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ABSTRACT
Semantic answer type prediction (SMART) is known to be a useful
step towards designing effective question answering (QA) systems.
The SMART task involves predicting the top-𝑘 knowledge graph
(KG) types for a given natural language question. This is challenging
due to the large number of types in KGs. In this paper, we propose
use of extreme multi-label classification using Transformer models
(XBERT) by clustering KG types using structural and semantic fea-
tures based on question text. We specifically improve the clustering
stage of the XBERT pipeline using the features derived from KGs.
We show that these features can improve end-to-end performance
for the SMART task, and yield state-of-the-art results.
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• Information systems → Information retrieval;

KEYWORDS
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1 INTRODUCTION
Question answering (QA) systems provide concise answers to nat-
ural language questions. Predicting the semantic answer type of
question is an important component of QA systems [6, 10, 17, 25].
Answer type prediction in QA is in fact not a recent problem. Early
works have focused on identifying coarse-grained types, e.g., wh-
types of questions (who, when, what and where) [3, 9, 11, 12, 23, 31].
Mapping a given question to a semantic type, from type systems
of large knowledge graphs (KGs), are known to benefit both open
domain QA [28] and factoid questions in KGQA [19, 27, 32].

Both fine and coarse-grained type prediction are complementary
to each other. Recognizing this, the semantic answer type prediction
(SMART) challenge [15] was organized as part of the International
Semantic Web Conference in 2020,1 introducing the following task:
given a natural language question, predict both the high-level an-
swer category and a list of fine-grained types from an underlying
KG (DBpedia or Wikidata). Coarse-grained categories are boolean,
literal, or resource; fine-grained types only apply for the resource
category.

The most effective approaches to the SMART challenge are based
on Transformer models [18, 26]. Vanilla Transformer models work
well out-of-the-box for coarse-grained category prediction, where
there are only a handful of possible classes. However, they can-
not be used for classifying the large number of semantic resource
types found in KGs; for example, DBpedia has over 760 types and
1https://smart-task.github.io

Wikidata has over 50k types [5]. To overcome this, we propose a
BERT-based extreme multi-label classification technique (XBERT)
has been proposed that solves this problem using a three-stage
pipeline: (1) Clustering reduces the number of target classes, (2)
Classifying trains the Transformer model to predict type clusters
to which the question belongs to, and (3) Ranking selects the top
types within the cluster using a linear ranker [26].

In this three stage pipeline, we show that just by leveraging the
clustering step, we can gain significant performance improvement
in answer type classification. Since clustering is the first step in
the three-stage pipeline, any errors occurring during this stage
will propagate downstream and thus hinder the entire pipeline’s
performance. Instead of naively clustering the KG types based on
associated question text as in [26], we aim to leverage additional
information from the KG, like type descriptions and entity-type
assignments. We show that using such additional KG features can
significantly improve performance, without modifying other stages
in the pipeline.

The type systems of KGs can vary a lot in terms of scale and
depth of hierarchy [8], which represents another challenge. We
therefore propose a KG-agnostic type clustering technique and
perform experiments on two of the most popular KGs, DBpedia
and Wikidata, with very different type systems.

Our study is driven by the following research questions:

• RQ1: Canwe improve the clustering stage of the XBERT pipeline
for the SMART task using signals from the KG?

• RQ2: How well do these findings generalize across KGs, which
differ in the characteristics of their type systems?

The main technical contribution of this paper is the use of signals
from a KG to improve the BERT-based extreme multi-label classi-
fication approach (XBERT) for the SMART task. Our experiments
show that these features can improve results for both DBpedia and
Wikidata and yield state-of-the-art performance over vanilla BERT.

2 RELATEDWORK
The correct prediction of the expected answer type is shown to
be one of the most important factors to a QA system’s overall
performance [17]. Types may be coarse grained entity classes [19,
27, 32] or fine-grained semantic types from the type systems of large
knowledge graphs (like Wikidata, DBpedia and Freebase) [21, 28].

