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ABSTRACT
Digital libraries in the scientific domain provide users access to
a wide range of information to satisfy their diverse information
needs. Here, ranking results play a crucial role in users’ satisfaction.
Exploiting bibliometric metadata, e.g., publications’ citation counts
or bibliometric indicators in general, for automatically identifying
the most relevant results can boost retrieval performance. This
work proposes bibliometric data fusion, which enriches existing
systems’ results by incorporating bibliometric metadata such as
citations or altmetrics. Our results on three biomedical retrieval
benchmarks from TREC Precision Medicine (TREC-PM) show that
bibliometric data fusion is a promising approach to improve re-
trieval performance in terms of normalized Discounted Cumulated
Gain (nDCG) andAverage Precision (AP), at the cost of the Precision
at 10 (P@10) rate. Patient users especially profit from this light-
weight, data-sparse technique that applies to any digital library.

CCS CONCEPTS
• Information systems → Information retrieval; Combina-
tion, fusion and federated search;Retrieval effectiveness; Search-
ing with auxiliary databases.
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1 INTRODUCTION
Metadata curation of digital libraries helps to improve the retrieval
performance [17] and is beneficial for searching the body of litera-
ture. However, manual metadata annotations by domain experts
are costly and do not scale well. As a special type, bibliometric
metadata does not require any explicit labeling by domain experts
as it results from the meta-analysis of scholarly communication and
is implicitly based on the reception by the scientific community.

It was shown that bibliometric metadata correlates with manual
relevance labels, as known in test collections from the domain of
biomedicine or physics [8]. Furthermore, there is a high correla-
tion between bibliometrics and documents with positive relevance
judgments. While it is controversially discussed to which extent
bibliometric data reflects topical relevance, this kind of metadata
can be considered an implicit relevance signal that can potentially
improve retrieval performance. However, previous research has
shown that including bibliometric measures like citation rates in
the retrieval process is not trivial [47].

One suggestion on how to align different kinds of relevance
signals or representations is the principle of polyrepresentation,
introduced by Ingwersen [21]. It is based on the idea that differ-
ent retrieval models can be regarded as different perspectives on
information retrieval. The principle suggests that different models
retrieve different sets of information from the same collection and
that these sets might include different representations of the same
document. According to the principle of polyrepresentation, there
is an increasing chance of relevant documents being retrieved, and
combining these different representations improves retrieval perfor-
mance compared to using only single representations alone. Data
fusion methods are well-known techniques in the field of meta-
search, where multiple ranking outputs are combined for the sake
of retrieval effectiveness [2]. The principle of polyrepresentation
and data fusion align on a conceptional level, and they can also be
combined on the level of concrete retrieval systems [31].

In this work, we combine bibliometric data with fusion meth-
ods and the pre-computed result lists (run files) submitted to the
TREC-PM Abstract task from 2017 to 2019 [50–52] to investigate
the effect of including bibliometric indicators into the ranking of
biomedical retrieval systems. Our experiments show that bibliomet-
ric information like citations or altmetrics has some discriminating
power that can be beneficial for retrieval performance. However,
bibliometric metadata alone does not include topical relevance cri-
teria, which limits effective rankings. By combining bibliometric
information with topical relevance criteria, as they were imple-
mented into the systems of TREC-PM, we demonstrate how the
retrieval performance of biomedical retrieval systems can be im-
provedwith data fusion techniques. Finally, we address the expected
benefit for users of digital libraries when implementing bibliometric
data fusion approaches into the search process. More precisely, we
address the following research questions:
RQ1 To what extent can bibliometric relevance signals be used as

ranking criteria for biomedical information retrieval?
RQ2 Can bibliometric-enhanced data fusion methods improve the

overall retrieval performance?
The remainder includes the related work in Section 2, covering

polyrepresentation, biomedical information retrieval, and biblio-
metric measures in information retrieval. In Section 3, we recapture
fundamentals of data fusion and present our selected data fusion
approaches. Section 4 introduces our dataset, which is followed by
an outline of the methodology in Section 5. Afterward, we present
the corresponding experimental results that give answers to the
research questions in Section 6. Finally, we conclude in Section 7.
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2 RELATEDWORK
Adjacent areas to this work are polyrepresentation in information
retrieval, biomedical information retrieval in general, and using
scientometric measures in information retrieval.

2.1 Polyrepresentation in Information
Retrieval

Polyrepresentation is a concept that has been developed as a result
of a cognitive approach to information retrieval [21]. In this frame-
work, retrieval models represent the retrieval system developer’s
ideas and perspectives on information retrieval. From this point
of view, each retrieval model is cognitively different from other
retrieval models because it represents a unique conceptual and
algorithmic interpretation of information retrieval.

According to the principle of polyrepresentation, different re-
trieval models retrieve different sets of information from the same
collection when given the same retrieval task. However, some over-
lap occurs between different models. The nature of this overlap
depends on the conceptual and algorithmic interpretation of sim-
ilarity. It is important to note that a relatively high overlap of
documents retrieved by different models does not automatically
imply a similarity between the models. In fact, from a polyrep-
resentation perspective, a high overlap of documents may be an
advantage. For example, suppose the fused retrieval models are
dissimilar, meaning they interpret the original collection from quite
different perspectives. In that case, the overlap signifies high odds
of relevant documents being retrieved [31]. According to Ingwersen
[21] the principle of polyrepresentation operates with two types
of similarity/dissimilarity: “cognitive dissimilarity” when funda-
mentally different retrieval models are in action and “functional
difference” when the fused entities are based on different versions
of the same fundamental retrieval model.

An early work that used different retrieval models in combina-
tion for improved precision was presented by Croft and Thompson
[11], which fused probabilistic and vector space models. Based on
these studies, Larsen et al. [31] reported on data fusion experi-
ments using the four best-performing retrieval models from TREC
5, where three models were conceptually/algorithmically very dif-
ferent from one another and one was similar to one of the former.
They concluded that the performance of data fusion on all possible
combinations seems to depend on three factors: “(a) the degree
of conceptual/algorithmic dissimilarity between the constituent
IR models, and (b) how equal and (c) well the component models
perform.” Other work based on the principle of polyrepresentation
focused on fusing different metadata representations, e.g., for query
expansion [54], or digital library curation tasks like prioritizing
different conferences for indexing [38].

Ingwersen [23] pointed out that citations and bibliographic refer-
ences in scientific documents can be useful for document retrieval.
These can be seen as “footprints of information interaction” that
are crucial for scientific communication. Therefore, he argues that
these should be exploited for document retrieval. Skov et al. [59]
showed the general feasibility and positive influence on retrieval
performance in a study on the Cystic Fibrosis test collection. Belter
[5] proposes a method of ranking the relevance of citation-based

search results based on seed documents and using citation relation-
ship analysis for document ranking.

