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ABSTRACT
Despite a long history of use of ‘citation count’ as a measure to

assess the impact or influence of a scientific paper, the evolution of

follow-upwork inspired by the paper and their interactions through

citation links have rarely been explored to quantify how the paper

enriches the depth and breadth of a research field. We propose

a novel data structure, called Influence Dispersion Tree (IDT) to

model the organization of follow-up papers and their dependen-

cies through citations. We also propose the notion of an ideal IDT

for every paper and show that an ideal (highly influential) paper

should increase the knowledge of a field vertically and horizontally.

Upon suitably exploring the structural properties of IDT (both the-

oretically and empirically), we derive a suite of metrics, namely

Influence Dispersion Index (IDI), Normalized Influence Divergence

(NID) to quantify the influence of a paper. Our theoretical analysis

shows that an ideal IDT configuration should have equal depth and

breadth (and thus minimize the NID value).

We establish the superiority of NID as a better influence measure

in two experimental settings. First, on a large real-world biblio-

graphic dataset, we show that NID outperforms raw citation count

as an early predictor of the number of new citations a paper will

receive within a certain period after publication. Second, we show

that NID is superior to the raw citation count at identifying the pa-

pers recognized as highly influential through ‘Test of Time Award’

among all their contemporary papers (published in the same venue).

We conclude that in order to quantify the influence of a paper, along

with the total citation count, one should also consider how the cit-

ing papers are organized among themselves to better understand

the influence of a paper on the research field. For reproducibility,

the code and datasets used in this study are being made available

to the community.

1 INTRODUCTION
A common consensus among the Scientometrics community is that

the total number of citations received by a scientific article can

be used to quantify its impact on the research field [16, 17]. Ci-

tation count, being a simple metric to compute and interpret, is

commonly used in many decision-making processes such as fac-

ulty recruitment, fund disbursement, and tenure decisions. Many

improvements over raw citation count have also been proposed by

incorporating additional constraints. Examples include normaliz-

ing citation counts by the maximum citation count a paper could

achieve in a particular research field [33], metrics inspired by PageR-

ank [12], taking into account the locations of citation mentions in

the paper (e.g. Introduction, Related Work, etc.) [37], understand-

ing the reasons behind citations and assigning different weights to

different citations based on these reasons [7].

While improvements over the raw citation count, these mea-

sures are fundamentally also aggregate measures as they ignore

the relationships between different (citing) papers that cite a given

paper. We posit that such connections are useful and studying them

can help us better understand the propagation of influence from

a paper to its different citing papers. Rather than proposing yet

another variant of citation count, we are interested in unraveling

these structural connections between the set of followup papers of a

given paper and understand the differentiating structural properties

of influential papers.

Motivation: We posit that the impact of a scientific paper can

broadly be studied across two dimensions – (i) how many different

research directions it gives rise to; and (ii) how much traction these

individual research directions gather in the field. In the former case,

we say that the influence of the paper has breadth and it helps

in expanding the field horizontally, leading to an increase in the

breadth of the field. A paper with such a broad influence may even

trigger the emergence of a new sub-field. In the latter case, we say

that the paper has had a deep influence on the field with a large

number of papers in a given research direction. Intuitively, highly
influential papers are the ones that have a deep, and broad influence
on the field. Influence measures that are variants of the raw citation

count of the paper may not offer such fine-grained understanding

of the contribution of a paper to its field. Quantifying the impact

of a paper in terms of its depth and breadth may also help to un-

cover the relationship between its different citing papers [24] and

thus, understand the diffusion patterns of scientific ideas through

citation links [9], predict the structural virality [19] and citation

cascade [8, 24, 30]. While there have been recent efforts to study

these structural properties of networks formed by a paper and its

citing papers [24, 30], none of these studies have attempted to de-

velop a metric to quantify the influence of a paper from its network

topology. We are the first to propose a series of metrics to quantify a
new facet of influence that a paper has had on its followup papers.
Our Contributions: Our major contributions are threefold:

(i) A framework tomodel the depth and breadth of the influ-
ence of a paper by a novel network structure, called the Influence
Dispersion Tree (IDT) (Section 3). The IDT of a paper P is a directed

tree rooted at P with all its citing papers as the children. The tree is

constructed such that the citing papers having citation links among

themselves are grouped to represent a body of work influenced by

the root paper P (Section 3.1). These bodies of work along with the

number of papers in each group are then used to model the depth

and breadth of impact of P . We also present a theoretical analysis of

the properties of the IDT structure and show how these properties

are related to the citation count of the paper (Section 3.2).

(ii) A series of measures to quantify the influence of a scien-
tific paper: For a scholarly paper P , we propose a novel metric,
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called Influence Dispersion Index (IDI) derived from its IDT to quan-

tify the contribution of the paper to its field (by increasing depth

or breadth or both) through influence diffusion (Section 3.3). We

argue that in an ideal scenario, the influence of a paper should be

dispersed to maximize the depth as well as the breadth of its influ-

ence. We then derive the configuration of the IDT of such a paper

and prove that such an optimal IDT configuration will have equal

depth and breadth (and is equal to

⌈√
n
⌉
, where n is the number

of citations of a given paper). Next, we propose another metric,

called Influence Divergence (ID) that measures how the IDI value

of a paper diverges from IDI value of the optimal IDT configura-

tion (Section 3.5). A lower value of divergence indicates that the

influence of the paper under consideration is dispersed in a way

that is similar to that of the ideal case, and consequently, higher is

the chance for the paper to be considered as a highly influential

paper. We further derive a normalized version of ID, and call it

Normalized Information Divergence (NID) that normalizes influence

divergence values for different papers with different citation counts

in the range [0, 1] and allows for comparing different papers based

on their NID values.

