
Integrated Digital Library System for Long Documents
and their Elements

Satvik Chekuri
Virginia Tech

Blacksburg, Virginia, USA
satvikchekuri@vt.edu

Prashant Chandrasekar
University of Mary Washington
Fredericksburg, Virginia, USA

pchandra@umw.edu

Bipasha Banerjee
Virginia Tech

Blacksburg, Virginia, USA
bipashabanerjee@vt.edu

Sung Hee Park
Virginia Tech

Blacksburg, Virginia, USA
shpark@vt.edu

Nila Masrourisaadat
Virginia Tech

Blacksburg, Virginia, USA
nilamasrouri@vt.edu

Aman Ahuja
Virginia Tech

Blacksburg, Virginia, USA
aahuja@vt.edu

William A. Ingram
waingram@vt.edu

Virginia Tech
Blacksburg, Virginia, USA

Edward A. Fox
Virginia Tech

Blacksburg, Virginia, USA
fox@vt.edu

ABSTRACT
We describe a next-generation integrated Digital Library (DL) sys-
tem that addresses the numerous goals associated with long docu-
ments such as Electronic Theses and Dissertations (ETDs). Our ex-
tensibleworkflow-centric design supports a variety of users/personas
(e.g., researchers, curators, and experimenters) who can benefit from
improved access to ETDs and the content buried therein. Our ap-
proach leverages natural language processing, deep learning, infor-
mation retrieval, and software engineering methods. The services
cover ingesting, storing, curating, analyzing, detecting, extracting,
classifying, summarizing, topic modeling, browsing, searching, re-
trieving, recommending, visualizing/reporting, and interacting with
ETDs and derivative text/image-based elements/objects. Workflows
connect the services and their APIs, along with UI-based access.
We believe our approach can guide others to combine tailored user
support, research, and education by way of extensible DLs.

CCS CONCEPTS
• Information systems → Digital libraries and archives; In-
formation retrieval; Document representation; Retrieval tasks and
goals.

KEYWORDS
Digital Library, Information System, Information Retrieval, Deep
Learning, NLP

1 INTRODUCTION
The digital library (DL) community faces many challenges. We
propose a new approach to developing DLs that benefits diverse
users. This paper describes some of those challenges and bene-
fits, explaining our system architecture, research investigations,
implementation, and results. Research questions include:

(1) How can a DL support a diverse set of user personas, in-
cluding curators, experimenters, and a variety of general
end-users – with diverse interests in accessing content?

(2) How can a DL better support access to long and complex
documents, going beyond the traditional paradigms that
only consider metadata or full-text (documents as a whole)?

(3) How can user interfaces (UIs) and services be connected by
integrating: ingesting, storing, curating, analyzing, detect-
ing, extracting, classifying, summarizing, topic modeling,
browsing, searching, retrieving, recommending, visualiz-
ing/reporting, and interacting with content – that leverages
natural language processing (NLP), deep learning, informa-
tion retrieval (IR), and software engineering methods?

(4) How can a DL be made extensible, so it is easy to enhance
to support additional personas, changing user experience
(UX) requirements, improved methods/technologies, and
diverse hardware/cloud environments?

(5) How can academics advance their research while at the
same time help students by way of problem/project based
learning and mentoring by subject-matter experts (SMEs)?

The problems related to handling long documents (e.g., elec-
tronic theses and dissertations – ETDs [53]) provide an appropriate
context in which to answer these questions; see Table 1. Libraries
have long provided metadata based support (based largely on title,
keywords, and abstract) for books and other long works. Surpris-
ingly, the IR and DL communities have done little to improve that
support, in spite of decades of improvements in the handling of
short works (e.g., web pages, papers, and articles). Full-text search
and passage retrieval [41, 64] provide some assistance, but help little
to address context, which for shorter works has been managed by
way of fields; those have little use when documents have complex
structures. Further, XML-based techniques have had little appeal
for users [25, 33, 42, 54]. Special methods have been developed for
document elements like figures [39], tables [2, 47, 58], equations
[63], and references [17, 59] – but there has been little integration
of those methods in support of DLs handling long documents.

Books are ubiquitous in scholarship. They are used by learners
up through the college years, and are the most important type of
work in many disciplines (e.g., humanities). Highly visible, books
have long had identifiers (ISBNs and DOIs) and are easy to cite.

1

https://orcid.org/0000-0002-8307-8844


Satvik, et al.

Table 1: SystemWorkflows and Services for Stakeholders (User Personas)

Workflows Services

Curator ETD Curation Usage Statistics Upload ETDs;
Provide metadata

Browse, validate,
update ETDs

ETDs Stats

Researcher

ETD/Chapter
Search

ETD/Chapter
Categorization; Topics

ETD Object Detection Indexing; Ranking ETD
Summarization

ETD/Chapter
Recommendation

Recommendation ETD/Chapter
Categorization

ETD Topic
Modeling

Experimenter

Search for
ETDs/Chapters

Get
recommendations

Run experiment with
selected options

UI service to display
the experiment result

Log and display
results

View documents User management Log results with
timestamps and metrics

Run experiment with
selected options

They are highly regarded for those seeking promotion or advance-
ment, including graduate students completing their research and
degree programs by filing an ETD, which usually is freely avail-
able to the world, facilitating open access knowledge sharing with-
out economic barriers [71]. Thus the set of personas associated
with ETDs is broad, including student authors, student learners
and researchers, faculty, those in the global research community,
university curators (e.g., librarians and archivists), and graduate
administrators. Added to that set are those in the IR and DL com-
munities engaged in research on long documents, who are just
beginning on the long required process of devising new approaches
and evaluating them experimentally.

To support all these personas and their needs, an integrated DL
system could provide a framework, if an extensible architecture
could be employed. Given the current technologies involved in the
IR and DL fields, there are many dimensions requiring extensibility.
One involves handling the growing number of user personas, and
ever changing UX and UI requirements. Regarding use cases, some
seek to: learn by way of Literature Review chapters, identify what
to study among the References cited, find a reproducible approach
detailed in a Methodology section, choose metrics and Evaluation
techniques, identify open problems mentioned as Future Work,
check on the effects of sponsoring research by extracting from
Acknowledgments, or find Datasets to work with. Regarding use,
many expect support for searching, browsing, recommending, vi-
sualizing, and summarizing – leveraging classification and/or topic
modeling systems. Another dimension involves the many types of
document elements found in works like ETDs, some of which are
rare, making it hard to apply deep learning methods. Yet another
involves the diversity in the works, varying across: disciplines, na-
tional/regional/local/school/department settings, styles and struc-
tures, scanning/OCRing techniques, digital publishing methods,
terminology and language use, and use of multimedia/hypermedia.
Regarding implementations, there are constant changes in software
engineering and hardware/cloud environments and approaches.

Given the need to implement such a system, and the limited
resources available to libraries and DL researchers, it is fortunate
that problem/project based learning provides a setting for graduate
students to assist, and help build this system [19, 26, 37, 57, 66].

2 USAGE SCENARIO/USER PERSONAS
A commonly used tool for user experience design is the develop-
ment of user personas. A user persona represents a class of users,
based on common goals, motivations, and behaviors. In developing
these personas, we borrow from the 5S framework for DLs [24].
We base our user personas on the societies construct of 5S. For this
work, we have created three user personas: curators, researchers,
and experimenters. We describe the needs, workflows, and system
requirements for each persona in the paragraphs that follow.

