Proceedings of the Fifth Jerusalem Conference on Information Technology, Jerusalem, Israel, October 1990
IEEE Computer Society Press, Los Alamitos, CA, pp. 110-117

Mutual Exclusion Revisitedt

Boleslav K. Szymanski

Computer Science Department
Rensselaer Polytechnic Institute
Troy, NY 12180

Abstract

A family of four mutual xclusion algorithms is ¢
sented. Its membenary from a simple three-bit linear
wait mutual exclusion to the fowit first-come fist-
served algorithm immune to various faults. The algo-
rithms ae based on a scheme similar to the Mosis’
solution of the mutualxelusion with three weak sema-
phores. The presented algorithms congdavorably
with equivalent published mutual exclusion algorithms
in their program’s sze and the number oéquired com-
munication bits.

1. Introduction

Mutual exclusion is at the center of nyagoncur-
rent process synchronization problems and, conse-
quently is of a geat theoretical and practical signifi-
cance in parallel and distribed processing. In the
mutual exclusion problem, there is a collection of asyn-
chronous processes. Each process contains a distinct
part of the code called eritical section (or egon).
The process' remaining code is referred to as@ncrit-
ical section (or egon) [2]. Each process alternately
executes its noncritical and critical sectionBrocesses
can proceed in parallel outside of the critical sectiain b
only one process at a time caxeaute the critical sec-
tion.

Mutual exclusion in uniprocessor systems can be
provided by disabling interrupts when a process is in its
critical section. Such a solution idfiefent only if criti-
cal sections are short. Otherwise the system response
time would degrade and disabled interrupts could be
mishandled. The other limitation of this technique is
that in most systems interrupt disabling and enabling is
beyond control of the user programs.

T This work was partially supported by the National Science
Foundation under grant NoCCR-8613353 and by the Army
Research Office under contract DAAL03-86-K-0112

In multiprocessors with a shared memaype-
cial test-and-set instruction can be used to support the
mutual eclusion. Havever, this solution requires syn-
chronized accesses to the shared memory from all pro-
cesses and such accesses could be difficult to support.
In a multiprocessor multiport memory system the test-
and-set instruction cannot be implemented by control-
ling an access cycle of a single processor [4], [11]. On a
large VLSI chip processors cannot run on the same
clock because sending a clock pulse across the chip
introduces a delay in a pulse propaign. Graving
popularity of parallel and distnifted architectures has
led to renwed interest in algorithmic solutions to the
mutual eclusion problem [1], [4], [6], [7], [9], [11],
[12], [13].

Algorithmic solutions to the mutualxelusion
problem were densvely studied in the past [2], [3],
[5], [12]. Recently Lamport in [7] presented a we
extended definition of the mutuak@usion and its four
solutions characterized by different degrees of enforced
fairness and ralstness. Lampod’ dgorithms are
immune to seeral types of process malfunctions.
Unlike the majority of older solutions, his algorithms do
not assume that read/writes from/to communication
variables are mutually xelusive. Such robustness is
important in large distributed systems whaiufe of a
single processor should not breakviothe entire sys-
tem. It is also needed in VLSI chip based multiprocessor
systems, in which nonuniform conditions in the chip’
wafer result in varying reliability of individual proces-
sors.

In Lamports dgorithms, the desired degree of
fairness and robustness decides the number of commu-
nication \ariables required by each process. Let n
denotes the number of processes participating in the
mutual exclusion. The strongest fairness condition
(known as first-come first-seed property) together with
the strongest robustness requirement areiged by the
algorithm that uses-factorial of communication binary
variables per process. The fair solution with a constant
number of communication variablesasv published in
[13] (linear wait, four one-bit communicatioanables),
and reported in [8] (first-come first-served gfigne-bit

szymansk
Text Box
Proceedings of the Fifth Jerusalem Conference on Information Technology, Jerusalem, Israel, October 1990
 IEEE Computer Society Press, Los Alamitos, CA, pp. 110-117

