
OXPath-based Data Acquisition for dblp
Christopher Michels
Trier University, dblp
michelsc@uni-trier.de

Ruslan R. Fayzrakhmanov
University of Oxford

ruslan.fayzrakhmanov@cs.ox.ac.uk

Michael Ley
Trier University, dblp

ley@uni-trier.de

Emanuel Sallinger
University of Oxford

emanuel.sallinger@cs.ox.ac.uk

Ralf Schenkel
Trier University, dblp
schenkel@uni-trier.de

ABSTRACT
We demonstrate how the contemporary problems of data acquisi-
tion for dblp can be tackled with OXPath. It enables web data ex-
traction and wrapper maintenance for heterogeneous data sources
on a simple declarative level. Its features render it a feasible instru-
ment to retrieve the varying and changing web representations of
the prototypical substructures in the bibliographic domain.

CCS CONCEPTS
•Information systems →Digital libraries and archives;

KEYWORDS
Bibliography, dblp, digital libraries, OXPath, web data extraction
ACM Reference format:
Christopher Michels, Ruslan R. Fayzrakhmanov, Michael Ley, Emanuel
Sallinger, and Ralf Schenkel. 2017. OXPath-based Data Acquisition for
dblp. In Proceedings of Joint Conference on Digital Libraries, Toronto, Ontario,
Canada, June 2017 (JCDL’17), 2 pages.
DOI: 10.475/123 4

1 INTRODUCTION
With the popularity of the Semantic Web and the promotion of in-
teroperability standards1, publishers are ideally expected to provide
access to structured data sources. However, most of them se�le for
electronic catalogs designed for human consumption. �us, data
acquisition requires simulated user interaction with sophisticated
interfaces to query web documents. �e increasing prevalence of
JavaScript-driven web applications among the publishers of more
than 1,500 journals and more than 4,000 conference and workshop
series listed by the open bibliographic information provider dblp
computer science bibliography2 constitutes a problem of data har-
vesting. �e dblp crawling architecture meets the resulting extent
of data heterogeneity by leveraging more than 100 customized
wrappers. �ese so�ware components extract data from the HTML
source of publisher websites based on regular expressions. �is

1h�ps://www.openarchives.org
2h�p://dblp.org

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
JCDL’17, Toronto, Ontario, Canada
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . .$15.00
DOI: 10.475/123 4

approach reaches its limits for two reasons: �e wrappers are im-
practical or insu�cient with the interactive elements of dynamic
web content. Furthermore, they are expensive to maintain due to
frequent layout changes in the source code of web pages.

Among other available extraction methods, the open source web
data extraction language OXPath3 [1] constitutes a more feasible
solution to both problems: Its declarative expressions preserve the
simplicity of the XML query language XPath, abstract from the
implementation details of traditional dblp wrappers and enable
more feasible wrapper maintenance. It extends XPath with action
steps to simulate user interaction with web applications, the Kleene
star for iteration, and markers for the extraction of a tree-like
result across multiple interactions and visited pages. Its pliable
output-handling interface suits the needs of di�ering recording
guidelines among database publishers. With examples of OXPath-
based wrappers for dblp, we demonstrate how OXPath tackles the
de�cits of the replaced dblp wrappers and synergizes well with the
common, recurring substructures of the bibliographic domain.

2 EXTRACTING METADATAWITH OXPATH
Harvesting bibliographic metadata assumes various forms of ex-
traction processes and involves crawling data on the Surface Web
as well as leveraging complex web interfaces to pull relevant data
from the Deep Web. �e back-end databases of digital libraries
are queried by submi�ing search terms to a form, applying �lter
options as necessary, and harvesting the resulting list of publica-
tions. For conference or workshop proceedings, articles usually
are extracted from a plain table of contents. An overview page for
all events of a series as a higher level of extraction is not always
provided. �e websites of journal publishers typically require a
sequence of extraction steps for the following publication compo-
nents: 1) volumes, 2) issues, and 3) articles. A generic OXPath
wrapper considering all these relevant information levels can be
represented by the following schematic expression.
1 doc('URL')

2 /volume_path:<volume>

3 [./{action}/issue_path:<issue>

4 [./{action}/(/paginator_path/{action})*

5 /article_path:<article>

6 [./{action}/data_path:<data>] ] ]

First, the expression visits the web page for a given journal. �en,
it navigates, interacts, and extracts from the di�erent structural
levels involved. Interactions {action} can be related to clicking
({click}) or entering search terms into a text �eld ({"OXPath"})
3h�p://www.oxpath.org

https://www.openarchives.org
http://dblp.org
http://www.oxpath.org


JCDL’17, June 2017, Toronto, Ontario, Canada Michels et al.

to dynamically load additional content into the current web page
or to navigate to an entirely new one. Line 1 renders a seed web
source. Line 2 identi�es volume elements with the XPath selector
volume path and extracts relevant data with the extraction marker
as in :<volume>. Line 3 interacts with the current volume container
with the action step {action} and acquires the nested issue-related
information with the use of a predicate, i.e., the construct []. By
analogy, line 4 progresses to the next level of journal components
and additionally contains a Kleene star (()*). �is construct enables
the iteration over a paginated list of articles, e.g., by selecting and
clicking a bu�on to access the next page. Lines 5-6 extract articles
with their respective data �elds.