The curator persona represents those responsible for collecting,
managing, and preserving digital collections, and ensuring long-
term access to digital resources. To support their needs, the DL
should provide a suite of collection management tools to allow the
curator to organize collections and create / edit metadata. Curators
create, upload, and edit digital items and metadata in batches, as
well as one at a time. Curators also track usage and performance,
so the system should provide analytical tools to measure and report
system usage patterns and other metrics. In this regard, curators
overlap with those administering graduate programs and those
overseeing academic research, i.e., who engage in analysis and
reporting; curators can assist them in those activities. Moreover,
curators should ensure the long-term preservation of digital assets
by monitoring the integrity of digital assets to make sure that none
have become altered or corrupted, so that the archive remains trust-
worthy and accessible. The curator should set access restrictions
based on user roles and permissions to ensure the privacy and se-
curity of sensitive information. The curator also needs to be able
to quickly find items in the DL, so the system needs to facilitate
advanced search and browse functionality. The curator needs a
DL system that is interoperable with other parts of the curation
workflow, so the system should adhere to open standards for inter-
operability. Finally, the curator personawould benefit from a system
that integrates machine learning or AI in support of curatorial tasks,
such as automated metadata generation, format conversion, and
machine-generated summaries, keywords, or related works, which
could help end users to discover and understand the content.

The researcher persona represents the learners, students, faculty,
and community of researchers who use the DL. Most researchers
have a background in a specific field of study. They may be working

2



Integrated Digital Library System for Long Documents
and their Elements

at a university or research institute, or as an independent scholar.
Researchers use DLs to support their research workflows, which
include searching, browsing, reading, and downloading informa-
tion resources, as well as collecting and analyzing data, and syn-
thesizing findings. They may use tools within the DL system to
annotate items, visualize data, and share data or findings with other
researchers. To serve the needs of researchers, the DL should facili-
tate advanced search and browse capabilities, e.g., faceted search,
results filtering, and NLP. The DL should adhere to open standards
for interoperability and integrate seamlessly with other tools in the
research workflow. The DL should provide a personalized experi-
ence, allowing researchers to customize UIs, save search queries
and result sets, and get personalized recommendations. Likewise,
the DL should provide access controls ensuring secure protection of
sensitive information. A DL built for researchers might also include
features for data visualization and collaboration among researchers.

We separate the experimenter persona from other researchers
due to their unique needs, which partially overlap with that of
developer. Experimenters use the data contained in the DL for com-
putationally intensive work, such as text and data mining or sta-
tistical analysis. To support the needs of experimenters, the DL
system will need to be designed to support large data sets and high-
performance computing resources. The DL should support open
data interoperability standards to integrate with experimenters’
workflows, collaboration, and reproducibility. Experimenters also
require a system that provides them tools for organizing and man-
aging data and workflows, including version control. Additionally,
the DL should provide experimenters with access controls that en-
sure secure protection of their data, their workflows, and any other
sensitive information. Thus, experimenters include many in the DL
R&D world, including data scientists, algorithm developers, system
builders, and a broad range of innovators.

3 FRAMEWORK
Figure 1 illustrates the architecture of our system and its key
dataflows. Services correspond to user tasks that address user goals,
which are based on customer discovery [81].

3.1 Architectural Elements
3.1.1 User-facing Services. There is support through UIs for each
of the 3 personas, including searching and recommending over
a collection of ETDs and related digital objects. Our approach to
achieve such is to build containerized micro services. Examples are:

• A front-end service which lets users enter queries, and aims
to show relevant documents and digital objects.

• A search service to index and search documents, as well as
log user interactions.

• A recommendation service that builds and leverages models
which consume user logs and ETD data.

3.1.2 Underlying Services. We use ElasticSearch[6, 15, 40] to index
and search over the ETD metadata and chapters. We created a
REST API abstraction to interact with ElasticSearch using a Python
Flask [16] server. The search service uses the Python requests [60]
library to query the curator team’s GET ETD API to receive ETD
metadata and the chapter objects related to the ETD. We use the
sentence-transformers [21] Python module with the distilroberta

[74] language model to create dense vectors for abstract and title
text, and index them into ElasticSearch. We utilized a variety of
tools and libraries to build our system. To aid those interested in
reproducing our efforts, we explain the versions and details [22].

3.1.3 Search Specifics. Specific details of our work with Elastic-
Search (ES) include: (1) Proper configuration of elasticsearch.yml for
logging, security, etc.; (2) Using docker-compose.yml to container-
ize the ES cluster so as to easily run locally; (3) Index templates;
(4) SQL queries to query data from a relational database; (5) Code
to massage the queried data into JSON format that is compliant
with the ES schema; (6) Code to index the data from previous steps;
(7) Code to allow updating of indexed documents with new data;
(8) Querying ES over digital objects and get appropriate results;
(9) Dockerfile that containerizes the code and ES; (10) Uploading
PyTorch machine learning models to ES from v8.x and using it for
text embeddings and vector search; and (11) Employing the kNN
API available from ES v8.x.

3.2 Content and Representation
Out of a collection of roughly 1/2 million ETDs collected from
around the USA, we identified a subset of 57,129. From this we se-
lected a 5K subset suitable for students to process during a semester
long course (CS5604 in Fall 2022). The content and representa-
tion layer includes a repository with database tables (including for
metadata) and a file system for larger entities. There are APIs for
accessing and communicating with the repository.

3.2.1 Database. We use a PostgreSQL server with 9 database ta-
bles. One is for the abstract ETD, and another for each version of
its metadata. There also is a table for an abstract derived object.
Tables associated with objects include: metadata, summarization,
classification, and topic set. Since there can be multiple schemes for
topics and classification, there are tables to specify each of those.
An ETD identifier is given as a 7 digit integer.

3.2.2 File System. There is an hierarchical directory structure, with
upper level for the collections and lower level for the different ETDs
in a collection. With our sample collection, it suffices to have a 3
digit number for each source collection, and a 4 digit number for
the different ETDs in a collection. Each ETD has subdirectories for
the different types of associated or derived content.

3.2.3 APIs. Our system also provides APIs to read/write/update/
delete records in the database and entries in the file system. This
allowed the rest of the system implementation to proceed based
on API calls, thus decoupling it from repository operation. Student
teams all agreed on the specifications for the APIs, which are listed
in Table 2. The APIs can be grouped as follows:

• Curator Webpage: Help the curator to access the ETDs
and perform basic operations like create, read, and update.

• Accessing File System: Help access digital objects in the
file system. The upload API response is the absolute path.

• Accessing SQL Database: Help other teams to save their
results in the database and access existing ETD data.

• Logging: We track the users’ search queries and the results
they click on. User ID and ETD ID pairs can be found in Elas-
ticSearch logs, and help with recommendation. We expose

3



Satvik, et al.

Figure 1: Architecture of an extensible IR system. Oval = input/output data (indexed for search). Square = service.

Table 2: API List. Key for Personas: C= Curator, E=Experimenter, R=Researcher

Purpose Method Description Persona(s)

Get Statistics Report of School Con-
tribution Amount

GET Provides statistical reports of the stored ETD collections; intended mainly
for front-end page use.

C

Get ETD and its Object GET Returns all ETDs along with their objects. The “start” and “limit” parameters
define the pagination function.

E R

Get ETD PDF by etd_id GET Returns the ETD PDF by etd_id. E R
Get ETD by etd_id GET Returns an ETD corresponding to an etd_id. E R
Get Objects by etd_id GET Returns all object details that belong to the ETD. E R
Save Summarization POST Takes a JSON object with two fields and values, and inserts into the sum-

marization table with the associated object_id.
E

Save Classification POST Given a model and set of labels, inserts into classification tables. Updates
object_classification table. label name = class_name

E

Get Object Relations Present in the
Knowledge Graph by etd_id

GET Returns object relations present in the knowledge graph. R

Get Object File by object_id GET If the type of the object is an image, this API returns the image file. R
Save Object Topic POST Takes a JSON body with a set of topic terms and the probability of each

term. Saves it in the relevant topic-related table.
R

Get ETD Page Image GET Returns the specific page of the ETD. R
Add New ETD POST Adds a new ETD to the database and uploads the file to the file system. C R
Save Detected Object POST Saves a PDF/image file into the file system, and inserts a row into “object”

metadata table with file system path and object type. Returns object_id.
E R

Save Detected Objects POST This batch-upload version of the “Save Detected Object” API takes a ZIP
file and a list of objects in JSON format.