(iii) Empirical validation on large real-world datasets:We use

a large bibliographic dataset consisting of about 3.9 million articles

(Section 4) to study the properties of the proposed IDT structure and

test the effectiveness of proposed influence metrics. We construct

IDTs for all the papers in the dataset and their analysis reveals

several interesting observations (Section 5). First, we observe that

with an increase in the citation count, breadth of an IDT tends to

grow much faster than the depth. The maximum value of breadth

(4, 892) is much higher than that of depth (48). We infer that ac-

quiring more citations over time often leads to an increase in the

breadth instead of growth of an existing branch. Next, we find that

the NID value decreases with an increase in citation count. This

finding strengthens our hypothesis that the IDT of an highly influ-

ential paper tends to reach its optimal configuration by enhancing

both the depth and the breadth of its research field. Third, we show

that NID outperforms raw citation count as an early predictor to

forecast the number of future citations a paper will receive (Section

6.1). Finally, we manually curate a set of 40 papers recognized as

the most influential papers by their communities through ‘Test of

Time’ or ‘10 years influential paper’ awards. Once again, we find

that NID outperforms the raw citation count in identifying these

influential papers (Section 6.2). Most importantly, NID also pro-

vides an explanation why a paper has received such a prestigious

award – it is not only the number of followup papers (or citation

count) that matters, but the factor which affects most is the way the

followup papers are organized and linked in an IDT. In other words,

a highly influential paper tends to have an IDT with high breadth as
well as high depth. For reproducibility, the code and the dataset are

available at https://github.com/LCS2-IIITD/influence-dispersion.

2 RELATEDWORK
There has been a plethora of research to measure the impact of

scientific articles through various forms of citation analysis. In this

section, we separate the related work into two parts – (i) studies

dealing with citation count and its variants for measuring the im-

pact, and (ii) studies exploring detailed orchestration of citations

around scientific papers.

2.1 Citation Count as Impact Measure
Searching for accurate and reliable indicators of research perfor-

mance has a long and often controversial history. Citation data

is frequently used to measure scientific impact [16, 17]. Most ci-

tation indicators are based on citation counts – Journal Impact

Factor [18], h-index [21], Eigenfactor [14], i-10 index [11], c-index
[31], etc. Many variations and adaptations were proposed to com-

pensate the drawbacks of these indices. For instance,m-quotient

[21, 39] attempts to eliminate the bias of h-index towards older

researchers/articles. д-index [13] and e-index [41] were proposed
to overcome bias again authors with heavily cited articles. We pro-

posed C3
-index [32] to resolve ties while ranking medium-cited

and low-cited authors by h-index. Even though so many variations

of h-index were proposed in the literature, Bornmann et al. [4]

concluded that most of them are redundant by showing a mean

correlation coefficient of 0.8-0.9 between h-index and its 37 alter-

natives. Few attempts were made to quantify the contribution of

individual authors in multi-authored publications [23, 25, 27, 36].

To measure the impact of a scientific article, raw citation count

has by far been the most accepted and well studied metric [33, 35].

However, many studies confronted with different views against cita-

tion count, giving rise to several alternatives such as influmetrics [3],
webometrics [1], usage metrics [26], altmetrics [20], etc. Chakraborty
et al. [5] showed that the change in yearly citation count of articles

published in journals is different from articles published in confer-

ences. Even the evolution of yearly citation count of papers varies

across disciplines [6, 34]. This further raises a new proposition of

designing domain-specific impact measurement metrics.

2.2 Understanding Citation Expansion
Despite such a vast literature on the use of citation count for assess-

ing the quality of scientific community, the evolution of citation

structure has remained largely unexplored. There have been a few

recent studies which attempted to understand the organization of

citations around a scientific entity (paper, author, venue etc.), par-

ticularly focusing on the topology of the graph constructed from

the induced subgraph of papers citing the seed paper. Waumans

and Bersini [40] took an evolutionary perspective to propose an

algorithm for constructing genealogical trees of scientific papers on

the basis of their citation count evolution over time. This is useful to

trace the evolution of certain concepts proposed in the seed paper.

Singh et al. [38] developed a relay-linking model for prominence

and obsolescence to include the factors like aging, decline etc. in the

evolving citation network. Min et al. [29] characterized the citation

diffusion process using a classic marketing model [2] and noticed

some interesting patterns in the spread of scientific ideas. Inspired

by information cascade modeling in online social networks [10],

they [30] further made an attempt to study the behavior of cita-

tion cascade. They concluded that the average depth of the cascade

tends to be influenced by both the lifespan and the whole volume

of scientific literature. Huang et al. [24] and Chen [8] argued that

citation cascade helps us better understand the citation impact of

https://github.com/LCS2-IIITD/influence-dispersion
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a scientific publication. They empirically showed that most of the

properties of the cascade graph (such as cascade size, edge count,

in-degree, and out-degree) follow typical power law distributions;

however cascade depth follows exponential distribution.

2.3 Differences from Previous Literature
Although recent studies [8, 24, 30] argued that there is a need to

explore the organization of citations (followup papers) around a

seed paper in order to measure better scientific impact, no one

quantitatively studied the impact of such network. We are the first

to propose an impact measurement metric, called ‘Influence Dis-

persion Index’ (Section 3.3) which is derived upon converting a

rooted citation network to a sparse representation, called ‘influence

dispersion tree’ (IDT) (Section 3). We show how an optimal orien-

tation of CDT (in terms of its depth and breadth) helps in gaining

more impact, which may not be explained by simple citation count.