2.2 Biomedical Information Retrieval
There have been diverse efforts in the area of information retrieval
systems focused on biomedical information needs: As of April 2023,
PubMed contains information on more than 35M publications from
the MEDLINE collection, covering the biomedical domain. Infor-
mation can be accessed via keyword search on specific fields such
as titles, abstracts, MeSH1 terms, or author names. Madaan [33]
proposed a domain-specific query language that was supposed to
be used by current patients, thus novice users, as well as medical
staff, thus domain-experts. The system was intended to retrieve and
summarize the literature on cases related to current ones. Afsar et
al. [1] present a paper recommendation system directed at patients
to support their decision-making in medical treatments. Related to
these works, the so-called narrative information access [29], part
of the pharmaceutical digital library PubPharm, can also be used
to answer queries related to diseases, treatments, and genes. Here,
queries need to be formulated as triples.

From 2014 onwards, TREC focused on the previously under-
explored research area of medical information retrieval by intro-
ducing the Clinical Decision track [58]. From 2017, these efforts
were continued as Precision Medicine [50–52]. Recently, the focus
is clinical trials since 2021 [49].

2.3 Bibliometrics in Information Retrieval
Garfield [16] developed a model of a science index, which made it
possible for the first time not only to search for literature biblio-
graphically or thematically, but also to find relevant publications
through citation analyses. This marked the birth of bibliometrics
and the Science Citation Index, which is still used today as part of
the Web of Science. Over the years, citations became a currency in
many scientific areas.

Opposed to explicit editorial relevance judgments, bibliomet-
ric measures are a more implicit type of relevance signals [8]. As
outlined by Voorhees [60], the annotation process of topical rele-
vance is guided by some text-based descriptions of the information
need, which can usually be found in the topic files of a test collec-
tion. In this way, the decision behind the relevance label becomes
more transparent and can often be determined by concrete criteria.

Similarly, citing a publication also signals its overall relevance or
quality, but in comparison, it is less transparent and explicit than an
editorial label. For instance, a highernumber of citations does not
imply topical relevance by all means [22]. Fisher and Naumer [14]
point out criteria that could lead to a citation, including trustwor-
thiness, contact, access or convenience, inexpensiveness, and ease
of use, among others. Citations and particularly citation networks
are helpful for cross-language recommendations of publications
[25]. However, citations can also be influenced by biases caused,
for instance, by the affiliation of the authors [43]. Moreover, not all
citations are equally important. Some references have a larger im-
pact on a study, while others only fall into the scope of the broader
context. Hassan et al. [19] propose machine learning classifiers to
distinguish between important and less important citations in a
1Medical Subject Headings, a taxonomy of biomedical concepts.
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paper. Citations provide valuable context information. As shown
by Kehoe and Torvik [27], citations can also help to estimate MeSH
terms. Likewise, citations can be exploited for journal recommen-
dations when combined with full-text information [17].

Altmetrics complement traditional bibliometrics with citation
statistics from social media and other online media [56]. Thus, alt-
metrics can be compared to the introduction of the Science Citation
Index, which enabled scientists to track where they have been cited
for the first time. The only difference is that these “citations” are
called news items, blog posts, likes, reads, shares, or readerships. Alt-
metrics make scientific impact visible more quickly than traditional
bibliometrics because they evolve more quickly and dynamically.
As shown by Shakeel et al. [55], altmetrics correlate with citations,
complement them, and can compensate for the citation bias.

Nishioka and Färber [42] analyzed how open access types im-
pact citations and altmetrics. They found that open-access articles
receive higher citations than closed or gold articles. Breuer et al. [8]
examined the connection between relevance assessments, citations,
and altmetrics. It was found that the connecting element of these
three dimensions is relevance. The corresponding dataset was com-
piled as a reusable artifact, covering all of the previously described
(boldfaced) bibliometric measures, and is described in Section 5.

Scientific publications aim to contribute to state of the art in a
particular field. For this purpose, reference is made to previous pa-
pers in this field, and these papers are cited respectively, indicating
the relevance of these papers and a thriving flow of knowledge. For
the original papers, citations are generated this way, cumulated
at the paper level. At the journal level, the number of citations a
publication achieved on average can be quantified, which is known
as the impact (factor). Keselman [28] treated venue authorship as
a regression problem and proposed a method that can be used to
evaluate the quality of venues. At the author assessment level, the
evaluations showed that the venue-based method yielded compara-
ble quality estimates to citation-based indicators.

Similar to the impact factor, there is another measures on the
journal level. The research level describes the journal’s research
orientation on four levels: clinical observation (applied technology,
level 1), clinical mix (engineering-technological mix, level 2), clinical
investigation (applied research, level 3) and basic research (level
4) [6, 37]. Boyack et al. [6] classify single papers to these levels, e.g.,
by using titles and abstracts.

3 DATA FUSION
Data fusion is based on combining multiple rankings for a better
overall retrieval performance than any single ranking out of the
combined retrieval results would achieve [12]. Generally, data fu-
sion techniques can be categorized into rank- and score-based fusion
methods [31], whereas particular rank-based methods are described
as voting-based or probabilistic [4]. Figure 1 provides an overview of
how data fusion approaches can be categorized and complements
each of the four categories by the corresponding representative we
use in our experimental setup.

Rank-based fusion methods combine multiple rankings based on
the documents’ rank positions. In this regard, these methods are
score-independent, which is useful if score normalization is not an
option, the score distributions of the single retrieval outputs are

Data Fusion

Rank-based

RRF [10] Voting-based

BordaFuse [2]

Probabilistic

BayesFuse [2]

Score-based

WMNZ [61]

Figure 1: Overview of the analyzed data fusion methods.

incompatible, or the scores are unavailable. For the most part of the
data fusion experiments, we rely on Reciprocal Rank Fusion (RRF)
[10] that is an entirely rank-based fusion method, which proved to
be effective and robust. It is defined as follows:

𝑅𝑅𝐹 score(𝑑 ∈ 𝐷) =
∑︁
𝑟 ∈𝑅

1
𝑘 + 𝑟 (𝑑) (1)

where 𝑟 (𝑑) denotes the rank of a document 𝑑 in the set of docu-
ments 𝐷 out of the set of considered rankings 𝑅. The constant 𝑘 is
set to 60 per default [10]. Its simplicity lies in its independency of
ranking scores, voting algorithms, or probabilistic methods com-
pared to other data fusion approaches.