communication variables) and in [14] (first-come first-
sened, four one-bit communication variables). The
algorithm with 17 bit communication variables immune
to all types of malfunctions defined by Lamporasy
presented in [15] . The author of that report conjectured:
"Unfortunately the presented algorithm is quite
long and compbe.. It remains to be seen whether
a dorter and simpler algorithm with the same
properties exists. A conjecture is made that if a
shorter solution exists, it will be of the same basic
structure; that is, part of the algorithm will be
constructed from a weak solution to the same
problem, along with a local critical section.”

The algorithms presented in this papervshbat
these requirements were too strict. Whafise$ is a
"separation” algorithm which keeps the processes eligi-
ble for mutual exclusion separate fromwhe arriving
processes (see febit robust algorithm in section 3).
Our fourbit (and about a quarter of the size of the pro-
gram in [15]) self-stabilizing first-come first-seq/
algorithm includes only one three-bit self-stabilizing
algorithm with linear wait as a basic component.

The algorithms presented in this paper are based
on a scheme similar to the Mores®lution of the
mutual exclusion with three weak semaphores [10].

2. The Problem Statement

The Lamport$ definition of mutual exclusion has
been presented in [7], so only a general description is
given here, following also [13].There are n (n>1) pro-
cesses that are numbered from 0O to nFhe processes
are eecuting independently of each othgossibly on

different processors. Each process contains a portion of

the code called aritical section,which often includes

accesses to limited resources. The rest of the process

code is called anoncritical section. There is no
assumption about the rate at which processesute.
However, each process in its critical section neaka
finite progress. This means that a finitef Ipossibly
unbounded, amount of time elapses betweentbeue
tion of individual instructions of the code. In addition, it

is assumed that a process entering its critical section

will leave tt after a finite amount of time.

Each process starts itxeeution at a specified
location in the noncritical section with alawables set
to initial values. Processes alternatekgaite their non-
critical and critical sections. A process may enter its
critical section ap number of times. Processes can com-
municate with each other througbmmunication vari-
ables.

Algorithmic solutions to the mutualxelusion
problem consists of twsections of code that surround
the critical section in each procesEhe first section is

executed before the critical section and is callegr@
logue or trying. The second section ixeeuted after the
critical section, and is called amit. The assumption
about the finite progress ixezution of the critical sec-
tion is extended to prologue and exit sections as well.
However, the extended assumption does not imply that a
process which started taeeute its prologue ont sec-

tion has to leee any & them in a finite time. In other
words, an infinite looping is nokeluded by assumption
and should be wmided through proper design of the
algorithm. W ae interested in a uniform solution, in
which the prologue and exit sections are the same in
each process.

There are four properties required from the solu-
tion.

l. Mutual exclusion: For any pair of distinct pro-
cesses, gntwo o their critical sectionecutions
are disjoint in time.

Il. Deadlock freedom:If there is a nonterminating
prologue section >ecution, then there are
unbounded number of critical sectioxeeutions.

In other words, the critical section should vee
become inaccessible to all processes. If a number
of processes attempt taeeute their critical sec-
tions, then after a finite amount of time some of
them should be able to do so.

lll. Fairness (lockout freedom property): Every pro-
logue section »xecution must terminate, i.e. no
process will be denied entry to its critical section
forever. The strongestdirness property is kmm
as first-come first-served. For the purpose of
defining this propertywe assume that the pro-
logue section consists of twparts: agate section
that requires xecuting only a bounded number of
elementary operation (therefore a gate section
always terminates), followed by waiting sec-
tion. The first-come first-seed property is satis-
fied if for ary pair of processes the foillang
implication holds:

if a gate sectionx@cution of one process is
followedt by a gate sectiomeeution of the
other than the corresponding critical sec-
tion executions of these processes are in the
same relation.
Less restrictie fairness property is kmoas he
linear wait. It requires that no process will enter
its critical section twice while another process is
waiting.

