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ABSTRACT

Services and applications based on the Memento Aggrega-
tor can suffer from slow response times due to the federated
search across web archives performed by the Memento in-
frastructure. In an effort to decrease the response times, we
established a cache system and experimented with machine
learning models to predict archival holdings. We reported on
the experimental results in previous work and can now, after
these optimizations have been in production for two years,
evaluate their efficiency, based on long-term log data. Dur-
ing our investigation we find that the cache is very effective
with a 70 — 80% cache hit rate for human-driven services.
The machine learning prediction operates at an acceptable
average recall level of 0.727 but our results also show that a
more frequent retraining of the models is needed to further
improve prediction accuracy.
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1. INTRODUCTION
Since Memento was standardized in 2013 [4], a variety of

services have emerged based on the protocol. Examples are:

o the Memento TimeTravel web serviceﬂthat allows users
to search for archived copies of web pages (Mementos)
across publicly available web archives,

e the Memento for Chromd?d and Memento for Firefox]

Thttp://timetravel.mementoweb.org/
Zhttps://bit.ly /memento-for-chrome
3https://bit.ly/memento-for-firefox
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Figure 1: Memento Aggregator simplified structural view

browser extensions that allow for browsing the past
web,

e the Redirect servicﬁ that, for a given resource, redi-
rects to the Memento created the closest to the desired
past datetime, and

e a variety of API@ aimed at providing Memento func-
tionalities to machines.

“http://timetravel. mementoweb.org/guide/api/
#memento-redirect
°http://timetravel. mementoweb.org/guide/api/
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While these services allow users/machines to perform fed-
erated searches across more than 20 publicly available web
archives, this functionality comes with challenges. In par-
ticular, with the number of available web archives growing,
sending a request to each and every one of them for ev-
ery single incoming Memento service request is not feasible.
Particularly, overall response times and the load on the Me-
mento as well as the individual web archive infrastructure
are our major concerns. Figure [Ta] shows a simplified view
of the federated search behind the Memento services. The
Memento Aggregator infrastructure (URI-G) receives a re-
quest with an original URI (URI-R) and a datetime in the
past. The Aggregator now contacts all web archives and
asks for a Memento of the URI-R created as close as possi-
ble to the specified datetime. The Aggregator receives URIs
of Mementos (URI-Ms) from all archives that in fact have
an archived copy available. This service therefore is only
as fast as the slowest responding archive and, maybe more
importantly, each of the archives responds to all requests,
even if they do not have Mementos of the requested URI-R.

In order to optimize this federated search, we first es-
tablished a cache system. Based on its resulting log data
we conducted a number of experiments to investigate the
feasibility of simple machine learning classifiers to predict
whether a web archive has Mementos of a requested URI-
R [1). The results were encouraging and hence we put the
machine learning prediction process into production as well.
Figure shows a simplified view of the federated search
process as it has been in production since 2016. The Me-
mento Aggregator infrastructure receives a request as shown
in Figure [Ta] but now it first consults the cache. If a re-
quest for the same URI-R has been served recently, its data
is available in the cache and will therefore be served from
cache (cache hit). This significantly decreases the response
time of the services. In case of a cache miss - no entry for the
URI-R is found in the cache - the machine learning based
process is started. As described in [1], it takes various simple
characteristics of the URI-R into account (length, number
of tokens, top level domain, etc.) and predicts the archives
in which Mementos are available. The Memento Aggregator
infrastructure then contacts only these predicted archives
and receives URI-Ms from those that indeed have Memen-
tos, which it eventually presents to the original requester. As
a last step, the Aggregator contacts all other web archives
not predicted by the machine learning process and obtains
URI-Ms from those that have Mementos and were missed by
our prediction. While this step still involves all archives and
hence suffers from the same latency mentioned above, the
requests are sent in batch mode and not optimized for speed,
hence this process is much more friendly to the queried web
archives. As a result of this step, the Aggregator eventually
has the complete picture of available Mementos and popu-
lates the cache with this data. In practice, this means that
responses orchestrated by the machine learning prediction
are accurate but may not be complete, where all responses
from cache reflect accurate and complete data.

In previous work [1] we outlined the theoretical founda-
tion of this process and presented initial experimental results
that encouraged us to implement the concept presented here.
In this work, we seek to evaluate both the cache and the ma-
chine learning based prediction. After almost two years in
production, we can utilize the log files to offer insights into
the following research questions:

1. How effective is the cache in terms of hit/miss rate?
Does the ratio vary for different Memento services? Is
the chosen cache freshness period appropriate?

2. How effective is the machine learning process in prac-
tice, compared to the baseline established in our previ-
ous work? How does the machine learning prediction
perform in terms of keeping the number of false posi-
tives low? Do the models need to be retrained and if
so how often?