As a particular type of rank-based methods, voting-based fusion
techniques apply voting algorithms for combining ranked lists of
documents. For example, BordaFuse [2] exploits the Borda Count
algorithm, whereas the underlying principle treats retrieval systems
as voters and documents as candidates. Each document is assigned
a preference score (the vote), descending along the ranking. The
combination of multiple rankings (and their voting preferences)
can be seen as an analogy to multi-candidate election strategies.

As an alternative, rank-based methods can also be probabilistic.
For example, BayesFuse [2] estimates the probability distribution
of the relevance for each of the combined rankings and combines
them by Bayesian inference. Based on prior knowledge about the
relevance distribution, it requires sample rankings as a reference,
which are used in a preceding training phase. As described below,
we estimate these corresponding parameters from those rankings
of the other years to avoid any data leakage in the final rankings.

Contrary to rank-based methods, score-based fusion techniques
require document rankings and corresponding retrieval scores.
These fusion techniques combine single relevance scores to a final
score in the fused ranking.Wu and Crestani [61] introducedWMNZ
as a weighted variant of CombMNZ [57], which, in turn, is based on
the idea of multiplying individual scores by the number of non-zero
scores. Compared to CombMNZ, WMNZ determines the score in
the fused ranking by the sum of individual scores multiplied by the
sum of weights for documents with non-zero scores.

Even though many different data fusion methods exist, we see
our selected methods as appropriate candidates for further analysis
since they cover all four categories and are well-established in
the community. That is also indicated by the citation count of the
corresponding publications with Aslam and Montague (BordaFuse
and BayesFuse) [2] having over 420 citations, Cormack et al. (RRF)
[10] over 170 citations, and Wu and Crestani (WMNZ) [61] over 40
citations in the ACM Digital Library [18] as of April 2023.
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Table 1: Number of relevance judgements (qrels), of teams
who submitted (teams) and of submitted runs (runs) per
year.

2017 [51] 2018 [50] 2019 [52]

Qrels Teams Runs Qrels Teams Runs Qrels Teams Runs

22,642 29 125 22,429 24 103 22,429 14 62

4 DATASET
In this work we reuse the dataset from the broader medical do-
main that was created by Breuer et al. [8]. It consists of the TREC
Precision Medicine benchmarking dataset [50–52] enriched with
bibliographic information.

4.1 TREC Precision Medicine
The Precision Medicine Track has been held at TREC in 2017 [51],
2018 [50] and 2019 [52]2. It focuses on retrieval of literature on
evidence-based treatments and clinical trials in the medical on-
cology domain in two tracks: 1) retrieval of scientific abstracts of
papers containing treatments for patients, and 2) retrieval of clinical
trials for patients. In 2019, a sub-task for the first task also included
the specification up to three treatments recommended for a pa-
tient [52]. The goal of this track is to develop methods to retrieve
fitting documents for patients’ highly individual characteristics
such as genetic mutations of their form of cancer in order for the
patients receiving optimal treatment and care [40, 51]. Data source
for the first task were PubMed/MEDLINE articles, for the second
task the organisers of the task provided information on clinical
trials3. For 2017 and 2018 the data has been identical [50, 51], for
2019 both datasets have been extended [52]. As the topics for the
tasks, patient profiles including their disease, variant and demo-
graphic have been given. As an exception in 2017 the topics could
also include other additional data.

We focus on task 1) without the sub-task. In each year, the sub-
mitting teams could submit up to 5 runs per task. Each run consists
of a ranking of at most 1,000 paper IDs per topic. First, the pooled
highest ranked papers were manually assessed by physician gradu-
ate students and postdocs at the National Library of Medicine in
multiple dimensions with specific scales. Then, the categories were
automatically merged into a singe three-level relevance score by
which the retrieval effectiveness was determined [50–52]. Table 1
holds the number of relevance judgements, teams and runs for the
scientific abstract task for the three years.

4.2 Method Overview
Nguyen et al. [40] provided an interactive tool to analyze different
implementation setups and retrieval approaches for TREC-PM 2017
and 2018. Later, Fässler et al. [13] analyzed the features that make a
TREC-PM engine successful. Using the optimization tool SMAC [20]
they analyzed over 100 retrieval parameters and found that the
optimal combination can reach an infNDCG of 0.5732 and 0.6071
on previously unseen data for the biomedical abstracts and clinical
2http://www.trec-cds.org, the track was also held in 2020 but that year is out of scope
of the current analyses.
3ClinicalTrials.gov

Table 2: Different retrieval engines, number of analyzed re-
ports, approaches from the TREC-PM 2017 to 2019.

2017 2018 2019
∑

Reports per year 20 20 14 54

En
gi
ne

ElasticSearch 5 8 7 20
Lucene 6 3 2 11
Terrier 3 3 1 7
unknown 1 2 2 5
Solr 2 2 1 5
Galago 2 2
Indri 1 1 2
Whoosh 1 1 2

A
pp

ro
ac
he
s

Query expansion 16 14 12 42
KB + ontologies 17 14 6 37
Re-ranking 6 7 9 22
Embeddings 3 5 5 13
Data fusion 4 5 3 12
LTR 1 3 5 9
LLM 3 3
Citation-based 2 2

trials tasks, respectively. These performance values are comparable
to the best-performing systems in the three TREC-PM editions 2017-
2019. None of these tools and surveys focused on citation-based
retrieval techniques and did not include them in their analyses.
To complement this, we did a literature survey for all TREC-PM
publications for 2017-2019. Table 2 gives an overview of the used
retrieval engines and incorporated retrieval approaches of teams
which submitted a report for TREC-PM for our three considered
years. There is only information on if a team used a retrieval engine
and some retrieval approaches throughout any of their runs. The
retrieval engines do not differ between runs of the same team, the
incorporated retrieval approaches, however, might.

4.3 Specific Runs
Only two teams used citation information as part of their methods
in a total of three runs. All of them were submitted in 2017: Team
CSIROmed [39] submitted the runs aCSIROmedMGB and aCSIROmed-
PCB. The first variant combines demographic attribute expansion
with MeSH similarity re-ranking. The second run extends the first
one by also expanding genes’ and diseases’ descriptions in the
given topics. Both runs boost results based on citations received by
clinical trials matching the given topic. Team BiTeM [48] submitted
the single run SIBTMlit5. For ranking abstracts to queries they
combine citations from clinical trials with the type of article, e.g., it
being a clinical trial or appearing in the proceedings of journals.