In [28], they use probabilistic models to verify if the candidate
answer types match the expected answer types to the question.
Answer type prediction is also related to the task of inferring se-
mantic types of queries, referred to as target entity type identifica-
tion [1], which has been studied in the context of entity-oriented
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Figure 1: Three phases of semantic answer type classification.

search [2, 7, 29]. There, it is approached as a ranking task, using
different ways of aggregating entity descriptions [2], which can
be combined with additional taxonomic and embedding-based fea-
tures [7]. Unlike in ad hoc retrieval, the evaluation measure con-
siders the hierarchical relationships between types [2]—the same
methodology has been followed in the SMART challenge.

Most participants at the SMART challenge employed classifica-
tion methods. Common themes include data augmentation [20, 21],
the use of word embeddings to represent the questions and types [4,
30], while the top performing approaches employed BERT-based
classifiers [18, 26]. Closest to our approach is [18] in second place,
performing two stage (coarse and fine-grained) type classification.
For fine-grained type prediction, they train a BERT-based classifier
using the most frequent types in the dataset. In their follow-up
paper [19], they show how to use answer type prediction to im-
prove a KGQA system. However, since this approach can predict
only top-level types, it does not scale to type systems with a large
number of types with a relatively flat hierarchy such as Wikidata.
Moreover, the performance of this method on DBpedia is also not
comparable to the XBERT approach. We extend and improve the
top performing solution in [26], who introduce the use of XBERT
for the SMART challenge.

Several extreme classification approaches have been proposed
in the literature [13, 22]. We use XBERT, which provides a good
trade-off between performance and efficiency [5]. A more efficient
version of XBERT is also available [33].

3 PROBLEM STATEMENT
The SMART task is defined as follows: given a natural language in-
put question𝑞, (1) predict the coarse category 𝑙 ∈ {boolean, number,
string, date, resource}, and (2) if the category is resource, then
return a list of top-𝑘 most relevant types 𝑡 ∈ 𝑇 from the type system
𝑇 of an underlying knowledge graph (KG).

The first sub-task, coarse category classification, may be regarded
as a solved problem, as vanilla BERT models can perform it with
over 97% accuracy [26]. The second sub-task, type prediction, proves
to be more challenging due to the large number of types in KGs,
ranging from several hundreds (e.g., DBpedia) to tens of thousands
(e.g., Wikidata). The type prediction can be viewed as learning a
multi-label classifier, which assigns a score to a given question and
type (𝑞, 𝑡) pair.

The main challenge lies within the resource category, like Who
are some players of the England national football team?, where the
task is not only about identifying matching types, but also rank-
ing them in order of relevance, from most specific to more generic:
["dbo:SoccerPlayer", "dbo:Athlete", "dbo:Person", "dbo:Agent"].

3.1 Solution Overview
To overcome the limitation of vanilla transformers for large number
of classes, we use the XBERT approach by [5], which uses a three-
stage pipeline for the type prediction task (see Fig. 1).
Type Clustering (TC): First, all unique types 𝑇 ′ ⊂ 𝑇 which are
in the training data are clustered using type vectors. In [26],
types are represented using TF-IDF vectors, computed from the
question text of all the instances for a given type in the training
data. In this paper, we use structural and textual features derived
from the KGs to represent types. This stage is the main focus of
this paper and it is elaborated further in Sect. 4.

Cluster Matching (CM): Next, we fine-tune a pre-trained Trans-
former model to match a given question 𝑞 into one of the clusters
𝑐 from the previous stage. The output of this stage is a cluster
matching score,𝑚(𝑞, 𝑐), which is computed for each cluster based
on the model’s confidence.

Label Ranking (LR): Finally, a one-vs-all linear classifier is trained
for each type within a cluster 𝑐 and matched to the given input
question𝑞 to predict a relevance scoreℎ(𝑞, 𝑡) for each type in that
cluster. The final relevance prediction combines the scores from
the CM and LR stages as follows: 𝑓 (𝑞, 𝑡) = 𝜎 (𝑚(𝑞, 𝑐), ℎ(𝑞, 𝑡)),
where 𝑡 ∈ 𝑐 and 𝜎 is a non-linear activation function that learns
the weights to combine the cluster matching score (𝑚(𝑞, 𝑐)) and
the relevance score within the cluster (ℎ(𝑞, 𝑡)). The top-𝑘 types
are then chosen based on 𝑓 (𝑞, 𝑡).