E R

Save ETD Page Images POST Saves the generated page images for a particular ETD. E
Save Topic Modelling Results POST Saves the generated topic modeling results. R

the logged data to the recommendation model through an
API. The recommendation system calls the API endpoint
with a user ID and receives the user’s history of search
queries with the search results they clicked on.

3.3 Workflows
While system operations can proceed with code calling APIs, a
higher level of abstraction results from running a series of services
by calling a workflow that connects them. We use Apache Airflow
to execute workflows that are specified as directed acyclic graphs

4



Integrated Digital Library System for Long Documents
and their Elements

Figure 2: Workflow Automation UI. (a) Goals, (b) Services.

of services. To further simplify the implementation, we provide an
extensible infrastructure (see bottom right of Figure 1) so goals can
be interpreted by a reasoner, which refers to a knowledge graph
that associates goals, workflows, and services. To allow no-code
specification of the workflows we include a UI with screens to
describe and connect the goals (Figure 2 (a)) and services (Figure
2 (b)). Thus, a UX researcher (UX-R) can specify the design of a
workflow-centric DL system, according to an in-depth description
of the methodology for building an extensible information system
[23].

Examples of information goals (in the domain of long document
IR, with ETDs) for researcher persona are: (1) extracting full-text
from PDF, (2) extracting chapters, (3) extracting tables and figures,
(4) classifying chapters into custom categories, etc.

Experimenter personas want: (1) to access training data for their
models, (2) a platform to train a machine-learning model to perform
object detection and topic modeling, (3) to run experiments using
these models and compare their results for optimal use, (4) to offload
the results of a trained model to a persistent storage, etc.

The current DL includes workflow implementations for long
document Segmentation, Classification, Summarization, Object de-
tection, Indexing, among others.

4 CORE SERVICES FOR CURATORS
From the content provider’s perspective of the system, we have
five major components in the system design: the cloud server, the
PostgreSQL database, the file system, the Flask web application for
the curator, and the APIs for the experimenters.

Our local Kubernetes Docker cluster orchestrates the containers
with PostgreSQL, Flask, and other necessary packages. The file sys-
tem is mounted from the database container, which has information
about the file system location of each ETD. The Flask application

Figure 3: Workflow for ETD processing

runs on a container which not only hosts the web application that
the curator uses, but also provides the APIs so other users can
interact with the database and file system.

The Docker containers simultaneously support multiple per-
sonas, with whom they interact at different stages. Read and write
performance is not affected when the other users are reading or
inserting data like object images, chapter summaries, etc.

The web UI uses Flask, where curators access ETDs using the
Flask framework in Python. It includes extended APIs for CRUD
operations running on the container cluster. Figure 3 shows the
workflow that curators use to add and process ETDs.

5 CORE SERVICES FOR RESEARCHERS
5.1 Segmentation, Classification, and

Summarization
A student or a researcher wants to access a particular section of
interest from an ETD. To do so, they will need more information
about each of the chapters to determine whether the content is of
interest.

Once a user uploads an ETD, the segmentation pipeline pre-
dicts the chapter boundaries and creates chapter PDFs. Users have
used the segmentation pipeline to segment 5000 documents using
the model described in Section 7.2.1. Segmented chapter PDFs of
these 5000 documents are stored in the database and can be used
by other services like summarization and classification. A PDF
parsing and cleaning pipeline follows the segmentation pipeline.
PDFPlumber [67] is used to extract text from the PDFs. To ensure
that we only provide text to the downstream services, both tables
and figures are removed from the extracted text.

Our segmentation work is based on [52]. The deep learning
pipeline for segmentation uses both image and text features as
sequence elements. A VGG model was used to extract image fea-
tures, whereas Glove and FastText were used for text embedding.
An LSTM was trained with extracted features from both text and
images. Training and validation were done on 1459 ETDs (80/20
split). The testing was done on 150 ETDs. The test set consists of
documents from both arXiv and non-arXiv sources. The model used

5



Satvik, et al.

Table 3: Evaluation of classification models. Optimizer:
Adam E; Learning Rate: 5e-5; Batch Size: 8; Epochs: 8

Model Accuracy F-1 Chapter/
Name (%) Score (%) Summary
BERT-base 64.75 56.28 Chapter
SciBERT 80.77 77.5 Chapter
BERT-base 63.01 54.41 Summary
SciBERT 70.89 67 Summary

for segmentation predicts one of six labels. We look at the ‘Chapter
Start’ label to detect chapter boundaries and segment the ETD into
chapter PDFs. The ‘Chapter Start’ label has a F1 score of 72% with
83% Precision, and 77% Recall.

The classification service uses the extracted chapter text as its
input. Our classification task was done using language models.
Chapter classification was done using both full text and the chapter
summary as the input. Some of the models used for the experiments
are (1) Language model-based classifiers – BERT, SciBERT, and
Longformer; and (2) Machine learning-based classifiers – SVM
and Random Forest. 3742 chapter text was used to fine-tune the
language models. For the classification task, a dataset comprising
27 different classes was chosen. The classification evaluation test
set consisted of 749 chapters. The models are available to use by
the experimenter as described in Section 6.1. The performance is
depicted in Table 3. We conclude that SciBERT on chapter text has
better overall accuracy and F1 scores for predicting classification
labels. Thus, this model is used to generate classification labels on
5000 ETDs; these are stored in the database.

Similar to the classification service, the summarization pipeline
takes the extracted chapter text to generate chapter summaries.
We used various summarization models in the experimental setup
of the task. Our summarization pipeline supports both abstractive
(BigBird [84] pre-trained on the BookSum dataset) and extractive
summarization (TextRank, LexRank, and LSA)models. In Section 6.1
we describe our results of implementing and testing these mod-
els. We ran the summarization pipeline on 5000 documents using
TextRank. The service produces a list of chapter summaries, one
for each chapter, which the DL subsequently stores in the data-
base. The chapter summaries are available for use in tasks such
as classification, search, and recommendation. Furthermore, the
summarization service for experimenters supports all of the sum-
marization models. Figure 5 (c) displays the document view page
of an ETD with chapter summaries and classification labels.

5.2 Object Detection
The object detection module takes as input a PDF version of the
document, and produces a parsed version in a structured XML for-
mat. It uses object detection models such as YOLO [79] that have
been trained on a dataset consisting of ETD-specific elements [3, 4].
The PDF document is first split into individual page images, each
of which is then fed to the object detection model for extracting
elements on the corresponding pages. More specifically, after creat-
ing the page images from the ETDs using the PDF2image Python
library, we train YOLOv7 [80] and Faster R-CNN (Detectron2 [83])
to extract objects such as the metadata, figures, tables, chapters,

Figure 4: Object detection example

titles, and paragraphs – yielding both image-based and text-based
objects. The resultant XML document consists of different elements,
which are broadly divided into three categories:

• Front Matter: includes metadata elements, e.g., document
title, author name(s), degree, university, etc. Other elements
give an overview of the document, such as the abstract and
list/table of contents.

• Document Body: is the main part of the ETD, consisting
of a list of chapters. Each contains respective sections, with
their paragraphs, figures (and captions), tables (and cap-
tions), equations (with numbers), algorithms, and footnotes.

• Back Matter: includes references and appendices.
Figure 4 shows examples of detected objects (bounding boxes and

object categories) from an ETD page. The content (i.e., text) from
text-based objects, such as paragraphs, captions footnotes, etc. is
further extracted using text extraction tools such as PyMuPDF[49]
or OCR, before being populated in the XML.

5.3 Topic Modeling of ETDs and Chapters
Our framework allows users to select one of the topic modeling
techniques, and the number of topics, and to get the resulting topics.
This service includes three major components:

• Documents per Topic Distribution: This module helps
users find the most popular topics in the document collec-
tion. Given a threshold value and a topic, this component
calculates the number of documents in the database for
which the given topic’s probability exceeds a threshold.