Some teams submitted plain BM25 runs throughout the years:
UKNLP [44] submitted run UKY_BASE in 2017 which uses Lucene.
For 2018 team KlickLabs [41] submitted run KLPM18T2Bl, using
ElasticSearch. In the same year UCAS [62] used Terrier for their
UCASSA2 run. In 2019 there were two runs; BM25 incorporating
ElasticSearch by the IMS Unipd [46] team and bm25_6801 using
Solr by CSIRO [53].

http://www.trec-cds.org
ClinicalTrials.gov
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Table 3: Total number of unique documents for citations (C),
altmetrics (A), publication year (P), research level (R) and im-
pact factor (I). The percentage reports the relative amount
regarding the total number of judged documents.

Year C A P R I

2017 14170 (66%) 6134 (29%) 14586 (68%) 14067 (66%) 11449 (53%)
2018 11214 (55%) 4547 (22%) 11618 (57%) 11239 (55%) 9246 (45%)
2019 11381 (61%) 5639 (30%) 12221 (66%) 11707 (63%) 9387 (51%)

Citations

Altmetrics

Baseline
ranking

Fused
ranking

Data
fusion

Figure 2: Methodology based on bibliometric data fusion of
rankings and the principle of polyrepresentation.

4.4 Merged Dataset
For this paper, we reuse a dataset from the broader medical domain
that was created by Breuer et al. [8]. Scientifically interesting about
this dataset is that it contains relevance scores (non-relevant / fair
/ high) for scientific papers as well as corresponding bibliometric
metadata. The dataset covers PubMed articles, for which relevance
judgments from the TREC-PM Abstract tasks and the correspond-
ing documents were combined with their citation count in Web of
Science and their Altmetric score from Altmetric.com. To obtain
this dataset, the data from the different databases was matched
using the PubMed ID, which is contained in all three sources. The
dataset was created in 2020, covering 116,437 individual publica-
tions from 1942 to 2019. It is unique, because it contains different
types of relevance (intellectual and cumulative relevance) for the
same publications. The authors made the data publicly available
on Zenodo [7]. Table 3 reports the coverage of the bibliometric
metadata for all three years. As can be seen, altmetrics has the
lowest coverage. For most of the other bibliometric indicators, the
metadata coverage is above 50% with regards to the total number
of judged documents.

5 METHODOLOGY
The following experiments that give answers to our research ques-
tions (cf. Section 1) combine the run submissions of the TREC-PM
Abstract task from 2017 to 2019 with the bibliometric metadata
based on the data fusion techniques introduced in the previous
Section 3. Figure 2 provides an overview of the general re-ranking
approach based on data fusion. The original ranking is combined
with bibliometric indicators such as citations and altmetrics. The
data fusion operationalizes the principle of polypresentation and fol-
lows earlier work [30, 31]. The final ranking is a fused result based
on the combination of multiple ranking criteria. As the retrieved
result set still contains the results of the baseline ranking, the fused
ranking can be considered a re-ranking, which can contribute to a
better user experience [45].

Our first experiment evaluates the bibliometric relevance signals
isolated from any of the TREC-PM approaches. Besides exploiting
the single bibliometric indicators as the ranking criteria, we also
analyze all possible fused combinations. As a follow-up, we combine
the TREC-PM runs with the bibliometric metadata and evaluate the
fused combinations as re-rankings compared to the original run
versions, which were actually submitted to the shared task. Finally,
we provide an outlook of how users could benefit from re-rankings
based on bibliometric data fusion. For the most part, we rely on
RRF, which proved to be a robust approach for meta-search and
data fusion. However, to answer RQ2, we also include the three
additional data fusion approaches to analyze the generalizability of
our findings with other fusion algorithms.

The experiments are implemented with the help of the evalu-
ation toolkit ranx [3] and the corresponding support of data fu-
sion methods [4]. For transparency and reproducibility, we provide
open-source releases of the code and experimental data4. The exper-
iments can be reproduced in an interactive Jupyter Notebook that,
for instance, can be rerun on Google Colab. The TREC-PM runs
must be retrieved from a password-protected section on the TREC
website. We do not provide them as an additional data resource as
we respect the intellectual property of the authors who submitted
their experimental results to the shared tasks. However, we provide
snapshots of the directory trees regarding the file location of the
runs in order to repeat the experiments with as much ease and rigor
as possible.

6 EXPERIMENTAL RESULTS
In the following, we present the experimental results and give
answers to our research questions.

6.1 RQ1: Bibliometric Relevance Signals
In the following, we investigate RQ1: To what extent can biblio-
metric relevance signals be used as ranking criteria for biomedical
information retrieval? This evaluation captures single signals and
combinations of signals’ effectiveness in standard information re-
trieval measures.

6.1.1 Setting. To this end, we use the bibliometric metadata de-
scribed earlier as follows. For all five types of bibliometric metadata,
including citations (C), altmetrics (A), publication year (P), research

4� https://github.com/irgroup/jcdl2023-data-fusion

https://github.com/irgroup/jcdl2023-data-fusion
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Table 4: Retrieval effectiveness: the best bibliometric results
are highlighted in boldface. Superscripts denote significant
differences in Fisher’s RandomizationTest [15]with 𝑝 ≤ 0.05
when comparing bibliometric rankings.

Model C A P R I BM25

20
17

Recall 0.7853𝐴𝑅𝐼 0.4162 0.7972𝐶𝐴𝑅𝐼 0.7608𝐴𝐼 0.6301𝐴 0.4640
nDCG 0.4992𝐴𝑅𝐼 0.3163 0.5069𝐴𝑅𝐼 0.4666𝐴𝐼 0.4162𝐴 0.4423
AP 0.1812𝐴𝐼 0.1020 0.1733𝐴𝐼 0.1546𝐴 0.1399𝐴 0.1636
P@10 0.2700𝑅 0.2400𝑅 0.2033 0.1200 0.2500𝑅 0.4667
Bpref 0.1577 0.1434 0.1541 0.1307 0.1444 0.2714

20
18

Recall 0.7916𝐴𝑅𝐼 0.4066 0.8019𝐶𝐴𝑅𝐼 0.7739𝐴𝐼 0.6438𝐴 0.7828
nDCG 0.5728𝐴𝑅𝐼 0.3651 0.5671𝐴𝑅𝐼 0.5297𝐴𝐼 0.4744𝐴 0.6376
AP 0.2905𝐴𝑅𝐼 0.1765 0.2815𝐴𝐼 0.2591𝐴𝐼 0.2261𝐴 0.3195
P@10 0.3760𝑅 0.3860𝑅 0.3180𝑅 0.2360 0.3420𝑅 0.5680
Bpref 0.2896𝐴𝐼 0.2355 0.2809𝐴 0.2612 0.2506 0.4852