�e wrapper evaluation outputs a result tree, which in our case
has three main layers (except the root): 1) volumes, 2) issues, and
3) articles with corresponding a�ributes such as publication year,
issue number, title, authors, pages, etc. �is output tree can be
converted into a representation appropriate for further processing.

3 OXPATH IN THE TRENCHES OF DBLP
With the dblp crawling architecture, the OXPath template above
cannot always be applied directly for harvesting journal metadata.
Not all content provided by publishers is automatically eligible
for extraction. New publications have to be identi�ed before their
metadata are crawled and referenced in dblp. Such intercepting
�lters suggest the decomposition of the original OXPath template.
For instance, the content platforms for journal publishing usually
present their lists of issues (LOIs) with links to the individual tables
of contents (TOCs). �ese URLs allow the generic expression to be
decomposed in two expressions.

Starting from the page with a list of all issues (URL TO LOI) for a
given journal, the �rst expression extracts the URL for the individual
tables of contents and accompanying metadata:
1 doc('URL_TO_LOI')

2 /volume_path:<volume>

3 [./{action}/issue_path:<issue>

4 [./link_path:<url>:<metadata>] ]

�e collected information, e.g., the volume and issue numbers,
is standardized by the dblp crawling architecture. Only newly
released issues are selected from the extracted URLs. �e second
template is used to evaluate an OXPath expression by specifying
URL TO TOC for each URL in the �ltered set. �us, the extraction
process is resumed on the level of articles with the table of contents
on each visited page.
1 doc('URL_TO_TOC')

2 /(paginator_path/{action})*

3 article_path:<article>

4 [./{action}/data_path:<data>]

By using OXPath, the maintenance of these extraction steps
is simpli�ed signi�cantly. With traditional dblp wrappers, both
regular expressions and wrapper-speci�c code become invalid if
publishers decide to use a new content platform or structurally
change their websites. With OXPath these changes usually require
adapting the XPath selector to the new representation of volumes,
issues, articles, and accompanying data �elds in the DOM tree. Ac-
tion steps can be added and adapted in the expression templates
analogously if user interaction is required. �e following OXPath

expressions specify the templates presented above for journal meta-
data extraction from the Cambridge Core4 platform and illustrate
the intuitiveness of this adaptation process.
1 doc('https://www.cambridge.org/core/...')

2 //*[contains(@href, 'panel')]:<volume>

3 [./following-sibling::*//a:<issue>

4 [.:<url=qualify-url(@href)>

5 :<metadata=string(.)>] ]

1 doc('https://www.cambridge.org/core/journals/...')

2 /(//hr[1]//following::*[@class='pagination'][1]

//a[contains(., 'Next')]/{clkwithchange /})*

3 //div[@data-prod-id]:<article>

4 [.//li[@class="title"]/a[@class="part-link"]

:<title=normalize-space(.)>]

5 [? .//li[@class="author"]:<authors=

normalize-space(string-join(./a

[@class="more-by-this-author"], ', '))>]

�e extent of variety among publisher websites requires a set
of variations of the generic expressions above. More characteris-
tic expressions5 illustrate this divergence and the advantages of
OXPath. �is demonstration will show how OXPath expressions
for arbitrary publisher web sites are incrementally constructed and
applied to extract metadata for dblp.

4 CONCLUSION AND FUTUREWORK
OXPath is a suitable tool for creating robust wrapper components
in the face of the huge variety of interactive publisher websites
for bibliographic databases such as dblp. Due to their declarative
nature in the spirit of XPath, OXPath expressions are convenient
for selecting the frequently occurring nested web page elements
prototypical of the bibliographic domain. Parameterized templates
can be speci�ed with suitable XPath selectors for these typical
repetitive structures. If page layouts are changed, these selectors
can be re-speci�ed in the templates accordingly. Action steps, in
turn, can be added to simulate user interaction as necessary.

Wrapper maintenance tasks can be facilitated further by imple-
menting tools assisting catalogers in devising OXPath expressions
from templates. Furthermore, the overall approach can be improved
by automating expression decomposition for links, e.g., leading to
the pages of individual articles to extract additional data �elds.
�ese partial expressions then can be executed repeatedly to retry
data extraction from error-prone detail pages, or evaluated in a
distributed way to increase e�ciency.

ACKNOWLEDGMENTS
�is work was supported by the DFG grant LE 1088/1-2 and the
EPSRC programme grant EP/M025268/1.

REFERENCES
[1] Tim Furche, Georg Go�lob, Giovanni Grasso, Christian Schallhart, and An-

drew Jon Sellers. 2013. OXPath: A language for scalable data extraction, au-
tomation, and crawling on the deep web. VLDB J. 22, 1 (2013), 47–72. DOI:
h�p://dx.doi.org/10.1007/s00778-012-0286-6

4h�ps://www.cambridge.org/core
5See also h�p://dblp.uni-trier.de/papers/oxpath-examples-dblp.pdf for an accompany-
ing paper with more examples of OXPath expressions.

http://dx.doi.org/10.1007/s00778-012-0286-6
https://www.cambridge.org/core
http://dblp.uni-trier.de/papers/oxpath-examples-dblp.pdf

	Abstract
	1 Introduction
	2 Extracting Metadata with OXPath
	3 OXPath in the Trenches of dblp
	4 Conclusion and Future Work
	Acknowledgments
	References