4 TYPE CLUSTERING
This section discusses the type clustering (TC) step. The main pur-
pose of the TC phase is to reduce the label space for the BERT
model used in the second stage (CM) of the XBERT. More formally,
the TC step groups the set of types 𝑇 ′ from the training data into
clusters 𝐶 , where, |𝐶 | << |𝑇 |. In the past, question text-based TF-
IDF vectors were used for clustering the types [26]. This method
does not use any external features for the type prediction. In this
paper, we investigate how features derived from a KG, such as type
similarity vectors and embeddings encoded using the type descrip-
tion text and KG structure, could improve the type prediction step
and thereby end-to-end performance on the SMART task.

4.1 Type Representation
Embedding KG types allows us to use any clustering algorithm
within the XBERT approach. More formally, each type is repre-
sented with a vector {𝑧𝑡 : 𝑡 ∈ 𝑇 ′}, where 𝑧𝑡 ∈ R𝑑 is a d-dimensional
vector such that two KG types with high semantic similarity are
closer together in the embedding space. Within the XBERT ap-
proach, these vectors are obtained by aggregating the features from



the question text of the instances for a give type from the training
data. For example, for the type “dbo:SoccerPlayer” features are
aggregated from the related questions from the training data such
as What are some players of England national football team?, Which
soccer players were born on Malta? etc. In [26], TF-IDF weights are
used to represent the types. In this paper, we instead represent each
type individually using textual and structural features from the
type taxonomy of the underlying KG.

4.1.1 KG Structure-Based Representations. Based on the rationale
that each type is defined by its neighborhood in the KG (for example,
entities with that type and other related types) we propose the
following two type representation methods:
Type similarity vector: Each type is represented by a vector of
pairwise similarities to other types, based on the set of entities
they share. We compute the similarity between two types 𝑡 and
𝑡 ′ using the Jaccard similarity, denoted as 𝐽 (𝑡, 𝑡 ′). Each type 𝑡
then is represented as a vector of pairwise similarities between
the type and all other types 𝑡1 . . . 𝑡𝑛 in the KG:

𝑧
𝑗𝑎𝑐𝑐𝑎𝑟𝑑
𝑡 = [𝐽 (𝑡, 𝑡1), 𝐽 (𝑡, 𝑡2), · · · , 𝐽 (𝑡, 𝑡𝑛)] ∈ R |𝑇 | .

RDF2Vec embeddings: To leverage the neighborhood structure
of KGs, we use network embedding representations. Specifically,
we use RDF2Vec [24] since it is trained on both DBPedia and
Wikidata, and it provides embeddings for KG types in addition
to entities. In short, RDF2Vec uses random walks to construct
the sequences of nodes in the KGs. These sequences are treated
like sentences and distributed representation of the nodes in the
RDF graphs are learned, similar to how Word2Vec models [16]
are trained. We use the pre-trained 200-dimensional RDF2Vec
SkipGram embeddings for both DBpedia and Wikidata.2

4.1.2 BERT-based Representations. Next, we use textual descrip-
tions of the types from the KG to represent them. These are sparse
and short in practice, therefore, we augment them with the descrip-
tions of entities with that type. A similar strategy has been used in
retrieval methods for entity-bearing queries [2]. Based on this we
propose the following:
BERT type embeddings: Each type is represented by concate-
nating the type description and the descriptions of the entities
that are of that type. This text is then encoded using the BERT
model to obtain an embedding for the type. More formally, a type
description is a sequence of words 𝑡𝑤 and each entity description
is a sequence of words 𝑒𝑖𝑤 , that are concatenated with a special
[𝑆𝐸𝑃] token and encoded as below:

𝑡𝑤 = [𝑡𝑤1 , 𝑡𝑤2 , . . . , 𝑡𝑤𝑛 ]
𝑒𝑖𝑤 = [𝑒𝑖𝑤1 , 𝑒

𝑖
𝑤2 , . . . , 𝑒

𝑖
𝑤𝑚

]

𝐷𝑒𝑠𝑐𝑡 = [𝑡𝑤 [𝑆𝐸𝑃 ]𝑒1𝑤 [𝑆𝐸𝑃 ]𝑒2𝑤 [𝑆𝐸𝑃 ] . . . [𝑆𝐸𝑃 ]𝑒𝑙𝑤 ]