• Topic List: For every topic, this module shows the top 10
words that are representative of that topic; the set thus
serves as a type of label.

• Similar Topics: Some users work in interdisciplinary fields.
In such instances, it is often desirable to show a list of
related topics to the user. This is done based on similarities
between different rows of the topic-word matrix.

6



Integrated Digital Library System for Long Documents
and their Elements

In this study, we utilized the Python library OCTIS [73] to train
several models, including Latent Dirichlet Allocation (LDA) [13],
Neural LDA [69], Product of Latent Dirichlet Allocation (ProdLDA)
[69], and Correlated Topic Model (CTM) [11], on a dataset of ETDs.

5.4 Search and Recommendation
The search service is responsible for indexing and searching over
all the ETD metadata, figures, chapters, and other digital objects. A
researcher wants to search and browse over a collection of ETDs
and their elements, across various universities and disciplines, and
be able to view a list of ETDs ranked for relevance to the user
query. The service runs as a container and interacts with Front-
end, ElasticSearch, and Database containers, as shown in Figure 1.
The service queries the database using the APIs provided by the
curator team, and indexes the ETDs and other digital objects into
ElasticSearch. Flask [16], a micro-web framework, is used to create
an API endpoint to receive queries from the front-end. We then
create a search query and use an ElasticSearch client to search over
the ElasticSearch index. Conventional methods like inverted index
and ML based models like kNN are considered and implemented
to improve the search. We use different metadata fields like author,
university, major, etc. to sort and filter the search results. By default
we sort the documents based on the estimated relevance score
provided by ElasticSearch [14], as was done by a prior class team
[45]. The search service logs the user queries and demographics,
and makes it available for the recommendation engine to provide
user-based recommendations.

We index the following items into ElasticSearch: (1) ETD meta-
data which has text fields like author, abstract, title, etc. (2) Chapter
summaries, classification labels, and other chapter-related objects.

Figure 5 (b) and 5 (d) display screenshots of the UI for our DL
system for search. We implement the following search methods to
search over ETD metadata and chapters.

• ElasticSearch’s default method, which uses keyword match-
ing to search through the documents.

• kNN search, which finds the k nearest vectors to a query
vector, as measured by a similarity metric. The indexed
documents consist of a field of type dense vector.

• A hybrid search method that performs kNN and keyword-
based search independently, and then returns top results
based on the combined score (e.g., 0.9 ∗𝑚𝑎𝑡𝑐ℎ_𝑠𝑐𝑜𝑟𝑒 + 0.1 ∗
𝑘𝑛𝑛_𝑠𝑐𝑜𝑟𝑒).

The recommendation module recommends similar ETDs as
ETDs of potential interest to the user. A researcher expects a person-
alized experience from a DL system, and the recommender model
provides that by displaying top-n documents. This is shown in
Figure 5 (a) based on user interests and interactions. The idea is to
use the user click history as a form of feedback to our recommen-
dation system. Click history refers to the log of the ETDs that the
user has clicked on. We use user click events to log user data, and
generate a dataset of users and their associated ETDs. This dataset
is then used to generate recommendations by training a machine
learning model for the same. For a registered user, we provide a
fine-grained recommendation by leveraging that user’s interactions
and preferences.

The data that is used to build a dataset to train themodel includes:
(1) User Interaction, (2) Clicks on ETD links, and (3) User Search
History (i.e., extracting keywords from each user search query and
mapping them to a topic). We resolve the cold start problem by
asking the user upfront about the topics they are interested in.
These topics can be the very same topics produced as a result of
topic modeling.

We based our model on the Deep Learning Recommendation
Model (DLRM) [56]. It is a hybrid implementation of content and
collaborative filtering. The DLRM model forms the global model.
Recommendations at a user level need to change fairly quickly
based on user behavior and usage patterns. It would be difficult to
fine-tune the global model for each user. Hence, we follow [1] to
train a simple logistic regression model for each user. This model
provides a click probability per ETD for each user and is then added
to that of the global model to give us the best of both worlds. We
achieve global knowledge of recommendations through the larger
model and user-level personalization through the smaller model.

The integrated recommendation model is exposed as the recom-
mendation service through the infer and train API. The recommen-
dation service interacts with the front-end and ElasticSearch index.
As more people use and interact with the system, the data distri-
bution of the interaction logs changes. In order to deliver relevant
recommendations to the user, the model is updated with changes
in the data. To facilitate easy updates to the model, we provide a
train API that can be called at a set frequency by the ElasticSearch
service.

6 CORE SERVICES FOR EXPERIMENTERS
6.1 Segmentation, Classification, and

Summarization
The experimenter page as shown in Figure 6 (a) is created to help
developers and researchers plug in different models and check the
performance. For the experimenter UI interface, segmentation, clas-
sification, and summarization services are performed in succession.
The user has the ability to upload the ETD. This page enables the
user to select the desired summarization and classification models
from a dropdown menu. For the classification task, fine-tuned SciB-
ERT, BERT, and Longformer models are available to the user. For
summarization, the models currently available are TextRank, BART,
and BigBird. Once a user has made their selection and submitted the
form, an API call triggers the workflow to run each of the services.
Then the ETD is processed as follows.

(1) PDFs are segmented into chapters.
(2) Chapter PDFs are stored in the database.
(3) Text is extracted and cleaned from the PDFs and stored as

text files.
(4) Extracted text is fed into the summarization and classifica-

tion pipelines with the desired models as arguments.
(5) Chapter classification labels and summaries are retrieved

from respective pipelines and displayed to the user in the
UI.

7



Satvik, et al.

Figure 5: (a) Home page with personalized recommendations; (b) Search page; (c) Document view page; (d) Chapter search page.

6.2 Object Detection
The Experimenter page offers the ability to detect and display ob-
jects and topics from ETDs using variousmodels. It includes amodel
selector supporting both Detectron2 and YOLOv7 with customiza-
tion options for model weights and hyper-parameters. Accessible
via the login sidebar menu under “Object Detection,” the experi-
menter can choose a model and be redirected to the ETD view page.
The detection results are displayed in HTML format generated
from the object detection’s XML output. To showcase the detection
results of different models on an ETD, a Flask application was de-
veloped to produce an HTML page from the object detection model.
The user selects between Detectron2 and YOLOv7, then uploads
the desired ETD PDF for detection. The HTML page displays the
detected chapters, figures, and linked captions extracted from the
ETD in an organized manner.

6.3 Topic Modeling of ETDs and Chapters
Our Experimenter page for topic modeling currently offers three
types of services. The ETD Embedding API accepts the model name,
number of topics, and ETD ID as input. It returns a topic vector that
represents the probabilities of the document being associated with
each of the k topics generated. The ETD Related Documents API,
given the model name, number of topics, and ETD ID, outputs the
most relevant documents, with the default value for the optional
parameter “top k” being 5 (related documents). The ETD Related
Topics API, with the same input parameters as the previous API,

returns the most related topics, with a default value for the “top k”
parameter of 5 (related topics).

6.4 Search
Apart from the default behavior exposed to the users to search over
the existing ETDs, we provide an interface as shown in Figure 6 (b)
for the experimenter to create and run search-related experiments.
These experiments will allow the experimenter to index custom
vectors for each ETD. Once such data is created, the experimenter
can perform a hybrid search (kNN + keyword) on the indexed
documents and check the scores for the documents returned. The
flow for creating and running an experiment is shown in Figure 7.
These experiments are user specific, and the created experiments’
metadata is stored in an ElasticSearch index.

We also provide four default experiments accessible to all users.
These involve text embeddings created from the abstract and title of
1000 ETDs. The models used to generate embeddings for the default
experiments are: (1) all-distilroberta-v1 [74], (2) all-mpnet-base-v2
[77], (3) all-MiniLM-L12-v2 [76], and (4) LaBSE [75].