Moreover, the construction of IDT is unique and different from the

citation cascade graph proposed earlier [8, 24, 30] (see Section 3 for

more details).

3 INFLUENCE DISPERSION TREE (IDT)
In this section, we first develop and define the concept of Influence

Dispersion Tree of a scholarly paper and describe some of the

properties of IDTs. We then develop a simple measure to estimate

the influence of a scholarly paper given its IDT.

3.1 Constructing IDT
Let us consider a scholarly paper P and let CP = {p1,p2, . . . ,pn }
be the set of papers citing P . We assume that P has equally and
directly influenced each and every paper in CP .1

Definition 1. [Influence Dispersion Graph] The Influence Dis-
persion Graph (IDG) of the paper P is a directed and rooted graph

GP (VP , EP ) with VP = CP ∪ {P} as the vertex set and P as the

root. The edge set EP consists of edges of the form {pu → pv }
such that pu ∈ VP ,pv ∈ CP and pv cites pu .

Figure 1(a) shows an illustration of an IDG for the paper P and

its citing paper set {p1,p2,p3,p4,p5}. Observe that the IDG of paper

P is the same as the induced subgraph of the larger citation graph

consisting of P and all its citing papers, and with edges in the

opposite direction to indicate the propagation of influence from the

cited paper to the citing paper. Further, note that the construction

of an IDG is similar to that of citation cascades [24, 29] with the

fundamental difference that the IDG is restricted strictly to the

one-hop citation neighborhood of P (i.e., papers that are directly

influenced by P ) as opposed to the citation cascade that considers

higher order citation neighborhoods as well (i.e., papers indirectly

influenced by P ). Thus, an IDG only considers followup papers that

are directly influenced by a given paper. If p1 cites P ; and p2 cites p1

but not P , it is not always clear if p2 is influenced by both P and p1,

or solely by p1. Thus, we make the stricter and unambiguous choice

by selecting only p1 to be included in the IDG. Though variants of

IDG could be constructed by adding additional followup papers,

1
Although previous studies [7, 42] have found that a paper has a varying amount of

influence on its citing papers, it is a common practice to assume uniform influence

for simplification (e.g., in computing impact factors, h-index [22], etc.) and is the

assumption we also make.

we believe that the major conclusions drawn from the paper will

remain valid owing to the stricter and unambiguous process of

constructing the IDG.

Next, to further analyze and study the influence of paper P on

its citing papers, we derive the Influence Dispersion Tree (IDT) of P
from its IDG. A tree structure, by definition, provides a hierarchical

view of the influence P exerts on its citing papers and provides an

easy to understand representation to study the relation between P
and its citing papers. The IDT of paper P is a directed and rooted

tree TP = {VP , E ′
P } with P as the root. The vertex set is the same

as that of IDG of P and the edge set E ′
P ⊂ EP is derived from the

edge set of IDG as described next.

Note that a paper pv ∈ CP can cite more than one paper in VP ,

giving rise to the following three possibilities:

(1) pv cites only the root paper P . In this case, we add the edge

P → pv creating a new branch in the tree emanating from

root node (e.g., edges P → p1 and P → p2 in Fig. 1(b)).

(2) pv cites the root paper P and pu ∈ CP \ {pv }. In this case,

we say that pv is influenced by P as well as pu . There are
two possible edges here: P → pv and pu → pv . However,
since pu is also influenced by P , the edge pu → pv indirectly

captures this influence that P has on pv . We therefore retain

only the edge pu → pv . This choice leads to addition of a

new leaf node in IDT capturing the chain of impact starting

from P up to the leaf node pv (e.g., edge p1 → p3 in Fig. 1(b)).

(3) pv cites the root paper P , as well as a set of other papers

Pu ⊆ CP \ {pv }, |Pu | >= 2. Note that by definition, each

p ∈ Pu also cites the root paper P . The possible edges to add

here are E = {{p → pv };∀p ∈ Pu }. We add the edge e to E ′
P

such that e = p → pv where

p = arg max

p′∈Pu
shortestPathLenдth(P ,p′) (1)

Edge P3 → P5 in Fig. 1(b) is such an edge.

The intuition behind adding edges in this way is to maximize

the depth of IDT (if there are more than one edge, and each of

which maximizes the depth, then we choose one of them randomly,

e.g., p2 → p4 in Fig. 1(b)). The edge construction mechanism is

motivated by the citation cascade graph [24, 30]. Upon adding a

newly citing paper in TP , we reconstruct TP in such a way that the

richness of P ’s influence to its citing papers is maximally preserved.

Richness maximization can be thought of as maximizing the breadth

or the depth of the IDT. We choose the latter one in order to capture

the cascading effect into the resultant IDT.

Definition 2 (Influence Dispersion Tree). The Influence Dis-

persion Tree (IDT) of paper P is a tree TP (VP , E ′
P ), whose vertex

set VP is the union of P and all the papers citing P . If a paper pv
cites only P and no other papers in VP , we add P → pv into the

edge set E ′
P . If pv cites other papers Pu ∈ VP \ {P} along with

P , we add only one edge px → pv (where px ∈ Pu ) according to

Equation 1.

Definition 3 (P-rooted IDT). An IDT is called P-rooted IDTwhen

the root node of the tree is P .