𝑧𝐵𝐸𝑅𝑇𝑡 = 𝐵𝐸𝑅𝑇 (𝐷𝑒𝑠𝑐𝑡 ) ∈ R𝑑𝐵𝐸𝑅𝑇 ,

(1)

where 𝑑𝐵𝐸𝑅𝑇 is the BERT embedding dimension (1024).
Fine-tuned BERT type embeddings: The BERTmodel used above
is pre-trained using task independent objectives such as masked
language modeling and next sentence prediction. Alternatively,
we can fine-tune the BERT model specifically for the cluster

2http://rdf2vec.org

matching stage to encode the type embeddings. Intuitively, this
would provide improved embeddings for the types.

4.2 Clustering Algorithm
Once we have the type representations, any clustering algorithm
can be used to group the types into |𝐶 | clusters. In this paper, we
specifically report the results using simple a K-Means clustering
algorithm. We note that other clustering methods were also tried
(including KD-Trees and Spherical K-Means clustering), but the
choice of clustering algorithm did not have a significant impact on
type clustering performance.

5 EXPERIMENTS
In this section, we evaluate the different type representations for
the TC stage and end-to-end SMART task.

5.1 Experimental Setup
5.1.1 Datasets. The DBpedia and Wikidata datasets each have
around 17-18k training instances and 4k test instances. In both
datasets, the majority of questions belong to the Resource category
and have one or more ground truth types from the respective KG.
For more details, see [15].

5.1.2 Evaluation Metrics. We follow the evaluation method used
in the official SMART challenge. Type prediction is cast as a rank-
ing task and is evaluated using rank-based metrics. It, however,
considers only those questions that fall into the literal (number,
string, date) or resource answer categories. Furthermore, evalu-
ation is performed differently for DBpedia and for Wikidata, given
the nature of their respective type taxonomies. Types in the DB-
pedia Ontology are organized hierarchically, up to 7 levels deep.
There, a graded evaluation metric, Normalized Discounted Cumu-
lative Gain (NDCG@k), is used. Specifically, literal answer types
are either correct or incorrect, while resource answer types receive
gain values depending on their distance from the gold types in the
type hierarchy [2]. In case of Wikidata, the type hierarchy is rather
flat. Therefore, type prediction is evaluated using a binary notion
of relevance, with Mean Reciprocal Rank (MRR) as the metric.

5.1.3 Implementation and baseline. We compute the KG type fea-
tures using the DBpedia dump from October 2016 and Wikidata
dump from May 19, 2021. We use the RoBERTa [14] (roberta-large3)
for both encoding the textual descriptions and for fine-tuning the
classifier in the second stage (CM). We ran all experiments on a
Linux server with Nvidia Tesla V100 GPUwith 32 GBmemory. Note
that the evaluation script provided by the SMART task organizers
had a known bug4, which we fixed for this paper. Therefore, the
scores we report for the baseline method in Table 1 slightly are
higher than those reported in [26].

We use the Question text (TF-IDF) method [26] as baseline in
the experiments. We represent our KG derived features as (1) KG-
TypeSim: pairwise KG-TypeSim vector, (2) RDF2Vec: RDF2Vec
embeddings, (3) BERT-TypeDesc: Type description (TD) encoded
with BERT and (4) BERT-TypeDesc (fine-tuned): TD encoded
with fine-tuned BERT.
3https://huggingface.co/roberta-large
4https://github.com/smart-task/smart-dataset/issues/10

http://rdf2vec.org
https://huggingface.co/roberta-large
https://github.com/smart-task/smart-dataset/issues/10


Table 1: Results for the type prediction and end-to-end SMART task. Best scores in each metric are boldfaced. † indicates
statistically significant result with 𝑝 < 0.05 and Bonferroni correction when compared with the baseline solution from [26].

