 0.9. This indicates that the model learned effectively
from the training data and reached a stable performance level.
Furthermore, the loss values of the proposed model reached
saturation at approximately 150 epochs, where they remained

Fig. 4: Convergence Curve
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Fig. 5. Convergence curve of the training error and classification accuracy. (a)
Training loss. The errors were calculated to obtain the optimized parameters
during network training. (b) Predicted performance according to the number
of epochs.

below 0.1. This means that the model minimized its training
loss and obtained a low error, making it optimal for the training
data.

Overall, the convergence analysis demonstrated that the
proposed model became stable after approximately 100 epochs
for the training accuracy and 150 for the loss values. This
indicates that the model effectively learned from the data and
could provide reliable predictions with high accuracy while
maintaining low levels of error.

IV. DISCUSSIONS

The results of the study demonstrated the excellent perfor-
mance of the proposed deep learning framework for predicting
obesity levels in adolescents. The experimental findings indi-
cated that the proposed model outperformed all the compared
models in terms of accuracy, F1-score, recall, and precision.
The average accuracy achieved by the proposed model was
0.8837, exceeding the performance of all other models. The
F1-score, which measures the balance between precision and
recall, was also high at 0.8797. The recall value, which
represents the proportion of true positives identified, was
0.8958, and the precision value, indicating the accuracy of
positive predictions, matched the overall accuracy at 0.8837.
Furthermore, statistical analysis indicated the significance of
the differences between the proposed deep learning framework
and the models compared in terms of various performance
metrics. The obtained p-values were consistently below 0.001,
indicating a highly significant statistical difference in favor of
the proposed model.

The study also investigated the prediction performance of
the model by dividing the dataset into boy and girl groups.
As a result, the proposed model showed a better obesity
prediction performance when boys and girls were divided than
in the combined group. When training in the boy groups,
it showed slightly better performance than when training in
the girl groups. However, both showed higher accuracy than
0.9. This finding suggested that the proposed deep learning
framework was effective in predicting obesity rates regardless
of gender, demonstrating its robustness and generalizability.
The ability of the model to perform well in both the boy
and girl groups is significant because it demonstrates that
the model is not biased toward a particular gender. This
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suggests that the features and patterns captured by the model
are relevant and applicable to both genders to predict obesity
levels. This finding has practical implications, as it indicates
that the model can be used in diverse populations without the
need for gender-specific modifications or adjustments. It can
help prevent obesity in real-time by applying it to applications
such as WUDI! to predict obesity by analyzing data in real-
time.

Furthermore, the statistical analysis conducted within each
gender group reinforced the superiority of the proposed
model. Even when considering the boys and girls groups
separately, the obesity prediction performance of the model
was more statistically significant compared to those of the
other models. This highlights its effectiveness in accurately
predicting obesity levels in both boys and girls and provides
additional evidence for its robustness. Overall, the prediction
performance in separate boy and girl groups emphasized the
effectiveness of the proposed deep learning framework in
accurately predicting obesity levels regardless of gender. This
strengthens the applicability and reliability of the model in
diverse populations and contributes to its generalizability.

The proposed model’s capacity to forecast obesity over
time was demonstrated through the visualization of its perfor-
mance, which yielded significant knowledge about its long-
term predictive potential. The graph demonstrated a gradual
improvement in the model’s performance as the duration
increased, with the highest prediction performance achieved
on the 162nd day session. This indicates that the proposed
model could consistently forecast obesity levels over an ex-
tended period. The improvement in performance over time
suggests that the model benefits from a longer duration of
data collection and learning. As more data become available,
the model can capture more patterns and relationships, leading
to improved predictive accuracy. The saturation point was
reached after approximately 60 days, suggesting that model
performance plateaus and that collecting data beyond this
point may not significantly improve predictive capabilities.
The compared models exhibited varying levels of performance,
highlighting the uncertainty associated with determining the
optimal duration to collect new data sets. In contrast, the pro-
posed model demonstrated consistent and reliable long-term
predictions, outperforming the compared models. Performance
visualization of the model over time indicates that the pro-
posed model can be utilized for long-term obesity prediction,
offering reliable forecasts beyond shorter timeframes. This
knowledge is valuable in decision-making processes related to
interventions, public health policies, and resource allocation,
as it allows for more accurate and informed predictions of
obesity levels over long periods.

However, this study has some limitations. First, the study
focused on a specific age group, and the generalizability of
the proposed model to other age groups or populations needs
further investigation. Second, the study utilized a specific
dataset for training and evaluation, and the generalizability
of the proposed model to other datasets should be explored.
Furthermore, the study did not consider certain factors that
could influence obesity, such as socioeconomic status, dietary
habits, or genetic factors. Incorporating these factors into the

model should enhance its predictive capabilities. Furthermore,
the study employed a deep learning framework, which may
require substantial computational resources and expertise for
implementation. The feasibility and practicality of the pro-
posed model in real-world settings need further consideration.
Finally, the study did not perform a longitudinal analysis to
assess the performance of the model over a period of time
beyond the available data. In future studies, we look forward
to investigating the stability and accuracy of the model over a
more extended timeframe.

V. CONCLUSION AND FUTURE WORKS

This study proposed a deep learning framework to predict
obesity levels in adolescents. The proposed model demon-
strated superior performance compared to other models,
achieving high accuracy, F1-score, recall, and precision values.
Statistical analysis confirmed the significant differences in
favor of the proposed model. The effectiveness of the model
was consistent between gender groups, highlighting its ro-
bustness. Visualizations proved the model’s ability to provide
reliable long-term predictions, outperforming the compared
models, and the convergence curve showed the model was
optimized. Therefore, considering the limitations of this study
and future research directions, we plan to further improve the
generalizability of the model by using specific data such as
mental factors and a residential area, incorporating additional
factors and assessing its performance over extended periods.
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