T i.e. the gecution of the first gte section terminates before the
execution of the other one starts.

IV. Robustness:The solution should be immune to

the following types of malfunctions:
« flickering bits (read errors during writes):
a read of the communicatioraxiable which
is being concurrently written upon may
return a randomalue. Aspointed out in
[11] read errors during writes can easily
occur when tw processors communicate
while running under control of dérent
clocks. The sum of pulses from avdiffer-
ent processors may create so called runt
pulse, which causes a read to return a ran-
dom value.
¢ shut-down (premature termination): at
ary point of its eecution, a process can
resett its communication variables and halt
(shut-davn represents the phical situation
of unplugging a processor),
« abortion: at ary point in its eecution, a
process can reset a predefined subset of its
communication &riables and then start
executing again in its noncritical section,
« failure: a process keeps setting its state,
including the walues of its variables, to arbi-
trary values within the prograsiand \vari-
ables’ ranges and then abortsyereagan
malfunctioning,
« transient malfunction: a process keps
setting its state, including thalues of its
variables, to arbitrary values within the pro-
grams and variables’ ranges and then
resumes normalkecution at ag point in its
program, neer agan malfunctioning.

The robustness requirements imply that processes
can use only process specific communicatiariables
[12]. Suchvariable can be written only by one process
("owner" of that variable). It may be read by all pro-
cesses.

3. The Algorithms

The first algorithm presented in Figure 1\pdes
the mutual exclusion with linear wait. It uses three one-
bit communication a&riables in each process, and is
immune only to the fliokring bits malfunctions. It is a
modification of the algorithm presented in [13]. This
algorithm is used as a building block for other algo-
rithms presented in the paper.

T Since ary write to a communication variable is not a null eper
ation and can &fct concurrent reads, "resetting ariable"
means here assinging a aelt value to the variable only if at
this instance the variable has a value different from the default.

The idea behind the algorithms is simpl&he
prologue section (statements p1-9 in Figure 1) simulates
a waiting room with a doorAll processes requesting
entry to the critical section at roughly the same time
gaher first in the waiting room. Then, when there are no
more processes requesting enprpcesses inside ait-
ing room shut the door and @ the exit from the
waiting room. From there, one by one, yhenter their
critical sections in the order of their numbering.yAn
process requesting access to its critical section at that
time has to wait in the initial part of the prologue sec-
tion (at the entry to the waiting room).

The door to the witing room is initially opened.
The door is closed when a process inside thding
room does not see ymew rocesses requesting entry
The door is opened again when the last process inside
the waiting room le&es the exit section of the algo-
rithm.

Three one-bit process specific communication
variables, called a (ac#, competing for a critical sec-
tion), w (waiting inside the waiting room) and s (shut-
ting the door to the waiting room), respeely, describe
the status of a proces&ach process can be in one of
the following five dates:

1) passie - dl three communication variables are
false (avs=false,falsedlse). Aprocess in the pas-
sive date is &ecuting the noncritical section.

2) entry - only the \ariable a is set to true
(aws=true,falsedise). A process in the entry state
wants to access its critical section and attempts to
enter the waiting room.

3) inside - only the \ariable w is set to true
(aws=false,truedise). A process in the inside
state passed through the door into thaitiwg
room.

4) transient two variables: s and w are set to true
(aws=hlse,true,true). Aprocess in the transient
state shuts the door into the waiting room tempo-
rarily.

5) it - only the wariable s is set to true

(aws=falsedlse,true). Aprocess in the exit state
keeps the door into the aiting room shut for

good and is eitherxecuting its critical section or
waiting for its turn to &ecute it.