Figure 1 illustrates a toy example of constructing IDT from IDG

illustrating all three possible cases of edge connections as discussed

above.
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Figure 1: (a)-(b) Illustration of the construction of (b) IDT from (a) IDG of paper P . Papers in red only cite P ; Papers in green
cite P and one other paper in the graph; blue paper cites P andmore than one other paper in the graph. In case of yellow paper,
a tie-breaking occurs due the equal possibility of p4 being connected from p1 and p2 in order to maximize the depth of IDT.
Tie-breaking is resolved by randomly connecting p4 from p2 in IDT. (c)-(d) Two corner cases to illustrate the lower bound –
minimum and maximum number of leaf nodes. (e) A configuration of a P-rooted IDT with (n) non-root nodes that results in
maximum IDI value.

3.2 Properties of IDT
In this section, we describe a few important properties of an IDT.

(i) Depth: The depth d of a P-rooted IDT is defined as the length

of the longest path from the root to the leaf nodes pL in the tree.

d = max

pl ∈pL
shortestPathLenдth(P ,pl ) (2)

where d is the depth of the tree, and pL is the set of leaf nodes in

IDT. The depth of the IDT shown in Figure 1(b) is 3.

The depth of an IDT can be interpreted as the longest chain/series

of papers representing a body of work influenced by P .
(ii) Breadth: The breadth b of a P-rooted IDT is defined as the

maximum number of nodes at a given level in the tree.

b = max

1≤l ≤d
|Nl |; Nl := {n ∈ VP |level(n) = l} (3)

The breadth of the IDT shown in Figure 1(b) is 2.

(iii) Branch: A branch P ⇝ pl is a path from the root P to the leaf

pl in an IDT.

(iv) Fragmented and Unified Branch: A branch P ⇝ pl is called
fragmented when an intermediate node (except root) p ∈ P ⇝ pl
becomes a part of another branch P ⇝ pl ′ . p is then called a frag-
ment point of P ⇝ pl . In Figure 1(e), P ⇝ pk+1

is a fragmented

branch with pk as a fragment point. If a branch is not fragmented,

it is called as a unified branch. In Figure 1(d), P ⇝ p4 is a unified

branch.

We now define some properties to describe how depth and

breadth of a P-rooted IDT are related with n – the number of

citations of P (and the number of non-root nodes in the IDT of

P ).

Lemma 1. For a paper P with n citations, the range of the depth d
and breadth b of the P-rooted IDT is 1 ≤ d,b ≤ n.

Proof. The breadth of a P-rooted IDT will be maximum (i.e, n)
when all the n papers cite only the root paper P , and there is no

citation among these n papers (e.g. Figure 1(c)). Likewise, the depth

of a P-rooted IDT will be maximum (i.e., n) when there is a chain of

n papers {P ,p1,p2, · · · ,pn } forming a unified branch such that pi
cites pi−1, ∀2 ≤ i ≤ n; and pi also cites P , ∀i (e.g., Figure 1(d)). □
Lemma 2. For a paper P with n citations, the sum of depth d and
breadth b of the P-rooted IDT is bounded by n + 1, i.e., d + b ≤ n + 1.

Proof. When a new node is added to IDT, there are four pos-

sibilities – breadth increases, depth increases, both increase, and

neither increases. The sum of d and b will be maximum when both

of them are individually maximum. This will only be possible when

all but the root node are involved in either increasing depth or

breadth or both. However, we can see that only one node, i.e., the

first node attached to the root node, can increase both depth and

breadth, and the rest will increase either depth or breadth, but not

both. Since the total number of non-root nodes added to IDT are n,
the sum of b and d can attain a maximum value of n + 1. □

Lemma 3. For a paper P with n citations and its P-rooted IDT, the
product of its depth d and breadth b is at least n, i.e., db ≥ n

Proof. d is the maximum length of any branch, and b is indica-

tive of the number of branches from root to leaf. So, for an IDT

whose branching occurs at the root node itself and nowhere else,

db represents the number of nodes it can have to maintain its depth

as d and breadth as b by adding to those branches which have less

than d length. Since n is the number of nodes already present in the

IDT, we can say that the number of nodes we can add is db−n. Since
this quantity is always non-negative as this quantity represents the

number of nodes we can add, we have

db − n ≥ 0 =⇒ db ≥ n (4)

For those IDTs which have branching in places other than the

root i.e., fragmented branches, the nodes which are above the

branching nodes, will be counted more than once as they represent

multiple root to leaf paths and hence db will give more number of
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Figure 2: Reconnecting leaf edges of a star IDT (a) to form
other configurations.

nodes than present in the IDT; hence

db > n (5)

Therefore, for both the cases, it is seen that db ≥ n. □

3.3 Influence Dispersion Index (IDI)
Given the IDT of a paper, we define its Influence Dispersion Index

(IDI) by the sum of length of all the paths from the root node to all

the leaf nodes.

Definition 4 (Influence Dispersion Index). The IDI of paper P
is defined as

IDI (P) =
∑

pl ∈pL
distance(P ,pl ) (6)

where pL is the set of leaf nodes of the P ’s IDT TP (VP , EP ).

The IDI of P in Figure 1(b) is 5.

Intuitively, each leaf node in P ’s IDT corresponds to a separate

branch emanating from the original paper P . Each branch comprises

of the set of papers which are influenced by the root paper in one

direction. We can interpret IDI as a measure of the ability of the

paper to distribute its influence. We hypothesize that the more an

IDT has unified branch, the more the chance that the influence

emanating from P is distributed uniformly.