Method
DBpedia Wikidata

Type prediction End-to-end Type prediction End-to-end
NDCG@3 NDCG@5 NDCG@10 NDCG@3 NDCG@5 NDCG@10 MRR MRR

Question text (TF-IDF) 0.717 0.693 0.650 0.824 0.811 0.787 0.66 0.76
KG-TypeSim 0.725 0.697 0.662 0.828 0.813 0.793 0.67 0.77
KG-RDF2Vec 0.729 0.701 0.656 0.831 0.815 0.791 0.67 0.78
BERT-TypeDesc 0.727 0.706 0.665 0.830 0.818 0.795 0.67 0.78
BERT-TypeDesc (fine-tuned) 0.734† 0.712† 0.678† 0.834 0.822 0.802 0.68 0.79

5.1.4 Parameter settings. The number of clusters (|𝐶 |) is a hy-
perparameter of the TC stage, which we set experimentally, us-
ing cross-validation on the training set. We consider the values
{32, 64, 128, 256, 512}. We observe the best performance for DBpe-
dia with 64 clusters and for Wikidata with 128 clusters, which will
be the values used in the remaining of the experiments. We also
note that this parameter has hardly any effect in case of Wikidata.

5.2 Results
Table 1 shows the results for type classification (i.e., only for the
resource category) as well as on the end-to-end task (which also
includes coarse category classification).

RQ1 Can we improve the clustering stage for the SMART task by
using additional signals from the KG?

We observe that the TF-IDF-based question text baseline performs
reasonably well. The KG features “KG-TypeSim” and “KG-RDF2Vec”
yield slightly higher NDCG scores. The best performance is ob-
tained with the BERT models that encode textual descriptions of
types as well as of corresponding entities from the KG. We also find
that fine-tuning can further enhance performance.

We also observe a similar pattern regarding end-to-end perfor-
mance improvements. However, the results are not statistically
significant—this is because the end-to-end pipeline also includes
coarse category classification. Specifically, end-to-end evaluation
also includes the questions which belong to the boolean and vari-
ous literal categories, and hence downplay the overall impact of
fine-grained type classification.

RQ2 How well do these findings generalize across KGs, which
differ in the characteristics of their type systems?

When we compare the performance of DBpedia and Wikidata, we
see notable (and in some cases statistically significant) improve-
ments for DBpedia, whileWikidata shows onlymarginal differences.
This is also apparent from the fact that the results are statistically
significant for DBpedia but not for the Wikidata. We attribute this
to the fact the DBpedia has a rich type system, which can by lever-
aged for type prediction, while Wikidata has a relatively flat type
hierarchy.

5.3 Analysis
In this section, we analyze anecdotal examples to highlight the
strengths and weaknesses of our approach.

For types with good descriptions from KG, BERT-TypeDesc
methods perform well. For example, “Which are exclusions of As-
perger syndrome?”, the ground-truth is ‘dbo:Disease’ and our
method predicts [‘dbo:Biomolecule’, ‘dbo:Gene’, ‘dbo:Disease’]
as top-3 types. While, the baseline method predicts [’dbo:Media’,
’dbo:EthnicGroup’, ’dbo:Religious’], since the question text
alone is insufficient. Our methods fail when the type descriptions
and questions have little in common. For example, for “Name a par-
ticipant of the American Revolutionary War.” our method predicts
[‘dbo:Agent’, ‘dbo:Person’, ‘dbo:AmericanFootballTeam’]
while the ground-truth is [‘dbo:Country’, ‘dbo:State’].

In some cases method is able to predict more appropriate types,
while the ground-truth is incorrect. For example, “Which is the ves-
sel class of the galleon” has the ground-truth ‘dbo:Work’ and our
method predicts [‘dbo:MeanOfTransportation’, ‘dbo:Ship’,
‘dbo:Spacecraft’].

6 CONCLUSION AND FUTUREWORK
In this paper, we have proposed different ways to represent KG
types to improve the clustering stage of the XBERT pipeline for
the SMART task. We have shown that features derived from KGs
to represent types are beneficial, especially for KGs with a rich
type system, such as DBpedia. Our error analysis suggests that the
BERT-based type embeddings are effective in capturing question
context, and our method is able to deal with noisy training data.

In addition to improving type prediction, cluster-based features
could also be used for improving the third stage of the XBERT
pipeline for SMART in the future. It would also be worth exploring
if KGs with a richer structure, like DBpedia, can be used to improve
prediction effectiveness on KGs with relatively flat type systems,
like Wikidata. Moreover, improved type clustering can potentially
be useful for other tasks as well that involve KGs. Specifically, in
future work, we would like to explore how to use answer type
prediction in a conversational setting. For instance, this method
can be used to decide if a question can be answered with a KG.
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