A transition from the pass date to the entry
state is unconditional A process is allowed to me
from the entry state to the inside state if the variable s is
set to false in all processes (in othasrds, the door is
not shut either temporarily or permanenth.process
in the inside state that notices that there are no processes
in the entry state (i.e. the variable a is seatsef in each
process) can nve b the transient state and shut the

door temporarily by setting its variable s to true (state-
ments p5-6). From the transient state a process checks
again for presence of grprocesses in the entry state. If
there are apn the checking process backsf o6 the
inside state; otherwise it mes to he exit state and
shuts the door for goodA process that reaches thete
state from the transient state will be callddaxder.

communication ariables:: aw, s boolean = false
private variables:: j0..n

. a=true;
. for(j=0;j<n;j++)while(s);

p3: w=true; a=false;
p4: while(!s) {
p5: for(j=0;j<n & laj;j++);
p6: if (j==n) { si=true;
p6.1 for(j=0;j<n & laj;j++);
p6.2 if (j<n) s=false;
p6.3 elsq wi=false;
p6.4 for(j=0;j<n;j++)while(w);
}
p7: if (j<n) for (j=0;j<n & (W | '5);j*++);
p8: if (=i & j<n) {
p8.1: s=true; w=false;
}
}

p9: for(j=0;j<i;j++) while(w; | 5);
Critical Section
el: s=false;

Figure 1. Three-Bit Linear Wait Algorithmt

A leader waits in the exit state for processes in the
inside state to me © the exit state too.

A process in the inside state that notices a process
in the exit state ma@s to he exit state immediately
(statements p7-8.1). From theitestate processes enter
critical section in the order of their numbering (state-
ment p9).

If a process in the inside state attempts and fails to
become a leader (by wing to the transient state and
backing of to the inside state) then there is a process
that was in the pasa& gate before that attempt and then
moved to the entry state (compare loop in statement
p6.1). Until the maed process reaches the inside state,
the attempting process will not m® o the transient
state again. Since processes camddae waiting room
only by passing through the exit state and the leader
waits for processes in the inside state to reach tite e
state, then no process canvieahe waiting room until
the door is closed. It follows from the alothat a

T The author ackneleges help of Vladislavs Jahundovics in re-
moving a typo from this program.

process can maka most n-1 attempts to become a
leader beforexecuting its critical section. On the other
hand, if none of the processes in the inside state
attempts to become a leadtivan there is a process in
the entry state which can m® the inside state (since

the door is not shut). When all processes in the entry
state reach the inside state, each process in the inside
state will be able to me © the transient state. Hence,
after a finite time some process(es) will become
leader(s).

If the highest numbered process in thaitimg
room is a leadeit will keep all processes in the entry
state looping on itsariable s (compare statement p2).
Otherwise the highest numbered process inside #ite w
ing room will set its variable s to true beforeydeader
will enter critical section. Hence, each process in the
entry state will loop at least to that moment on tag-v
able sof one of the leaders and finally on the variable s
of the highest numbered procedsfollows that the pro-
cesses in the entry state cannot reach the inside state
from the moment gnprocess reaches theiestate until
all processes inside theaiting room lege their critical
sections. In other @rds, our algorithm separates pro-
cesses in the passi and entry states from processes in
the «it, transient and inside states. The separation is
achieved in a finite time and lasts from the moment a
leader reaches theie state until all processes already
inside the waiting room lea their critical sections.

With the separation property demonstratedywsho
ing that the presented algorithm enforces the mutual
exclusion with linear wait is simple. At srtime only
one process can Y& te lowest order number in the set
of processes that reached the exit state, so the mutual
exclusion is enforced. No process will wait in thaitv
ing room foreer, dnce a leader is created in a finite
time and then all processes in the inside state are able to
reach the exit state directlfNo process will wait in the
exit state forger either. There is alvays a process that
is either in its critical section or able to reach it. Thus,
the algorithm is deadlock freeFinally, if a process
leaves the critical section, then it cannot pass the door
into the waiting room until all processes thatited
with it inside the waiting roomxecuted the critical sec-
tion. Morewer, those and only those processes that
reached the entry state before a leader causing the sepa-
ration reached the transient state are inside tigng
room after the separation. Hence, if one process reaches
the entry state before the oth#tren the next separation
cannot lege the former process before the waiting room
and the latter process inside theitmg room (all other
combinations are possible, wever). Thus,the linear
wait is enforced.