7 BACKGROUND AND RELATEDWORK
7.1 Workflow-centric Information Systesm
The evolution of workflow management systems (WMSs) has been
a natural consequence of advances in computer technology, an
increase in digital sensors, and as a by-product, an increase in
the volume of observational data and any data collected through

8



Integrated Digital Library System for Long Documents
and their Elements

Figure 6: Experimenter UI: (a) Classification and Summariza-
tion; (b) Search.

Figure 7: Experimenter interactions with ElasticSearch

automation. Jim Gray, in the Fourth Paradigm, recommends that
the scientific community foster digital data libraries for both data
and literature [34].

Liew et al. state that WMSs: (a) support collaborative research,
(b) construct workflows without concern about resources and work-
flow execution, (c) automate steps for reproducibility and simulation-
based studies, (d) integrate resources (data and processing power)

from heterogeneous sources, and (e) optimize workflow execution
[30, 32, 46, 72].

Many WMSs exist, each with varying characteristics. Pegasus
is a popular WMS [18]. It uses Wings for workflow composition
and provenance tracking [27]. Like Pegasus, Apache Taverna is an
open-source WMS [82]. Similarly, there are many more powerful
WMSs such as KNIME, Kepler, Galaxy, etc. [10, 12, 51]. One of
the main aims of these WMSs is to help the users conduct their
experiments without having knowledge of workflow execution and
optimization. However, these interfaces are not particularly helpful
for an audience of SMEs who might have little to no information on
the tasks and files required. That knowledge barrier is not addressed
by the WMSs mentioned above.

7.2 DL Services Background
The traditional approach to very long document IR is to simply
treat them like other documents, and just help find an entire long
document. This is what is done by WWW search engines, library
catalogs, and scholarly oriented systems [5, 28, 31]. One of the early
approaches to improve access to the content of very long documents
aimed to extract relevant passages [41]. Another approach is to
apply text mining, initially to aid with discovery [36, 85]. Recently,
there have been several studies of the use of deep learning related to
paper-length documents, including with transformers and attention
models [9, 35, 44, 78, 84]. Our models apply those and our own
findings, and scale them up for very long documents.

7.2.1 Segmentation, Classification, and Summarization: Long doc-
uments are often organized into chapters and sections. Automatic
segmentation of ETDs is used to identify their chapters. These
chapters are then used for chapter-level classification, summariza-
tion, and subsequent chapter searches and recommendations. The
variation in format, writing structure, and styles make it hard to au-
tomatically detect chapter boundaries, which was the result when
using PyMuPDF [49] and GROBID [50].

In this work, we use a segmentation model [52] that leverages
LaTeX documents to train a segmentation model to predict the
chapter boundaries of ETDs. LaTeX sources (some available on
arXiv 1) contain chapter and section tags that help in boundary
detection. Themodel uses both page images and textual information
to detect chapter boundaries.

University repositories hosting ETDs come with metadata infor-
mation. Department or discipline information is often included in
the metadata. Research has become interdisciplinary in nature and
the document-level classification labels often are not indicative of
such collaboration. We perform chapter-level classification, and this
work is performing multi-label classification. In [38], the author
leveraged 28 ProQuest subject categories to multi-label classify the
chapters. Language models have also been used for the classifica-
tion task. BERT [20] and SciBERT [8] are some popular language
models that uses transformers to perform various sequence tasks
including classification. To obtain more tailored results, we can
fine-tune base models [7]. We use language models for our chapter
classification work.

1https://arxiv.org/

9

https://arxiv.org/


Satvik, et al.

Text summarization helps with succinctly conveying the infor-
mation in a large body of text. Automatic text summarization has
become especially popular in recent years with the growth in num-
bers of digital documents. Text summaries not only reduce reading
time but also improve the effectiveness of search and retrieval. Ex-
tractive summarization techniques use sentences from the input
text in the generated summary. Some popular models are TextRank,
LexRank, and LSA. On the other hand, abstractive summaries re-
semble human summaization more closely. Most popular summa-
rization techniques like the ‘Abstractive Text Summarization using
Sequence-to-sequence RNNs’ [55] and ‘Pointer Generator’ [65].
Language models have also been used for the summarization task,
like BART [43], T5 [61], and Big Bird [84] While most popular lan-
guage models only work with shorter sequences, the Longformer
Encoder Decoder (LED) [9] incorporates a longer sequence length
to help summarize longer documents.

7.2.2 Object Detection: We evaluate our object detection pipeline
using two models – Faster R-CNN and YOLOv7. Faster R-CNN [62]
is the third iteration of the R-CNN architecture [29]. Its evolution
from the VGG-16 backbone included Region of Interest (RoI) Pool-
ing, a Region Proposal Network (RPN), and Facebook AI Research’s
Detectron2 [83]. YOLOv7 has the highest accuracy [80]. It outper-
forms both transformer-based object detectors and convolution-
based object detectors in real-time.

7.2.3 Topic Modeling: Topic modeling of ETDs aims to extract the-
matic collections of words that represent topics. Early works such
as LDA [13] were based on a probabilistic formulation of topics.
Recent works include neural topic models such as NeuralLDA [69],
ProdLDA [69], and CTM [11]. The representations learned from
topic models can be used for downstream tasks that rely on docu-
ment representations, such as finding similar documents (document
recommendation) and finding similar topics.

7.2.4 Search, Browsing, and Recommendation: To aid browsing, as
well as searching, which are the core DL services, search engines
such as Solr and ElasticSearch (ES) which are based on Lucene are
commonly employed. Elasticsearch [6, 15, 40] can power extremely
fast searches that will be beneficial for the search engine we are
trying to build around the ETDs. Also, with recent support for
embeddings in the ES v8.x search engine, ES has provided a platform
to implement ML-based search methods.

User-level recommendation is one of the essential DL services.
It provides user’s with similar document recommendations based
on their interest’s and search history. Recommendation models are
divided into two types: (1) content-based filtering which consists of
search-based methods [68] and cluster-based methods. (2) collabora-
tive filtering which consists of bag-of-items, traditional user-based
methods, item-based filtering [48], and Sequential Transformers.

Steck et al. [70] describe multiple examples of how these rec-
ommendations are brought to life. In the traditional bag of items
approach, the order in which the items gained association with the
user is not maintained nor given the same significance with respect
to the recommendation engine. This assumption does not hold with
DL recommendation engines, as recently viewed/read content holds
more significance and thus more weight during recommendation.

In item-to-item collaborative filtering [48], the algorithmmatches
every purchased and rated items of the user to similar items, then
combines those similar items into a list of recommendations. Nau-
mov et al. [56] propose a deep learning model for recommendations
which is a hybrid filtering method that ranks based on the Click-
Through-Rate to show recommendations to the user.

Aberdeen et al. [1] introduce an idea to implement personalized
recommendations accurately and at scale, and to incorporate user
feedback continuously. We see that in a real-world use case, user
behaviour varies vastly and it is important to provide recommen-
dations catering to the user, and to avoid generalizations.

8 CONCLUSION AND FUTUREWORK
This paper describes the framework, components, and key personas
of our integrated DL, built to support mining and exploration of
long documents and their elements. Personas, through different
scenarios, can satisfy their information goals through our UI and
workflow/service-centric architecture.

Services, built on state-of-the-art models, identify/generate syn-
tactic/semantic elements. 57,129 ETDs’ metadata and abstract were
extracted, stored, indexed, and made available for search and brows-
ing. We have used 5K of the 57K to generate/detect elements.
Through object detection, we have identified approximately 550K
image-based objects. Through segmentation, we have identified
approximately 22.8K chapters from 5K ETDs. Chapter texts support
classification and summarization. Through topic modeling, we have
assigned topics for the 5K ETDs and 22.8K chapters, which in turn
were used to provide a list of “top-10” similar ETDs/chapters based
on topics. The generated elements for the 5K ETDs were indexed
and made available for searching, browsing, and recommendation.