20
19

Recall 0.8260𝐴𝐼 0.4732 0.8849𝐶𝐴𝑅𝐼 0.8435𝐴𝐼 0.6690𝐴 0.7574
nDCG 0.5754𝐴𝑅𝐼 0.3693 0.6031𝐴𝑅𝐼 0.5433𝐴𝐼 0.4818𝐴 0.5870
AP 0.2756𝐴𝑅𝐼 0.1633 0.2896𝐴𝑅𝐼 0.2442𝐴 0.2182𝐴 0.2584
P@10 0.3525𝑅𝐼 0.2850𝑅 0.3075𝑅 0.1925 0.2850𝑅 0.5125
Bpref 0.2460𝑅 0.2064 0.2416 0.2024 0.2283 0.3946

level (R), and impact factor (I), we rank the documents by the cor-
responding count in decreasing order. Consequently, documents
with higher citations and altmetrics, research levels, and impact
factors are more relevant.

Regarding the publication year, we rankmore recent publications
higher than older ones, i.e., the ranking implies a recency-based
criterion. Similarly, the publications are ranked by a decreasing re-
search level, where higher levels correspond to more basic research
and lower levels to more applied research contributions. Finally,
note that all rankings are query-agnostic, i.e., the documents are
ranked by the five bibliometric indicators, independent of the topic
or a corresponding query.

For better comparison, we include selected BM25 runsmentioned
earlier, i.e., we select one default BM25 implementation for each
year. We include UKY_BASE [44] for 2017, UCASSA2 [62] for 2018,
and BM25 [46] for 2019. Two runs are based on Lucene’s implemen-
tations of BM25 [44, 46], while the third [62] from 2018 is based
on the Terrier retrieval toolkit. We acknowledge that there may be
differences between BM25 implementations [26]. However, these
runs guarantee the best comparability, as they use default settings
and do not use query expansion techniques.

6.1.2 Single Signals. Table 4 compares the five different types of
bibliometric metadata when used for ranking medical abstracts
of the TREC-PM tasks in terms of the recall rate, nDCG [24], AP
[34], P@10 [34], and Bpref [9] scores. Unless stated otherwise, all
measures are evaluated with a cut-off value of 1,000. As shown in
Table 3, the metadata information about the publication year has
the highest coverage. This circumstance leads to higher recall rates
of the publication year for all three years. Generally, the metadata
with a higher coverage also results in higher nDCG and AP scores
as they are recall-dependent. Generally, the coverage of altmetrics is
low, as can also be seen by the low recall rates and the overall lowest
nDCG and AP scores. However, the rankings based on altmetrics
achieve comparably good results for P@10. For instance, in 2018,
they achieve the best results, while ranking third after citations and
the publication year for the 2017 and 2019 tasks. As highlighted by

the bold numbers, the rankings based on citations, altmetrics, and
the publication year achieve the best results in all three years.

When comparing the bibliometrics rankings to the BM25 runs,
we see that some bibliometric indicators can achieve higher recall
rates, which also explains the higher nDCG and AP scores. However,
the BM25 runs outperform the bibliometric indicators in terms of
P@10 and Bpref.

6.1.3 Fused Signals. Before combining the TREC-PM runs with
the bibliometric metadata, we evaluate fused bibliometric-based
rankings in isolation. To this end, we determine all possible combi-
nations for the five different types of bibliometric data and evaluate
them by the recall rates, nDCG, AP, P@10, and Bpref. Figure 3
shows the results for all possible RRF-based combinations evalu-
ated by the TREC-PM relevance judgments of all three years. As
can be seen from the heatmaps, the combinations yield different
performance scores and score variability.

On the one hand, we confirm that data fusion can lead to im-
proved retrieval results. However, some fused rankings yield higher
recall rates than single ranking criteria in Table 4. For instance,
the highest recall rate of 0.8157 (see Fig. 3) is achieved by multiple
fused combinations (including AP, CAP, APR, API, CAPR, CAPI,
APRI, CAPRI). It is slightly higher than the best recall rate of 0.7972
based on the publication year for TREC-PM 2017 (see Tab. 4). Simi-
larly, the recall can be improved by some fused combinations and is
higher than that of single ranking criteria for the other two years.

On the other hand, fused combinations can also harm retrieval
performance, as can be seen by the other measures. For instance,
none of the fused results can outperform the best P@10 scores by
single ranking criteria reported in Table 4. For TREC-PM 2017, the
best-fused combinations (AR, APR) result in P@10=0.2100, while
the best result is based on citations (C) with P@10=0.2700. Similarly,
most fused combinations stay below the best results by the single
ranking criteria in Table 4 regarding nDCG, AP, and Bpref.

6.1.4 Discussion. In conclusion, citations, altmetrics, and the
publication year deliver the best results when used as sepa-
rate ranking criteria as shown in Table 4. Our fused combina-
tions of the different metadata types have shown that recall rates
primarily improve to a moderate extent. However, most of the fused
combinations did not yield a better retrieval performance than that
of the individual metadata types. Once again, the rankings are in-
dependent of any query or topic-related information. We think a
reasonable ranking should consider topic- or query-related infor-
mation as part of the data fusion. Suppose the fused combinations
are only based on the query-agnostic bibliometric metadata. In that
case, the rankings possibly drift away from the topical relatedness.

Nonetheless, as an answer to RQ1, we see promise in the signal
strength of bibliometric metadata. When used as separate ranking
criteria, the metadata types yield acceptable retrieval results that
possibly provide additional relevance signals, which could com-
plement other ranking approaches. Overall, these first outcomes
motivate us to combine the metadata with other ranking methods
that were used in TREC-PM. In the following, we use citations,
altmetrics, and the publication year for data fusion with the runs
of TREC-PM 2017-2019.
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Recall nDCG AP P@10 Bpref
CA
CP
CR
CI
AP
AR
AI