3.4 Boundary Conditions of IDI
3.4.1 Lower Bound. For a P-rooted IDT with n non-root nodes,

the minimum value of IDI is n. This is because each node (paper)

in the tree will be encountered at least once while computing IDI,

resulting in the lower bound as n. Figures 1(c) and (d) show two

corner cases – one configuration with the minimum number of leaf

nodes (i.e, 1), and other configuration with the maximum number

of leaf nodes (i.e., n). Note that given the size of the IDT, there can

be multiple configurations with minimum IDT values. From a star

IDT (Figures 1 (c)) if we pick an edge and connect it to any leaf

node or the root node, then IDI of the resultant configuration will

remain same. In fact, if we keep on repeating the same repairing

step, all the resultant configurations will exhibit the same IDI value.

In short, during the transformation of a star IDT to a line IDT by

reconnecting a leaf edge (an edge whose one end node is a leaf)

to another leaf node or to the root node, all the intermediate IDTs

will exhibit the same IDI of n. Figure 2 shows a toy example of the

reconfiguration. We will discuss more in Section 3.4.3.

3.4.2 Upper Bound: In order to maximize the value of IDI, a P-
rooted IDT should satisfy the following three conditions:

(1) The number of leaves should be as large as possible.

(2) The length of the branch from root to leaf should be as long

as possible.

(3) The number of common nodes in each root-to-leaf branch

should be maximized so that each node counter is maximized.

Subject to the constraint on the number of nodes in the tree (i.e.,

n + 1), there is only one structure which can satisfy all the three

requirements mentioned above, as shown in Figure 1(e).

Let IDI of the P-rooted IDT with n non-root nodes as shown in

Figure 1(e) be IDI (P ,k), where k is the number of nodes forming

a chain from P (excluding P ) and node pk has (n − k) descendants.
Then, IDI (P ,k) is determined as follows:

IDI (P ,k) = k(n − k) + (n − k) (7)

Differentiating it w.r.t to k , we get

∂IDI (P ,K)
∂k

= n − 2k − 1 (8)

Equating this to 0 to get the maxima, we get

k =

⌊
n − 1

2

⌉
(9)

This yields the maximum value of IDI as

IDI (P)max = (1 +
⌊
n − 1

2

⌉
)(n −

⌊
n − 1

2

⌉
) (10)

Therefore, for a P-rooted IDT with n non-root nodes, we have the

following bounds on its IDI:

n ≤ IDI (P) ≤ (1 +
⌊
n − 1

2

⌉
)(n −

⌊
n − 1

2

⌉
) (11)

3.4.3 Relation between d,b and n for Optimal Dispersion. As dis-
cussed above, a paper with a given number of citations n, can have

differently shaped IDTs, and consequently, very different IDI values.

Intuitively, we expect a highly influential paper to have multiple

long unified branches, i.e., it should have a high depth value as well
as high breadth value. Thus, we want the IDT of a highly influential

paper to have high depth, high breadth, and a tree structure such

that the number of non-root nodes are as uniformly distributed in

different branches of the trees as possible, indicating significant

depth in each branch. Also, recall from Lemma 3 that for a given

value of d and b, the number of nodes in an IDT can not be more

than db (i.e., n ≤ db). This leads us to the following constrained

objective function that the IDT in its optimal configuration should

satisfy.
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Figure 3: Illustration of an optimal configuration of a P-
rooted IDT of a paper P with n citations. The depth and
breadth of the IDT are same (k = r =

⌈√
n
⌉
).

minimize (db − n)
s.t d + b ≤ n + 1 (from Lemma 2)

and db ≥ n (from Lemma 3)

(12)

This yields an optimal configuration where d = b =
⌊√

n
⌉
.

Proof. As discussed, db represents the maximum number of

nodes the tree can have by having depth as d and breadth as b.
The IDT will have maximum number of nodes for a given d and b
only when all the branches in the IDT are unified branches. This

condition will force the IDT to have all the branches to branch out

from the root node. If k is the number of nodes in each unified

branch of the optimal tree, and there are r such branches, then

the number of nodes in this IDT will be kr (assuming equal length

for each branch). Since k and r are equal for an optimal IDT as

discussed earlier, we have

k2 = n ⇒ k =
√
n (13)

For IDTs where the nodes are not evenly distributed among an

equal number of unified branches with each branch having equal

number of nodes (in other words, when the number of non-root

nodes is not a perfect square), the corresponding k comes out to be

k2 = n ⇒ k =
⌈√

n
⌉

(14)

□

Figure 3 illustrates a paper with an optimal configuration where

the IDT has an equitable distribution in terms of both depth and

breadth, indicating that the paper has influenced multiple branches,

and all the influenced branches have grown significantly. Note that

the cost function favors configurations where the impact of the

paper is maximized both in terms of depth and breadth, and hence,

will penalize configurations where there exists a large number of

short branches (high b, low d) or very few long branches (high d ,
low b).

3.5 IDI as an Influence Measure
In this section, we study the potential of IDI as an early predic-

tor of the overall impact and influence of a scholarly article. As

discussed before, IDI of a paper P provides a fine-grained view of

the influence of P on other papers citing P , in terms of the depth

and breadth of the IDT. As described in Section 3.4, for a paper

with n citations, there exists an ideal configuration of the IDT that

optimizes the influence dispersion of the paper such that it has both

high breadth (influenced multiple branches of work) and high depth

(significantly deepened each individual branch). With this intuition,

we posit that the closeness of the actual IDT of a given paper P
with n citations, denoted by TP to its corresponding ideal IDI with

n citations, denoted by
¯TP can be used as a surrogate measure of

influence or impact of paper P . We can use any distance metric

between two graphs – such as Graph Edit Distance [15], Gromov-

Wasserstein distance [28] – to measure the closeness between TP
and

¯TP . However, all these measures are computationally expensive

[15]. Therefore, we here use the IDI of each IDT as a proxy for its

topological structure and measure the difference between the IDI

values of TP and
¯TP (as a replacement of the graph distance). Recall

from Section 3.4 that the IDI of an ideal IDT with n non-root nodes

is n (which is also the lower bound of an IDT with n internal nodes).