We will scale up our efforts from 5K to much larger numbers.
We will improve our models for existing services, while developing
new services, e.g., searching for figure and table captions. Through
additional analysis and services, and related evaluations and user
studies, we will better support the information goals of our diverse
stakeholders.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants OAC-1835660,
CMMI-1638207, and IIS-1619028; by IMLS grant LG-37-19-0078-19;
and by Virginia Tech through CS and University Libraries. We also
acknowledge the students in the Fall 2022 CS5604 class [19, 26,
37, 57, 66], and additional mentors who assisted that class (Sara
Ahmadi and Dhanush Dinesh).

REFERENCES
[1] Douglas Aberdeen, Ondrey Pacovsky, and Andrew Slater. 2010. The Learning

Behind Gmail Priority Inbox. In LCCC: NIPS 2010 Workshop on Learning on Cores,
Clusters and Clouds.

[2] E. Agichtein and V. Ganti. 2004. Mining reference tables for automatic text
segmentation. In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 20–29.

[3] Aman Ahuja, Alan Devera, and Edward Alan Fox. 2022. Parsing Elec-
tronic Theses and Dissertations Using Object Detection. In Proceedings of the
First Workshop on Information Extraction from Scientific Publications. 121–130.
https://aclanthology.org/2022.wiesp-1.14/.

[4] Aman Ahuja, Kevin Dinh, Brian Dinh, William A. Ingram, and Edward Alan
Fox. 2023. A New Annotation Method and Dataset for Layout Analysis of
Long Documents. In Companion Proceedings of the ACM Web Conference 2023

10



Integrated Digital Library System for Long Documents
and their Elements

(WWW ’23 Companion), April 30-May 4, 2023, Austin, TX, USA. ACM. https:
//doi.org/10.1145/3543873.3587609

[5] AllenAI. 2022. Semantic Scholar. https://www.semanticscholar.org/
[6] Abhishek Andhavarapu. 2017. Learning Elasticsearch (first ed.). Packt Publishing.
[7] Bipasha Banerjee, William A. Ingram, Jian Wu, and Edward A. Fox. 2022. Ap-

plications of data analysis on scholarly long documents. In 2022 IEEE Interna-
tional Conference on Big Data (Big Data). 2473–2481. https://doi.org/10.1109/
BigData55660.2022.10020935

[8] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A Pretrained Language
Model for Scientific Text. In Proc. EMNLP-IJCNLP. ACL, Hong Kong, 3615–3620.
https://doi.org/10.18653/v1/D19-1371

[9] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. arXiv:2004.05150 [cs] (Dec. 2020).

[10] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias
Kötter, Thorsten Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel. 2009.
KNIME - the Konstanz Information Miner: Version 2.0 and Beyond. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 26–31. https://doi.org/10.1145/1656274.1656280

[11] Federico Bianchi, Silvia Terragni, and Dirk Hovy. 2020. Pre-training is a hot
topic: Contextualized document embeddings improve topic coherence. arXiv
preprint arXiv:2004.03974 (2020).

[12] Daniel Blankenberg, Gregory Von Kuster, Nathaniel Coraor, Guruprasad Ananda,
Ross Lazarus, Mary Mangan, Anton Nekrutenko, and James Taylor. 2010. Galaxy:
A Web-Based Genome Analysis Tool for Experimentalists. Current Protocols
in Molecular Biology 89, 1 (2010), 19.10.1–19.10.21. https://doi.org/10.1002/
0471142727.mb1910s89

[13] DavidMBlei, AndrewYNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993–1022.

[14] Elasticsearch B.V. 2019. Elasticsearch Scoring. https://www.compose.com/
articles/how-scoring-works-in-elasticsearch/ accessed on September 15, 2022.

[15] Elasticsearch B.V. 2019. Open Source Search: The Creators of Elasticsearch, ELK
Stack & Kibana | Elastic. https://www.elastic.co/ accessed on August 31, 2022.

[16] Flask B.V. 2020. FlaskWebsite. https://flask.palletsprojects.com/en/2.2.x/ accessed
on August 31, 2022.

[17] C.C. Chen, K.H. Yang, H.Y. Kao, and J.M. Ho. 2008. BibPro: A Citation parser
based on sequence alignment techniques. In 22nd International Conference on
Advanced Information Networking and Applications-Workshops. IEEE, 1175–1180.

[18] Ewa Deelman, Karan Vahi, Mats Rynge, Gideon Juve, Rajiv Mayani, and
Rafael Ferreira da Silva. 2016. Pegasus in the Cloud: Science Automation
through Workflow Technologies. IEEE Internet Computing 20, 1 (Jan. 2016),
70–76. https://doi.org/10.1109/MIC.2016.15

[19] Alan Devera, Raj Sahu, Nila Masrourisaadat, Nirmal Amirthalingam, and Chenyu
Mao. 2022. CS 5604 Fall 2022 Team 3: Object Detection and Topic Modeling. CS5604
team term project. Virginia Tech. http://hdl.handle.net/10919/114081 accessed
on April 10, 2023.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Association for Computational Linguistics, Minneapolis,
Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[21] Hugging Face. 2022. Sentence Transformers. (2022). https://huggingface.co/
sentence-transformers accessed on November 19, 2022.

[22] Edward A. Fox. 2023. CS5604 System Reproducibility. https://fox.cs.vt.edu/
CS5604SystemReproducibility.pdf accessed on April 16, 2023.

[23] Edward A. Fox and Prashant Chandrasekar. 2021. How Should One Explore the
Digital Library of the Future? Data and Information Management 5, 4 (2021),
349–362. https://doi.org/doi:10.2478/dim-2021-0003

[24] Edward A. Fox, Marcos André Gonçalves, and Rao Shen. 2012. Theoretical Founda-
tions for Digital Libraries: The 5S (Societies, Scenarios, Spaces, Structures, Streams)
Approach. Morgan & Claypool Pub. DOI 10.2200/S00434ED1V01Y201207ICR022.

[25] Norbert Fuhr and Kai Grobjohann. 2004. XIRQL - An XML Query Language
based on Information Retrieval Concepts. ACM Transactions on Information
Systems 22, 2 (April 2004), 313 – 356. http://doi.acm.org/10.1145/984321.984326

[26] Kaushik Ganesan, Deepak Nanjundan, Deval Srivastava, Abhilash Neog,
Dharneeshkar Jayaprakash, and Aditya Shah. 2022. CS 5604 Fall 2022 Team
4: Segmentation, Summarization, and Classification. CS5604 team term project.
Virginia Tech. http://hdl.handle.net/10919/114077 accessed on April 10, 2023.

[27] Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth, J. Moody, and E. Deelman.
2011. Wings: Intelligent Workflow-Based Design of Computational Experiments.
IEEE Intelligent Systems 26, 1 (Jan 2011), 62–72. https://doi.org/10.1109/MIS.2010.
9

[28] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. 1998. CiteSeer: An Automatic
Citation Indexing System. In Proc. 3rd ACM Int’l Conf. Digital Libraries, June
23-26, 1998, Pittsburgh. 89–98. https://doi.org/10.1145/276675.276685

[29] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation. In
Proc. IEEE conf. on computer vision and pattern recognition. 580–587.