PR
PI
RI

CAP
CAR
CAI

CPR
CPI
CRI
APR
API
ARI
PRI

CAPR
CAPI
CARI
CPRI
APRI

CAPRI

0.8088 0.5013 0.1661 0.1867 0.1364
0.7972 0.4819 0.1492 0.1400 0.1197
0.7967 0.4823 0.1492 0.1567 0.1206
0.7931 0.4815 0.1492 0.1600 0.1218
0.8157 0.5067 0.1673 0.1900 0.1361
0.7989 0.4997 0.1648 0.2100 0.1359
0.7328 0.4653 0.1513 0.1933 0.1352
0.7972 0.4829 0.1484 0.1500 0.1205
0.7972 0.4844 0.1495 0.1567 0.1218
0.7616 0.4685 0.1442 0.1567 0.1218
0.8157 0.4999 0.1625 0.1867 0.1298
0.8155 0.5006 0.1628 0.2033 0.1300
0.8133 0.4993 0.1624 0.1833 0.1312
0.7972 0.4825 0.1491 0.1567 0.1203
0.7972 0.4833 0.1497 0.1600 0.1212
0.7967 0.4830 0.1496 0.1600 0.1218
0.8157 0.5025 0.1626 0.2100 0.1292
0.8157 0.5008 0.1625 0.1933 0.1305
0.7995 0.4934 0.1597 0.1933 0.1309
0.7972 0.4841 0.1493 0.1567 0.1217
0.8157 0.4971 0.1595 0.1833 0.1264
0.8157 0.4968 0.1598 0.1733 0.1280
0.8155 0.4968 0.1598 0.1800 0.1284
0.7972 0.4830 0.1493 0.1600 0.1215
0.8157 0.4976 0.1594 0.1767 0.1278
0.8157 0.4954 0.1580 0.1733 0.1263

2017

Recall nDCG AP P@10 Bpref
CA
CP
CR
CI
AP
AR
AI

PR
PI
RI

CAP
CAR
CAI

CPR
CPI
CRI
APR
API
ARI
PRI

CAPR
CAPI
CARI
CPRI
APRI

CAPRI

0.8133 0.5728 0.2767 0.3240 0.2692
0.8019 0.5402 0.2363 0.2640 0.2191
0.8012 0.5401 0.2359 0.2700 0.2186
0.7972 0.5381 0.2369 0.2660 0.2238
0.8194 0.5748 0.2749 0.3220 0.2653
0.8108 0.5703 0.2722 0.3280 0.2640
0.7426 0.5346 0.2541 0.3300 0.2618
0.8019 0.5370 0.2309 0.2620 0.2121
0.8019 0.5382 0.2337 0.2660 0.2182
0.7744 0.5233 0.2260 0.2660 0.2165
0.8194 0.5695 0.2664 0.3220 0.2507
0.8194 0.5697 0.2663 0.3280 0.2498
0.8166 0.5680 0.2669 0.3240 0.2541
0.8019 0.5398 0.2346 0.2700 0.2168
0.8019 0.5398 0.2360 0.2660 0.2210
0.8012 0.5394 0.2357 0.2660 0.2210
0.8194 0.5677 0.2625 0.3240 0.2449
0.8194 0.5680 0.2641 0.3220 0.2502
0.8108 0.5631 0.2612 0.3220 0.2492
0.8019 0.5375 0.2324 0.2660 0.2170
0.8194 0.5656 0.2592 0.3260 0.2400
0.8194 0.5651 0.2601 0.3060 0.2447
0.8194 0.5651 0.2599 0.3080 0.2446
0.8019 0.5391 0.2344 0.2660 0.2187
0.8194 0.5634 0.2570 0.3020 0.2409
0.8194 0.5619 0.2549 0.3000 0.2377

2018

Recall nDCG AP P@10 Bpref
CA
CP
CR
CI
AP
AR
AI

PR
PI
RI

CAP
CAR
CAI

CPR
CPI
CRI
APR
API
ARI
PRI

CAPR
CAPI
CARI
CPRI
APRI

CAPRI

0.8882 0.5939 0.2766 0.3225 0.2315
0.8849 0.5780 0.2619 0.2525 0.2151
0.8806 0.5756 0.2601 0.2575 0.2130
0.8620 0.5607 0.2489 0.2225 0.2052
0.9148 0.6104 0.2856 0.3175 0.2333
0.9004 0.6023 0.2803 0.3175 0.2322
0.8141 0.5523 0.2481 0.3075 0.2213
0.8849 0.5784 0.2613 0.2600 0.2139
0.8849 0.5731 0.2559 0.2300 0.2065
0.8438 0.5526 0.2437 0.2300 0.2041
0.9148 0.6043 0.2797 0.3200 0.2256
0.9124 0.6031 0.2787 0.3175 0.2245
0.9026 0.5944 0.2712 0.2950 0.2189
0.8849 0.5778 0.2615 0.2575 0.2138
0.8849 0.5740 0.2578 0.2225 0.2081
0.8807 0.5719 0.2564 0.2225 0.2070
0.9148 0.6053 0.2793 0.3150 0.2248
0.9148 0.6025 0.2756 0.3075 0.2196
0.9004 0.5945 0.2705 0.3050 0.2184
0.8849 0.5737 0.2572 0.2300 0.2079
0.9148 0.6016 0.2765 0.2925 0.2218
0.9148 0.5988 0.2735 0.2825 0.2176
0.9124 0.5975 0.2726 0.2825 0.2170
0.8849 0.5744 0.2582 0.2225 0.2086
0.9148 0.6000 0.2736 0.2900 0.2175
0.9148 0.5972 0.2723 0.2625 0.2162

2019
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Figure 3: Retrieval effectiveness of fused bibliometric sig-
nals including all possible combinations for TREC-PM 2017-
2019.

6.2 RQ2: Overall Retrieval Performance
Here we address RQ2: Can bibliometric-enhanced data fusion meth-
ods improve the overall retrieval performance?

6.2.1 Difference due to Data Fusion. Figure 4 shows the differences
between the run submissions before and after the bibliometric data
fusion for the run submission of the TREC-PM Abstract task from
2018 and 2019. The bar plots show the differences between each run,
i.e., the baseline and the re-ranked results after the bibliometric data
fusion based on RRF using all features (CAPRI5). Figure 5 shows
the rank fusion-based improvements for 2017 and marks methods
using citations as part of their approach in red.

For all systems, the nDCG (andAP) scores can be improved.
Regarding the P@10 and Bpref scores, only a fraction of the systems
improve, and for the majority of systems, the retrieval performance
decreases. In order to put these results into a larger context and to
draw conclusions about the generalizability, Table 5 compares dif-
ferent rank fusion methods for all three tracks from 2017 to 2019. In
addition to RRF, the Table includes the other data fusion techniques
introduced in Section 3. In contrast to the other three approaches,
BayesFuse requires a training phase to parameterize the probability
distribution of the relevance, for which we make use of the run
submissions from the other years to avoid target data leakage in
the evaluations. For instance, we use a sample of five runs from
2018 to optimize the parameters for the data fusion with the runs
from 2017. Similarly, we use sample runs from 2017 and 2019 to
optimize the data fusion for the other years.