We define the Influence Divergence (ID) of a paper as the

difference of the IDI value of its original IDT, IDI(P) and that of its

corresponding ideal IDT configuration, ¯IDI (P)

ID(P) = IDI (P) − ¯IDI (P) (15)

We further normalize the IDI value using max-min normalization.

Definition 5 (Normalized Influence Divergence). Normalized

Influence Divergence (NID) of a paper P is defined by the difference

between the IDI value of its corresponding IDT and the same of its

corresponding ideal IDT configuration, ¯IDI (P), normalized by the

difference between maximum and minimum IDI values of the IDTs

with the size as that of P ’s IDT. Formally, it is written as:

NID(P) = IDI (P) − ¯IDI (P)
IDImax

|P | − IDImin
|P |

(16)

The normalization is needed to compare two papers with dif-

ferent IDI values. NID ranges between 0 and 1. Clearly, a highly

influential paper will have a low NID(P) (i.e., lower deviation from

its ideal dispersion index).

4 DATASET DESCRIPTION
We used a publicly available dataset of scholarly articles provided

by Chakraborty and Nandi [6]. The dataset contains about 4 million

articles indexed by Microsoft Academic Search (MAS)
2
. For each

paper in the dataset, additional metadata such as the title of the

paper, its authors and their affiliations, year and venue of publi-

cation are also available. The publication years of papers present

in the dataset span over half a century allowing us to investigate

diverse types of papers in terms of their IDTs. A unique ID is also

assigned to each author and publication venue upon resolving the

named-entity disambiguation by MAS itself. We passed the dataset

through a series of pre-processing stages such as removing papers

that do not have any citation and reference, removing papers that

have forward citations (i.e., citing a paper that is published after

the citing paper; this may happen due to archiving the paper before

publishing it), etc. This filtering resulted in a final set of 3, 908, 805

papers. Table 1 shows different statistics of the filtered dataset.

2
https://academic.microsoft.com/
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Number of papers 3,908,805

Number of unique venues 5,149

Number of unique authors 1,186,412

Avg. number of papers per author 5.21

Avg. number of authors per paper 2.57

Min. (max.) number of references per paper 1 (2,432)

Min. (max.) number of citations per paper 1 (13,102)

Table 1: Some important statistics about the MAS dataset.

5 EMPIRICAL OBSERVATIONS
In this section, we report various empirical observations about the

IDTs of the papers in our dataset that provide a holistic view of the

topological structure of the trees. We also study the how depth and

breadth of the IDTs, the IDI and NID values vary with the citation

count of the papers.

5.1 Structural Properties of IDTs
Figure 4 plots the frequency distribution of depth and breadth of

the IDTs for all the papers in the dataset. Observe that the values for

breadth follow a very long tail distribution with about 75% of papers

having a breadth less than or equal to 3 (note the log-scale on x-axes

in Fig. 4b). On the other hand, the range of the depth values for

IDTs is much smaller compared to the range of breadth values. The

maximum value of depth is 48 compared to the maximum breadth

of 4, 892. To illustrate the types of papers that achieve very high

breadh and depth values, Table 2 lists the top two papers having

maximum depth (Papers 1 and 2) and maximum depth (Papers 3

and 4) in our dataset. Note that Papers 1 and 2 are famous Computer

Science textbooks resulting in such high breadth values as most

of the citing papers of a book (or survey papers) usually cite the

book as a background reference. This may lead to a large number

of short branches in the IDT. On the other hand, Papers 3 and 4

correspond to breakthrough seminal papers – Paper 3 was among

the first to discuss and propose a solution for control flow problem in

TCP/IP networks, and Paper 4 is Codd’s seminal paper introducing

relational databases. These groundbreaking works led to multiple

followup papers that build upon these papers resulting in very

high depth and relatively low breadth. Also note that even though

Papers 3 and 4 have relatively fewer citations than Papers 1 and 2,

analyzing the IDT enables us to understand the depth and breadth
of the impact of these papers on their citing papers and measure the

influence these papers have had on the fields.

Figure 5 shows the distribution of breadth and depth with cita-

tions (Figures 5a and 5b, respectively) and the correlation between

depth and breadth (Figure 5c). We observe that while breadth is

strongly correlated with citation count (ρ = 0.90), the correlation

between depth and citation count is relatively weak (ρ = 0.50).

These observations indicate that increasing citation count often

lead to the development of new branches in the IDT of the paper

rather than increasing the depth. This happens because most cita-

tions to a paper use the cited paper as a background reference (thus

gets added to the IDT as a new branch), rather than extending a
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Figure 4: Frequency distributions for depth (4a) and breadth
(4b) of IDTs of all the papers in the dataset. The x-axis in the
plot for breadth is in logarithmic scale.

body of work represented by an already formed branch (increas-

ing the depth). Further, note from Figure 5c that the variation in

breadth values reduces with increasing depth. Especially for IDTs

with depth greater than 30, the values of breadth lie in a relatively

narrow band (almost all IDTs with depth greater than 30 have

breadth less than 300). This is indicative of highly influential papers

that have spawnedmultiple directions of follow-up works and incre-

mental citations correspond to continuation of these independent

directions (thus increasing depth).

5.2 IDI and NID vs. Citations
We now study how the IDI and NID values vary with the citation

counts across multiple papers. Figure 6 shows the scatter plot of

IDI and NID values with citations for all the papers in the dataset.