2. DATA COLLECTION

To conduct our evaluation on the performance of the cache
and the machine learning prediction, we studied the log files
of the above outlined four Memento services. For the ma-
chine learning evaluation we extracted data recorded be-
tween July 2017 and October 2018. This time frame is dic-
tated by the last time we retrained the machine learning
models (in July 2017) and by the time we conducted the
experiment (starting in October 2018). In total, the log files
for the machine learning evaluation contain 2,595,796 en-
tries.

While the Memento services aggregate data from more
than 20 publicly available web archives, we limit our study
to the 13 archives listed in Table[Il These archives are all na-
tively Memento-compliant and we have collected a sufficient
amount of usage data to train a machine learning prediction
model for them. The reason the Internet Archive (IA), the
world’s oldest and largest web archive, is not listed is be-
cause we do not maintain a prediction model for the IA. Its
index is so vast and so rapidly changing that we foresaw no
model being able to accurately predict their holdings. Hence
the TA is excluded from our evaluations of recall and false
positives.

Table 1: Evaluated web archives and their acronyms

Acronym ‘Web Archive Name
archive.is Archive.is
archive-it Archive-It
ba Bibliotheca Alexandrina Web Archive
blarchive UK Web Archive
bsb Bayerische Staatsbibliothek
gcwa Canadian Archive
loc Library of Congress
nli National Library of Ireland
perma Perma.cc
proni The Public Record Office of Northern Ireland
pt Arquivo.pt
swa Stanford Web Archive
uknatarch UK National Archives Web Archive

3. CACHE EVALUATION

There are many ways to implement [3] and optimize [2]
cache systems but since our cache was for requests against
web archive holdings rather than traditional web caches, we
questioned whether these established methods were applica-
ble. We therefore decided in favor of simplicity and imple-
mented a binary cache for which each request either results
in a cache hit or a cache miss. We further decided to keep
the cache records fresh for a period of 30 days. After a record
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Figure 2: Cache performance over four Memento services

has been in the cache for 30 days, it is labeled “stale” and a
request against the record results in a cache miss. A record
is stale for another 30 days before it ultimately is deleted.
We were interested in investigating the performance of the
cache over time in terms of cache hit vs. miss rate and the
validity of the 30-day freshness period. Figure [2] shows the
cache performance of four Memento services: TimeTravel,
browser extension, APIs, and Redirect, each of which is rep-
resented by a bar from left to right. The blue portion of each
bar indicates the cache hit ratio for the respective service,
cache miss ratios are shown in red, and stale ratios in green.
The overall height of a bar represents the total number of re-
quests we have seen against the respective Memento service
during the observed period of time. We can make a few ob-
servations from Figure First, we see a high cache hit ratio
for the TimeTravel service and the browser extension with
73.6% and 82.3% respectively. The API service with 45.1%
and especially the Redirect service with 25.8% show much
lower numbers. This makes intuitive sense when considering
the nature of the services. The former two are services aimed
at human users and hence the requests are likely heavily in-
fluenced by popularity of the requested URIs. It is therefore
reasonable to assume that URIs are being requested multi-
ple times and hence these services show a higher cache hit
rate. The latter two services, on the other hand, are predom-
inantly used by machines for batch requests, so likely include
more random and not necessarily popular URIs, hence the
lower hit rate. This seems especially true for the Redirect
service with a miss rate of 59.8%. It is interesting to ob-
serve a similar miss rate between the TimeTravel, browser
extension, and API services but a significant stale rate for
the APIs (39%). We speculate that this is due to machines
sending repeated requests of the same URIs, as it is fre-
quently done in a variety of web archiving studies, and the
experiments running longer than the cache entries are fresh.

We draw two main conclusions from Figure 2] First, the
cache works. On average, across all four services, 59.4%
of requests are being served from cache, saving millions of
requests to public web archives. Second, while the 30-day

cache freshness period seems suitable for most services, we
see reason to increase the period for the API services in order
to lower the ratio of stale requests.

4. MACHINE LEARNING EVALUATION

The experiment outlined in our previous work [1] resulted
in an observed recall value of 0.847. We take this value
as the baseline and are motivated to investigate whether
this baseline held true over time. Figure [3] visualizes all web
archives and their computed average recall valuesﬁ over time,
based on our log files. The figure further shows a dashed
red horizontal line that intercepts with the y-axis at 0.847
(the baseline) and a solid blue line at 0.727, which is the
average recall over all archives, based on our here computed
data. We can observe a recall value for 8 out of the 13 web
archives above or just below the baseline. The UK National
Archives Web Archive has a perfect recall value of 1 and
the UK Web Archive as well as Perma.cc are almost perfect
with a recall of 0.98. These results are very encouraging and
mean that our machine learning process is very accurate in
predicting which archives hold a copy of a requested URI.
However, Figure[3|also shows five archives with a recall value
below the baseline and below our average. In particular,
the recall values for Archive-It and the Library of Congress
Web Archive are rather low with 0.27 and 0.07 respectively.
These numbers confirm that our machine learning process is
not operating on a satisfying level for all web archives. One
possible explanation for the low recall is that the web archive
is very dynamic, meaning it frequently adds and removes
entries from its index. Consequently, the data the machine
learning process was trained on quickly does not adequately
represent the state of the archive anymore and hence the
prediction mechanism results in misguided requests. Our
conclusion to this observation is the need for more frequent
retraining processes for the archives with low recall numbers.