When considering the three citation-based runs from 2017 (see
the red marks in Figure 5) we can only find improvements for
aCSIROmedMGB in all metrics. The other two runs’ performance does
not consistently improve over all three measures. Both citation-
based runs by CSIROmed use the same core components. The dif-
ference is aCSIROmedPCB’s additional incorporation of expansions
of the topic’s fields. Although seemingly unintuitive, the smaller
improvement of the more complex method could be attributed to
it, achieving a higher performance independent of data fusion [39].

When again considering the five BM25 runs for comparability
through the three years (see the orangemarks in Figures 4 and 5), we
see some differences between them.We encounter improvements in
recall as shown by the nDCG values, but worse precision as P@10
and Bpref mainly decrease when using rank fusion.

In general, the earlier results are confirmed on a larger scale.
While there are some differences between the data fusion methods,
the nDCG and AP scores generally improve for most runs, whereas
there are deteriorated P@10 and Bpref scores. Furthermore, Ta-
ble 5 includes the number of significant differences between the
baselines and the fused run versions. The results show that most
improvements are significant for nDCG and AP. In addition, Ta-
ble 5 includes the average improvement based on the significant6
differences as well as the overall change that is determined with
all differences between the baselines and the fused runs. Overall,
we see that the improvements in the nDCG and AP scores can be
generalized over the three different tracks from 2017 to 2019, with
nearly all improvements being significant.

5The order of features is irrelevant, they are all applied at the same time.
6Fisher’s Randomization Test, 𝑝 ≤ 0.05
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Figure 4: Rank fusion-based improvements over the baseline runs for the TREC PrecisionMedicine Abstract task for 2018 and
2019. BM25 runs marked in orange and named according to an abbreviation of the team’s name.
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Figure 5: Rank fusion-based improvements over the baseline runs for the TREC-PMAbstract task for 2017 withmethods using
citations (MGB: aCSIROmedMGB, PCB: aCSIROmedPCB, lit5: SIBTMlit5) marked in red. BM25 run marked in orange.

6.2.2 Change in nDCG. It is fair to criticize that most improve-
ments could be attributed to weak baselines with low nDCG scores.
For this reason, Figure 6 shows a more detailed analysis of the
nDCG scores. All plots show the total number of systems above the
nDCG scores (with cut-offs at position 10 or 1,000) on the x-axis
for the three years of TREC-PM. The leftmost plot shows the dis-
tributions of systems submitted to TREC Precision Medicine 2017.
The dashed horizontal line corresponds to the total number of run
submissions (125). As can be seen, the best-performing systems
achieved an nDCG@10 score above 0.6 (cf. to the dark blue line
plot in Figure 6), while all systems had an nDCG@1000 score lower
than 0.6 (cf. to the dark red line plot in Figure 6).

In comparison, the lighter-colored line plots show the distribu-
tion of systems after the bibliometric data fusion. As can be seen,
all of the systems have an nDCG@1000 score above 0.5 after data
fusion (cf. to the light red line plot in Figure 6). Likewise, the best
nDCG@1000 scores are above 0.6. In contrast, the best nDCG@10
score is below 0.5 after data fusion (cf. to the light blue line plot in
Figure 6), which complies with the earlier findings. As can be seen
from the precision-oriented measures, there are fewer relevant re-
sults in the top-ranked positions, and the Precision and nDCG@10
scores deteriorate from the bibliometric data fusion. For the other
two years, the same outcomes can be observed.
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Table 5: Comparison of different rank fusion methods for TREC-PM from 2017 to 2019.

Reciprocal Rank Fusion (RRF) [10] BordaFuse [2] BayesFuse [2] WMNZ [61]

2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019

Number of systems 125 103 62 125 103 62 125 103 62 125 103 62

(Signif.*) improvements (nDCG) 125 / 125* 103 / 103* 62 / 61* 125 / 125* 103 / 103* 62 / 61* 125 / 125* 103 / 103* 62 / 62* 125 / 125* 103 / 103* 62 / 62*
Average improvement (nDCG) 0.2378 0.2384 0.1815 0.2248 0.2286 0.2001 0.2198 0.2334 0.2205 0.2366 0.2418 0.243
Overall change (nDCG) 0.2378 0.2384 0.1787 0.2248 0.2286 0.1975 0.2198 0.2334 0.2205 0.2366 0.2418 0.243

(Signif.*) improvements (AP) 125 / 123* 103 / 103* 62 / 55* 125 / 114* 103 / 103* 62 / 62* 125 / 120* 103 / 103* 62 / 62* 123 / 121* 103 / 103* 62 / 62*
Average improvement (AP) 0.1173 0.1849 0.1237 0.1132 0.1727 0.1482 0.1065 0.1815 0.1772 0.1265 0.2025 0.2036
Overall change (AP) 0.1163 0.1849 0.1161 0.1073 0.1727 0.1482 0.1041 0.1815 0.1772 0.1225 0.2025 0.2036

(Signif.*) improvements (P@10) 37 / 18* 46 / 19* 3 / 3* 41 / 14* 39 / 18* 10 / 1* 31 / 9* 31 / 19* 11 / 1* 44 / 16* 60 / 24* 35 / 4*
Average improvement (P@10) 0.1589 0.2221 0.16 0.1112 0.1747 0.295 0.0696 0.1887 0.28 0.1104 0.1636 0.1312
Overall change (P@10) -0.0299 0.0223 -0.1518 -0.0393 -0.003 -0.0728 -0.0463 0.0004 -0.0373 -0.0267 0.0294 0.015

(Signif.*) improvements (Bpref) 46 / 17* 47 / 36* 15 / 6* 39 / 13* 44 / 36* 21 / 11* 34 / 14* 46 / 37* 27 / 17* 74 / 25* 61 / 45* 61 / 44*
Average improvement (Bpref) 0.1047 0.1668 0.1294 0.0968 0.134 0.0925 0.0642 0.1446 0.1023 0.0834 0.1481 0.0786
Overall change (Bpref) -0.0033 0.0244 -0.0453 -0.0141 0.0123 -0.0124 -0.017 0.0196 0.0162 0.0106 0.0553 0.0635
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Figure 6: Number of systems vs. retrieval effectiveness before (dark) and after (light) bibliometric data fusion for nDCG@10
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Figure 7: Number of system improvements vs. user persis-
tence for TREC-PM. 𝑝 models the transition probability to
the next document of RBP.