[30] Carole Anne Goble and David Charles De Roure. 2007. MyExperiment: Social
Networking for Workflow-Using e-Scientists. In Proceedings of the 2nd Work-
shop on Workflows in Support of Large-Scale Science (Monterey, California, USA)
(WORKS ’07). Association for Computing Machinery, New York, NY, USA, 1–2.
https://doi.org/10.1145/1273360.1273361

[31] Google. 2022. Google Scholar. https://scholar.google.com/
[32] Katharina Görlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann, and

Michael Reiter. 2011. Conventional Workflow Technology for Scientific Simulation.
Springer London, 323–352. https://doi.org/10.1007/978-0-85729-439-5_12

[33] G. Gou and R. Chirkova. 2007. Efficiently Querying Large XML Data Repositories:
A Survey. IEEE Transactions on Knowledge and Data Engineering 19, 10 (2007),
1381–1403. https://doi.org/10.1109/TKDE.2007.1060

[34] Tony Hey, Stewart Tansley, and Kristin Tolle. 2009. The Fourth
Paradigm: Data-Intensive Scientific Discovery. Microsoft Research.
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-
data-intensive-scientific-discovery/

[35] Luyang Huang, Shuyang Cao, Nikolaus Nova Parulian, Heng Ji, and Lu
Wang. 2021. Efficient Attentions for Long Document Summarization. CoRR
abs/2104.02112 (2021). arXiv:2104.02112 https://arxiv.org/abs/2104.02112

[36] Olexandr Isayev. 2019. Text mining facilitates materials discovery. Nature 571,
7763 (July 2019), 42–43. https://doi.org/10.1038/d41586-019-01978-x

[37] Tanya Jain, Hirva Bhagat, Wen-Yu Lee, Ashrith Reddy Thukkaraju, and Raghav
Sethi. 2022. CS 5604 Fall 2022 Team 1: ETD Collection Management. CS5604 team
term project. Virginia Tech. http://hdl.handle.net/10919/114079 accessed on
April 10, 2023.

[38] Palakh Mignonne Jude. 2020. Increasing Accessibility of Electronic Theses and
Dissertations (ETDs) Through Chapter-level Classification. MS Thesis. Virginia
Tech. http://hdl.handle.net/10919/99294

[39] Sampanna Yashwant Kahu, William A Ingram, Edward A Fox, and Jian Wu. 2021.
ScanBank: A Benchmark Dataset for Figure Extraction from Scanned Electronic
Theses and Dissertations. In 2021 ACM/IEEE Joint Conference on Digital Libraries
(JCDL). 180–191. https://doi.org/10.1109/JCDL52503.2021.00030

[40] Nikita Kathare, O. Vinati Reddy, and Vishalakshi Prabhu. 2020. A Comprehensive
Study of Elasticsearch. International Journal of Science and Research (IJSR) (2020).

[41] Jinhyuk Lee, Alexander Wettig, and Danqi Chen. 2021. Phrase Retrieval Learns
Passage Retrieval, Too. arXiv preprint arXiv:2109.08133 (2021).

[42] Kyong H. Lee, Yoon C. Choy, and Sung B. Cho. 2003. Logical Structure Analysis
and Generation for Structured Documents: A Syntactic Approach. IEEE Trans.
on Knowl. and Data Eng. 15, 5 (2003), 1277–1294. https://doi.org/10.1109/TKDE.
2003.1232278

[43] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. BART: Denois-
ing Sequence-to-Sequence Pre-training for Natural Language Generation, Trans-
lation, and Comprehension. Technical Report. http://arxiv.org/abs/1910.13461
arXiv:1910.13461 [cs, stat].

[44] Minghan Li, Diana Nicoleta Popa, Johan Chagnon, Yagmur Gizem Cinar, and
Éric Gaussier. 2021. The Power of Selecting Key Blocks with Local Pre-
ranking for Long Document Information Retrieval. CoRR abs/2111.09852 (2021).
arXiv:2111.09852 https://arxiv.org/abs/2111.09852

[45] Yuan Li, Satvik Chekuri, Tianrui Hu, Soumya Arvind Kumar, and Nicholas
Gill. 2019. CS 5604 Fall 2019 ELS. CS5604 team term project. Virginia Tech.
http://hdl.handle.net/10919/96310 accessed on September 15, 2022.

[46] Chee Sun Liew, Malcolm P. Atkinson, Michelle Galea, Tan Fong Ang, Paul Martin,
and Jano I. Van Hemert. 2016. Scientific Workflows: Moving Across Paradigms.
ACM Comput. Surv. 49, 4, Article 66 (2016). https://doi.org/10.1145/3012429

[47] Xiaofan Lin and Yan Xiong. 2006. Detection and analysis of table of contents
based on content association. Int’l J. Document Analysis and Recognition 8, 2 (1
June 2006), 132–143. https://doi.org/10.1007/s10032-005-0149-4

[48] G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: item-to-
item collaborative filtering. IEEE Internet Computing 7, 1 (2003), 76–80. https:
//doi.org/10.1109/MIC.2003.1167344

[49] Ruikai Liu and Jorj McKie. 2020. PyMuPDF: Python bindings for the PDF render-
ing library MuPDF. https://github.com/pymupdf/PyMuPDF,accessed12/15/22

[50] Patrice Lopez. 2009. GROBID: Combining Automatic Bibliographic Data Recogni-
tion and Term Extraction for Scholarship Publications. https://link.springer.com/
chapter/10.1007/978-3-642-04346-8_62. In Research and Advanced Technology for
Digital Libraries, Maristella Agosti, José Borbinha, Sarantos Kapidakis, Christos
Papatheodorou, and Giannis Tsakonas (Eds.). Springer, 473–474.

[51] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. 2006. Scientific Work-
flow Management and the Kepler System: Research Articles. Concurr. Comput.:
Pract. Exper. 18, 10 (Aug. 2006), 1039–1065.

[52] Javaid Akbar Manzoor. 2022. Segmenting Electronic Theses and Dissertations By
Chapters. MS Thesis. Virginia Tech CS, http://hdl.handle.net/10919/113246.

[53] Gail McMillan and Len Peters. 1999. ETDs: Practical, Operational, and Technical
Issues for Universities Implementing Electronic Theses and Dissertations. In
Conference on Preservation and Access for Electronic College and University Records.

11

https://doi.org/10.1145/3543873.3587609
https://doi.org/10.1145/3543873.3587609
https://www.semanticscholar.org/
https://doi.org/10.1109/BigData55660.2022.10020935
https://doi.org/10.1109/BigData55660.2022.10020935
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1002/0471142727.mb1910s89
https://doi.org/10.1002/0471142727.mb1910s89
https://www.compose.com/articles/how-scoring-works-in-elasticsearch/
https://www.compose.com/articles/how-scoring-works-in-elasticsearch/
https://www.elastic.co/
https://flask.palletsprojects.com/en/2.2.x/
https://doi.org/10.1109/MIC.2016.15
http://hdl.handle.net/10919/114081
https://doi.org/10.18653/v1/N19-1423
https://huggingface.co/sentence-transformers
https://huggingface.co/sentence-transformers
https://fox.cs.vt.edu/CS5604SystemReproducibility.pdf
https://fox.cs.vt.edu/CS5604SystemReproducibility.pdf
https://doi.org/doi:10.2478/dim-2021-0003
http://doi.acm.org/10.1145/984321.984326
http://hdl.handle.net/10919/114077
https://doi.org/10.1109/MIS.2010.9
https://doi.org/10.1109/MIS.2010.9
https://doi.org/10.1145/276675.276685
https://doi.org/10.1145/1273360.1273361
https://scholar.google.com/
https://doi.org/10.1007/978-0-85729-439-5_12
https://doi.org/10.1109/TKDE.2007.1060
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://arxiv.org/abs/2104.02112
https://arxiv.org/abs/2104.02112
https://doi.org/10.1038/d41586-019-01978-x
http://hdl.handle.net/10919/114079
http://hdl.handle.net/10919/99294
https://doi.org/10.1109/JCDL52503.2021.00030
https://doi.org/10.1109/TKDE.2003.1232278
https://doi.org/10.1109/TKDE.2003.1232278
http://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2111.09852
https://arxiv.org/abs/2111.09852
http://hdl.handle.net/10919/96310
https://doi.org/10.1145/3012429
https://doi.org/10.1007/s10032-005-0149-4
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1109/MIC.2003.1167344
https://github.com/pymupdf/PyMuPDF, accessed 12/15/22
https://link.springer.com/chapter/10.1007/978-3-642-04346-8_62
https://link.springer.com/chapter/10.1007/978-3-642-04346-8_62


Satvik, et al.