A different way to evaluate the performance of our ma-
chine learning prediction mechanism is to look at the num-
ber of false positives per archive. A false positive in this
context occurs when the machine learning process predicts
that a web archive has an archived copy of a requested URI
where, in reality, it does not. False positives therefore re-
sult in requests that we seek to avoid as the contacted web
archives return an empty result set. Figure [4] displays the
number of false positives for the 13 archives. Immediately
apparent is that the number for the Bibliotheca Alexand-
rina Web Archive is rather high (677,999). After consulting
with staff from the archive, we were able to confirm that the
archive was undergoing a lengthy infrastructure reorganiza-
tion that frequently resulted in the web archive platform be-
ing unresponsive to requests from the Memento services, ex-
plaining the high number. Other archives such as Archive.is
(376,835), the UK Web Archive (365,004), and Perma.cc
(397,672) also show high false positive numbers. Possible
reasons are the dynamic nature of a web archive such as
Archive.is as mentioned earlier, technical issues that for a
period of time resulted in HTTP “404 - File not found” er-
rors (UK Web Archive), and simply an imperfect trained
machine learning model, despite the high recall numbers

SWe compute recall values the same way as was done in
[1): recall = TP/(TP + FN), where TP represents true
positives and F'N false negatives.
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Figure 3: Recall of web archives

(Perma.cc). The numbers shown in Figurefurther confirm
our above mentioned conclusion for the need of a regular re-
training of the machine learning models to accommodate for
changes in the archives that cause false positives.

S. DYNAMIC WEB ARCHIVES

As mentioned, one possible explanation for low recall and
false positives is the dynamic nature of web archives. Specif-
ically, web archives quickly growing by continuously adding
Mementos to their index or frequently deleting or prevent-
ing access to previously available Mementos. The former
may be due to an institution’s or even a country’s archiving
policies and the latter may be caused by take-down requests
or other legal disputes. We investigated these dynamics,
based on our log files, and how it affects our machine learn-
ing based prediction method. To this extent, we considered
URI-Rs that have been requested multiple times from the
Memento services and their requests (cache misses) caused
the Aggregator every time to obtain the full picture of their
Mementos distributed across various web archives.

Our log files revealed a total of 1,632,121 such instances
and we were able to determine that in 88.2% of all cases
the result set of archives with available Mementos had not
changed for multiple requests of the same URI-R. Changes in
the result set that do occur are split between 103, 996 cases
(6.4%) where archives were added and 88, 727 cases (5.4%)
where archives were removed. The IA leads the statistics;
it was added to a result set more than 44 thousand times
and removed from one more than 27 thousand times. Figure
[] displays the amount of times archives that are subject to
our machine learning prediction were added/removed from
a result set. The figure confirms the dynamic character of
some of the archives. In particular, Archive.is, Archive-It,
and the Library of Congress were added to and removed
from numerous result sets. The large number of instances
where the Bibliotheca Alexandrina Web Archive was added
and removed can be attributed to a large number of tran-
sient errors the Memento services observed, likely due to
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Figure 4: False positives of web archives

the infrastructure restructuring mentioned above. The re-
sults presented in Figure [B] further strengthen our argument
that the machine learning retraining is essential to keep up
with the evolution of the archiving landscape and continu-
ously serve results with high recall and as few as possible
false positives.
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Figure 5: Instances of archives being added/removed

6. CONCLUSION

In this study we report on an evaluation of the effective-
ness of our cache system and machine learning prediction
- two optimization mechanisms for Memento Aggregator-
based services. We find the cache to be very effective, espe-
cially for human-driven services, where we observe a cache
hit rate of more than 80%. However, there clearly is room



for improvement for machine-driven services. We further
conclude that the overall, machine learning prediction mod-
els operate at an acceptable recall level of 0.727 but we also
show clear indicators that support the need to retrain our
models on a regular basis in order to keep up with the chang-
ing web archive landscape and to further lower the false pos-
itive rates per archive. Going forward, we are interested in
exploring the performance of machine learning models that
are based on archival holdings and not on our recorded us-
age data. In addition, we are experimenting with neural
network classifiers for the prediction task and first results
are very promising yet too premature to be reported here.
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