6.2.3 Implications for Users. Finally, we address how users benefit
from bibliometric-enhanced data fusion results. We tackle this re-
search question by investigating the Rank-biased Precision (RBP)
as a realistic approximation of users’ patience [35], which is defined
as follows:

RBP = (1 − 𝑝) ·
𝑑∑︁
𝑖=1

𝑟𝑖 · 𝑝𝑖−1 (2)

where 𝑑 denotes the total number of documents in a ranking and
𝑟𝑖 the document’s relevance at rank 𝑖 . The parameter 𝑝 models the
transition probability to the next ranked document and models the
user’s patience: the larger 𝑝 , the higher the probability of inspecting
the next document in the ranking and the more patient the user.
Compared to nDCG and AP, RBP does not require knowledge about
the recall, which is a more realistic assumption about the user,
according to Moffat and Zobel [35].

For all three tracks from 2017 to 2019, we compare the number
of improved systems over 𝑝 . The corresponding results are shown
in Figure 7. Again, the dashed lines correspond to the total number
of runs that were submitted in each particular year, and that could
potentially be improved. We see that the overall improvement,
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i.e., the number of improved systems, is generally lower for more
impatient users (𝑝 = 0.8), whereas the benefit is higher as the user
gets more patient. Especially for 𝑝 > 0.975, there is a steep increase
in the number of systems that improve for all three tracks.

6.2.4 Discussion. In conclusion, this analysis reconfirms the
following two results. First, not only weak baselines but also
better-performing systems benefit from the data fusion, as
is also underlined by the significance tests in Table 5. Sec-
ond, the improvements aremainly useful for recall-oriented
tasks, as already suggested by the outcomes of the previous
experiments (cf. Section 6.1). The nDCG scores at higher cut-
offs mainly improve, while nDCG scores with lower cut-offs, e.g.,
the nDCG@10 scores, are generally lower after data fusion. Our
RQ2, which considers the overall improvement of the retrieval
performance, is answered positively. The performance improves
(significantly) when using bibliometric-enhanced rank fusion, es-
pecially the recall. The RBP-based evaluations showed that the
more patient the user, the higher the benefit of bibliometric-
enhanced data fusion approaches.

6.3 Discussion
This work is an example of the successful implementation of science
models into academic retrieval processes discussed by Mutschke
et al. [36]. who promoted the idea of using retrieval experiments
as a kind of litmus test to evaluate the plausibility of models on
scientific communication and scientific collaboration. Our earlier
work showed that bibliometrics correlate to a certain extent with
editorial relevance judgments of IR test collections [8]. Furthermore,
bibliometrics can be considered implicit relevance indicators repre-
senting relevance from diverse perspectives. Therefore, data fusion
is a feasible solution to combine multiple relevance signals [31],
and the underlying principles align with the concept of polyrep-
resentation [21]. To this end, we analyzed how bibliometric data
fusion techniques can be used to rank biomedical abstracts.

Our experiments showed that bibliometric indicators could be
exploited for ranking medical abstracts to a moderate extent when
used as single signals, i.e., without any topic-related ranking criteria.
Furthermore, they achieved reasonable recall rates that depend
on the overall coverage of the bibliometric metadata regarding
the judged documents. These results comply with earlier work
that showed the overlap between editorial relevance labels and
bibliometrics [8]. Conversely, the precision rates showed that single
signals did not retrieve many relevant abstracts at the top ranks.
These trends became even clearer when the single bibliometric
indicators were combined in a preliminary data fusion experiment.
The RRF-based fused signals, including all possible bibliometric
metadata combinations, even deteriorated the precision rates. Most
of the retrieval outcomeswere worse than that of single bibliometric
signals. While the recall rates slightly improved, we conclude from
these experiments that the fused bibliometric signals further drift
away from reasonable rankings.

We conclude that bibliometric indicators imply a shallow or
more implicit notion of relevance that can only reveal its potential
when combined with topic-related ranking criteria, as it was demon-
strated by the data fusion experiments with the TREC-PM runs.
Bibliometric data fusion has a primarily recall-enhancing effect. For

all systems, nDCG and AP could be improved when comparing the
fused rankings to the original run submissions. Regarding preci-
sion, most systems deteriorate, and only for a small fraction of the
submitted runs the data fusion improves the performance.

There were slightly better results based on the evaluations with
Bpref - a measure that excludes unjudged documents. These out-
comes indicate that bibliometric data fusion also brings up docu-
ments that were not part of the pooling to compile candidates for
the relevance judgments. As a future perspective, we emphasize the
importance of including bibliometric metadata in the submissions
as part of shared tasks. Our review of the TREC-PM tasks from 2017
to 2019 revealed that only a minority of participants (two groups)
used bibliometric indicators in the rankings. It is possible to im-
prove the evaluation setup by harnessing such relevance indicators.
It makes the pooled set of abstracts more diverse and allows a better
evaluation of bibliometric-based rankings.

Finally, we analyzed how users of digital libraries would benefit
from bibliometric data fusion. The corresponding experiments sim-
ulated users with different levels of patience. We implemented these
experiments with the help of the RBP measure, which precisely con-
siders this aspect. While an impatient user, who browses through
the top-ranked abstracts, will not recognize much improvement in
the retrieval results, a more patient user will likely benefit from
bibliometric data fusion. As our experiments showed, improved
fused systems increased as the simulated user gets more patient. We
highlight that curators of academic digital libraries should consider
these findings. If it is possible to classify the search behavior of
users, for instance, by their interaction patterns [32], re-ranking
the results with bibliometric data fusion approaches can improve
the user experience.

7 CONCLUSION
In summary, data fusion in information retrieval can effectively
identify relevant documents by combining the output of multiple
models. The strength of this approach is that it can push relevant
documents ranked lower on individual output lists to higher posi-
tions in the fused results. While finding relevant abstracts using
only bibliometric indicators is generally possible, there are low pre-
cision rates as topic-related ranking criteria are not considered. We
propose bibliometric data fusion with runs from TREC Precision
Medicine as a solution. Our evaluations showed that bibliometric
relevance signals could improve retrieval performance.

As part of future work, it would be interesting to analyze biblio-
metric data fusion in other scientific domains. Scientific disciplines
differ in their scholarly communication habits, which impacts cita-
tions or altmetrics. Thus, it is required to investigate how well our
findings generalize with other data. In general, we see bibliometric
indicators as valuable relevance-bearing information that should
be further investigated. For instance, it is possible to distinguish
between important and less important citations, which could be
used to weight single citations differently. Similarly, citation net-
works of authors that go beyond the raw count of citations could
be considered. Finally, our results suggest that users of digital li-
braries could benefit from bibliometric data fusion. The outcomes
of our simulated experiments should be validated in user studies
that analyze the impact in real-world environments.
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