We observe that IDI values in general increase with the number

of citations of a paper. This is along expected lines as the IDI for

a paper is bounded by the number of citations of the paper (Equa-

tion 11). A more interesting observation can be made from the plot

for NID values (Figure 6b) where we see that in general, the value

of NID decreases with increasing citations – papers having a high

number of citations tend to have very low values of NID. Recall that

for a given paper, NID captures how different or far way the IDI of

the given paper is from its corresponding ideal IDT. Thus, highly

influential papers tend to have their IDTs close to their ideal IDT

configurations (as illustrated by the low NID value). This empirical

observation strengthens our hypothesis that highly influential pa-
pers will, in general, lead to considerable amount of followup work
(high depth) in multiple directions (high breadth).

6 NID AS AN INDICATOR OF INFLUENCE
As discussed before, we hypothesize that the highly influential

papers produce IDTs which would be close to their corresponding

ideal configurations. In Section 5.2, we found that highly-cited

papers have very low NID values. Here we ask a complementary

question – Is low IDI value of a given paper an indicator of its future
influence? In other words, does a paper having its IDT close to

the ideal configuration at a given time will be an influential paper

in near future? We design two experiments to answer the above

question. In Section 6.1, we study if NID can predict how many

citations a paper will get in future. In Section 6.2, we study if IDI

measure can identify highly influential papers – specifically, papers
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No. Paper # citations breadth depth Remark

1.

Michael R. Garey and David S. Johnson. 1990. Computers and

Intractability; a Guide to the Theory of NP-Completeness. W. H.

Freeman & Co., New York, NY, USA.

13,102 4,892 34

A book on the theory of

NP-Completeness

2.

Cormen, Thomas H., et al. (2001) Introduction to algorithms second

edition.

6777 4576 8

Highly referred text book

on Algorithms.

3.

CV. Jacobson. 1988. Congestion avoidance and control. In Symposium

proceedings on Communications architectures and protocols

(SIGCOMM ’88), New York, NY, USA, 314-329.

2,577 259 48

Highly influential paper

describing Jacobson’s

algorithm for control flow

in TCP/IP networks

3.

E. F. Codd. 1970. A relational model of data for large shared data banks.

Commun. ACM 13, 6 (June 1970), 377-387.

2141 437 42

Codd’s Seminal paper on

Relational Databases

Table 2: A set of representative papers: #1 and #2 are the top two papers based on breadth, and #3 and #4 are the top two papers
based on depth.
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Figure 5: Scatter plots showing variations of breadth with citations (a), depth with citations (b), and correlation between depth
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Figure 6: Scatter plots showing variations of (a) IDI and (b)
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that have been judged highly influential by the community and

have been awarded Test of Time (ToT) awards
3
.

6.1 Future Citation Prediction through NID
Let Pv be the set of papers published in a publication venue v (a

conference or a journal). Let yv be the year of organization of v .
Over the next t years, papers in Pv will influence the follow up

work and will gather citations accordingly. Let I (p) be an influence

measure under consideration. Let R(v, t , I ) be the ranked list of

papers in Pv ordered by the value of I (.) at t . Thus, the top ranked

3
Many conferences and journals award ‘Test of Time’ or ‘10 year influential paper

award’ to papers that have had a high impact on their respective fields. These papers

are generally selected by a committee of senior researchers.

paper in R(v, t , I ) is considered to have maximum influence at t . If
I (.) is able to capture the impact correctly, we expect the papers with

high influence scores to have more incremental citations in future

compared to papers having low influence scores. Let C(v, t1, t2) be
the ranked list of papers in Pv ordered by the increase in citations

from time t1 to t2. Thus, the papers that received highest fractional

increase in citations in the time period (t1, t2) will be ranked at

the top. Note that we chose fractional increase in citation count

rather than absolute count to account for papers that are early risers

and receive most of their lifetime citations in first few years after

publication [5]. Also, we consider only those papers published in a

venue (v here) rather than all the papers in our dataset to nullify

the effect of diverse citation dynamics across fields and venues [6].

Intuitively, if I (.) is a good predictor of a paper’s influence, the

ranked lists R(v, t1, I ) andC(v, t1, t2) should be very similar – influ-

ential papers at time t1 should receive more incremental citations

from t1 to t2. Thus, the similarity of the two ranked list could be

used as a measure to evaluate the potential of I (.) to be able to cap-

ture the influence of papers. We use the Kendall Tau rank distance

K defined below to measure the similarity of the two ranked lists

R(v, t1, I ) and C(v, t1, t2) as follows.

z(v, I ) = K(R(v, t1, I ),C(v, t1, t2)) (17)

A lower value of the z score indicates that the two ranked lists

are highly similar, that in turn shows that I (.) has high predictive
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power in forecasting the future incremental citations. We use this

framework to evaluate the potential of NID (as a replacement I (.)
in this case) as an early predictor of future incremental citations of

a paper. We use the number of citations of a paper as a competitor

of NID as it is the most common and simplest way of judging the

influence of a paper [16, 17]. First, we group all the papers in our

dataset by their venues and compute the values of the influence

metrics (NID and citation count) after five years following the

publication year (i.e., t1 = 5). A venue is uniquely defined by the

year of publication and the conference/journal series. For example,

JCDL 2000 and JCDL 2001 are considered as two separate venues.

We next compute the incremental citations gathered by the papers

ten years after the publication (t2 = 10). Note that we only consider

venues with the publication year in the range 1995 and 2000 because

we needed citation information 10 years after publication (i.e., up to

2010). The coverage of papers published after year 2010 is relatively

sparse in our dataset [6]. This filtering resulted in 1, 219 unique

venues and 30, 556 papers in total.