Arizona State University, Mesa, Arizona.
[54] Kevin D. Munroe and Yannis Papakonstantinou. 2000. BBQ: A Visual Interface

for Integrated Browsing and Querying of XML. In Proceedings of VDB. 277–296.
http://db.ucsd.edu/publications/bbq.ps [last visited July 4, 2012].

[55] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. SummaRuNNer: A re-
current neural network based sequence model for extractive summarization of
documents. In 31st AAAI Conf. 3075–3081. arXiv:1611.04230

[56] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, XiaodongWang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).

[57] Manoj Prabhakar Paidiparthy, Ramaraja Ramanujan, Akshita Teegalapally, Mad-
huvanti Muralikrishnan, Romil Khimraj Balar, Shaunak Juvekar, and Vivek Mu-
rali. 2022. CS 5604 Fall 2022 Team 2: End Users. CS5604 team term project. Virginia
Tech. http://hdl.handle.net/10919/114080 accessed on April 10, 2023.

[58] David Pinto, Andrew Mccallum, Xing Wei, and Bruce W. Croft. 2003. Table
extraction using conditional random fields. In SIGIR ’03. ACM Press, New York,
NY, USA, 235–242. https://doi.org/10.1145/860435.860479

[59] Animesh Prasad, Manpreet Kaur, and Min-Yen Kan. 2018. Neural ParsCit: a deep
learning-based reference string parser. Int. J. Digit. Libr. 19, 4 (2018), 323–337.
https://doi.org/10.1007/s00799-018-0242-1

[60] PyPI. 2022. Python Requests. (2022). https://pypi.org/project/requests/ accessed
on September 19, 2022.

[61] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67. http://jmlr.org/papers/v21/20-074.html

[62] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster
R-CNN: Towards Real-Time Object Detection with Region Proposal Net-
works. In Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/file/
14bfa6bb14875e45bba028a21ed38046-Paper.pdf

[63] Subhro Roy, Shyam Upadhyay, and Dan Roth. 2016. Equation Parsing : Mapping
Sentences to Grounded Equations. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, Jian Su, Xavier Carreras, and Kevin Duh (Eds.). The
Association for Computational Linguistics, 1088–1097. https://doi.org/10.18653/
v1/d16-1117

[64] Gerard Salton, J. Allan, and Chris Buckley. 1993. Approaches to passage retrieval
in full text information systems. In Proc. 16th Annual International ACM SIGIR
Conf. on R&D in Information Retrieval. Pittsburgh, 49–58.

[65] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point:
Summarization with Pointer-Generator Networks. In Proc. ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers, Regina Barzilay and Min-Yen
Kan (Eds.). 1073–1083. https://doi.org/10.18653/v1/P17-1099

[66] Anmol Shukla, Aaron Travasso, Harish Babu Manogaran, Pallavi Kishor Sisodia,
and Yuze Li. 2022. CS 5604 Fall 2022 Team 5: Integration. CS5604 team term
project. Virginia Tech. http://hdl.handle.net/10919/114078 accessed on April 10,
2023.

[67] Jeremy Singer-Vine. 2022. pdfplumber. https://github.com/jsvine/pdfplumber
original-date: 2015-08-24T03:14:48Z.

[68] Brent Smith and Greg Linden. 2017. Two Decades of Recommender Systems at
Amazon.com. IEEE Internet Computing 21, 3 (2017), 12–18. https://doi.org/10.
1109/MIC.2017.72

[69] Akash Srivastava and Charles Sutton. 2017. Autoencoding variational inference
for topic models. arXiv preprint arXiv:1703.01488 (2017).

[70] Harald Steck, Linas Baltrunas, Ehtsham Elahi, Dawen Liang, Yves Raimond, and
Justin Basilico. 2021. Deep Learning for Recommender Systems: A Netflix Case
Study. AI Magazine 42, 3 (2021), 7–18. https://doi.org/10.1609/aimag.v42i3.18140

[71] Hussein Suleman and Edward A. Fox. 2002. Towards Universal Accessibility of
ETDs: Building the NDLTD Union Archive. In ETD’2002. Provo, Utah.

[72] Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison. 2007. The Triana
Workflow Environment: Architecture and Applications. Springer London, London,
320–339. https://doi.org/10.1007/978-1-84628-757-2_20

[73] Silvia Terragni, Elisabetta Fersini, Bruno Giovanni Galuzzi, Pietro Tropeano,
and Antonio Candelieri. 2021. OCTIS: Comparing and Optimizing Topic models
is Simple!. In Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System Demonstrations. 263–270.

[74] Sentence Transformers. 2022. distilroberta. (2022). https://huggingface.co/
distilroberta-base accessed on November 2, 2022.

[75] Sentence Transformers. 2022. LaBSE. (2022). https://huggingface.co/sentence-
transformers/LaBSE accessed on November 2, 2022.

[76] Sentence Transformers. 2022. MiniLM L12 V2. (2022). https://huggingface.co/
sentence-transformers/all-MiniLM-L12-v2 accessed on November 2, 2022.

[77] Sentence Transformers. 2022. MPNET Base V2. (2022). https://huggingface.co/
sentence-transformers/all-mpnet-base-v2 accessed on November 2, 2022.

[78] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000–6010.

[79] Chien-YaoWang, Alexey Bochkovskiy, and Hong-YuanMark Liao. 2022. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.
arXiv preprint arXiv:2207.02696 (2022).

[80] Chien-YaoWang, Alexey Bochkovskiy, and Hong-YuanMark Liao. 2022. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.
arXiv preprint arXiv:2207.02696 (2022).

[81] William A. Ingram, Edward A. Fox, and Jian Wu. 2022. IMLS Grant LG-37-
19-0078-19: Opening Books and the National Corpus of Graduate Research.
https://opening-etds.github.io/. Accessed: 3-July-2022.

[82] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David
Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic,
Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex Hardisty, Abraham
Nieva de la Hidalga, Maria P. Balcazar Vargas, Shoaib Sufi, and Carole Goble.
2013. The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud. Nucleic Acids Research 41, W1 (05
2013), W557–W561. https://doi.org/10.1093/nar/gkt328

[83] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.
2019. Detectron2. (2019).

[84] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big Bird: Transformers for Longer Sequences. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
c8512d142a2d849725f31a9a7a361ab9-Abstract.html

[85] Chengxiang Zhai and Sean Massung. 2016. Text data management and analysis:
a practical introduction to information retrieval and text mining (first ed.). Num-
ber 12 in ACM Books. ACM: Association for Computing Machinery, New York,
NY.

12

http://db.ucsd.edu/publications/bbq.ps
https://arxiv.org/abs/1611.04230
http://hdl.handle.net/10919/114080
https://doi.org/10.1145/860435.860479
https://doi.org/10.1007/s00799-018-0242-1
https://pypi.org/project/requests/
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.18653/v1/d16-1117
https://doi.org/10.18653/v1/d16-1117
https://doi.org/10.18653/v1/P17-1099
http://hdl.handle.net/10919/114078
https://github.com/jsvine/pdfplumber
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.1609/aimag.v42i3.18140
https://doi.org/10.1007/978-1-84628-757-2_20
https://huggingface.co/distilroberta-base
https://huggingface.co/distilroberta-base
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://opening-etds.github.io/
https://doi.org/10.1093/nar/gkt328
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html

	Abstract
	1 Introduction
	2 Usage Scenario/User Personas
	3 Framework
	3.1 Architectural Elements
	3.2 Content and Representation
	3.3 Workflows

	4 Core Services for Curators
	5 Core Services for Researchers
	5.1 Segmentation, Classification, and Summarization
	5.2 Object Detection
	5.3 Topic Modeling of ETDs and Chapters
	5.4 Search and Recommendation

	6 Core Services for Experimenters
	6.1 Segmentation, Classification, and Summarization
	6.2 Object Detection
	6.3 Topic Modeling of ETDs and Chapters
	6.4 Search

	7 Background and Related Work
	7.1 Workflow-centric Information Systesm
	7.2 DL Services Background

	8 Conclusion and Future Work
	Acknowledgments
	References