With the group of papers published together in a venue and

their citation information available, we compute the following three

ranked lists:

(1) Rv,c = R(v, 5, c); the ranked lists of papers in venue v or-

dered by their citation counts five years after the publication.

(2) Rv,nid = R(v, 5,nid); the ranked lists of papers in venue v
ordered by their NID scores five years after the publication.

(3) Cv = C(v, 5, 10); the ranked lists of papers in venue v or-

dered by the normalized incremental citations received be-

ginning of 5
th

years after the publication till 10
th

years after

publication.

For each venue v , these lists can be used to compute z(v,NID)
and z(v, c) – i.e., the z scores with NID and citation count as in-

fluence measures, respectively. For the 1, 219 venues identified as

above, the average value of z score using citations and IDI as the

influence measure is found to be 0.5125 and 0.3703. Thus, on an

average, we find that the Z score is lower when using NID as the

influence measure compared to that with citation count. In other

words, more papers identified as influential by NID received more

incremental future citations compared to the papers identified as

influential by citation count.

Figure 7 provides a fine-grained illustration of the difference

of z scores achieved by the two influence measures for each of

the 1,219 venues. For each venue, we compute the difference of z
scores achieved by NID and citation count. We note that for most of

the venues, the z-score achieved by NID is lower than the z-score
achieved by the citation count (positive bars). These observations

indicate that when compared with raw citation count, NID is a

much stronger predictor of the future impact of a scientific paper.

As opposed to the raw citation count, the IDT of a paper provides a

fine-grained view of the impact of the paper in terms of its depth

and breadth as succinctly captured by the IDT of the paper. These

results provide compelling evidence for the utility of IDT (and the

consequent measures such as IDI and NDI derived from it) for

studying the impact of scholarly papers.
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Figure 7: z-scores for venues. Papers in a venue are ranked
using NID, number of citations and relative gain in citations.
The horizontal axis represents venues ordered by the differ-
ence in two z-scores.

6.2 Identifying Test of Time Winners
Many conferences recognize highly influential papers that have

had a long-lasting impact on the respective field of research. These

recognition are awarded in the form of Test of Time (ToT) awards,

10 year Influential Paper Awards, etc. We manually collected a set

of papers that have received the ToT awards by their respective

publication venues and obtained a list of 40 such papers (published

in conferences like SIGIR, AAAI, ICCV etc.) that are also present in

our dataset.

Let P be a ToT awardee paper that was published in year y at

venue v . We extracted all the papers from our dataset that were

published at venue v in year y. We then ordered these papers by

their citation count at time y + 10 (i.e., 10 years after publication)

and selected top 5% highest-cited papers (including P ). We con-

sider these papers to be the major competitor of P to win the TOT

award since highly influential papers are expected to achieve a high

number of citations
4
. We then compute the rank of P , denoted by

Rank(P ,Cite) in this set. Similarly, we compute NID at time y + 10

for these highly-cited papers and rank them by NID to compute the

rank of P , denoted by Rank(P ,NID). If NID is a better measure of

the paper’s impact, then we expect P to have a better rank (1 being

the best outcome, i.e., the top paper) compared to the other papers

in the compared set. Figure 8 plots Rank(P ,Cite) and Rank(P ,NID)
for each TOT awardee paper P . We note that in most of the cases

(25 out of 40), the ToT papers are the top-ranked papers by both

citation count and NID.

Interestingly, we also note that in 12 out of 40 cases, the ranks

of the ToT awardee papers achieved by NID are lower (better) than

the ranks achieved by citation counts. Thus, the papers judged most
influential by the community (by giving TOT award) may not always
have the highest citations among all their contemporary papers. There
may be some subjective evaluation criteria that capture the influ-

ence a paper has had on the field. The results of this experiment

indicate that NID is much better at capturing the influence of a

paper – 33 out of 40 times, the ToT paper achieves rank 1 when

4
Many conferences (e.g., SIGIR) nominate top five most cited papers published in a

year for the ToT award, in addition to getting nominations from the community.
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Figure 8: Absolute ranks (based on citation count and NID)
of the ToT papers among their contemporaries.

ranked by NID. The overall Mean Reciprocal Rank (MRR) achieved

by NID is 0.8771 compared to an MRR of 0.7712 achieved by the ci-

tation count. Thus, we can consider NID as a much better surrogate

measure of influence for a scientific article.

7 CONCLUSION
This paper proposed a novel concept, called ‘Influence Dispersion

Tree’ (IDT) to explore and model the structural information among

the followup (citing) papers of a given paper linked through cita-

tions. We derive several basic and advanced properties of an IDT to

understand their relations with the raw citation count. One striking

observation is that with the increase in citation count, the depth of

an IDT grows much slower than the breadth. However, as the cita-

tion count grows, the IDT of a paper moves closer to its ideal IDT

configuration. We further proposed a series of metrics to quantify

the notion of influence from IDT. Our proposed metric NID turned

out to be superior to the raw citation count – (i) to predict how

many new citations a paper is going to receive within a certain time

window after publication, (ii) to identify and explain why a paper is

recognized by its research community (through various prestigious

awards such as Test of Time awards) as highly influential among

its contemporaries.

The conclusion we would like to draw from this paper is – to

understand the contribution of a source paper to its own research

field, along with the total number of followup papers of a source

paper (i.e., citation count), one should also consider how these fol-

lowup papers are organized among themselves through citations. A

paper can be treated as highly influential only when it has enriched

a field equally in both vertical (deepening the knowledge further

inside the field) and horizontal (allowing the emergence of new

sub-fields) directions.
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