It is possible to extend the presentedvabdgo-
rithm to obtain a solution that is immune to all malfunc-

tions defined in section 2. In the basic algorithm only
the leader needs to be delayed in the exit state until all
processes in the transient and inside states reackithe e
state. If the leader aborts or shuwahs before some
processes in the inside state reach the exit state but after
some other processes alreacdgosted the critical sec-
tion then the linear it requirement can easily be vio-
lated. Thus, in the raist algorithm presented in Figure

2 dl processes that reached the exit state wait until pro-
cesses in the inside and transient stategenmthe it
state (notice a me position of the loop in statement
p6.4).

communication ariables:: aw, s boolean = false
private variables:: jk:0..n

pl: a=true;
p2: for(k=1;k<n;k++)for(j=0;j<n;j++)
p3: while(s && i<>)) { w i*=*false; s*=*false; }
p4: while(!s) { wi*=*true; ai*=*false;
p5: for(j=0;j<n & laj;j++);
p6: if (j==n) { si=true;
p6.1: for(j=0;j<n & laj;j++);
p6.2: if(j<n) s=false;
p6.3: elsavi=false;
p7. if (j<n) for (j=0jj<n & (Wi | !§);j++);
p8: if(j!'=i & j<n) { si=true;
p8.1a: if(!s) s=false;
p8.1b: elsavi=false;
}

}
p6.4:for(j=0;j<n;j++) while(w && i<>j) {a i*=*false;
wi*=*false;}

p9: for(j=0;j<i;j++) while(s && i<>j) w i*=*false;
Critical Section
el: s=false;

Figure 2. Three-Bit Robust Linear Wait Algorithm

Even a process in the exit state may fail &z|x
the door closedT, if a shutsda or abortion takes place.
In the scenario in Figure 3, a process P1 is able to sneak
through the door into theaiting room, although in the
view of a process P2 the dooras closed by theaviable
s dther in the process P3 or the process P2ase note,
that the second check oblues of the communication
variables would succeed in disaing that the door is
indeed closed. In general, k+1-st check of communica-
tion variables yields the proper status of the door in the
presence of at most k abortions and shutrdn of
leader processes. Aborted and shutsd@rocesses can-
not pass through the door until the processes remaining
inside the waiting room exit it. Thus, checkingues of

T The author wish to thanks Prof. Amir Pnueli for pointing out
this possibility.

step P1 P2 P3
swa sva sva
00L>01T> 100
001 01@>100
00 110 100
001 11 00@bort!
00 100 000
011 “me 000

Arrows shev order of checking values of bit variables.

Figure 3. An Example of Possible ME Violation

the communicationariables has to be done at most n-1
times to ensure the proper result (see an additional loop
in statement p2 in Algorithm 2).

It is also necessary to pemt deadlock from
occurring as the result of transient malfunctions. Since
the unbounded aits in the while loops in the algorithm
are controlled by thealues of the variables w and s, in
the loops implementing these waits value false of these
variables is restored, if necessary (see statements p3,
p6.4 and p9). In Figure 2, the notation:

var*=*val;

is a shorthand for a resetting of the variatde to the
value \al, i.e. it is equivdent to the following condi-
tional statement:

if (var!=val) var=val;

The third algorithm, presented in Figure 4, extends the
first algorithm bit diferently than the robust algorithm
did. Namely it enforces first-come first-seed fairness
property lut for the price of an additional one-bit com-
munication variable p (parity of the mutuaictusion
request).

In the third algorithm, there is a gate section
(statement g1-4) in the prologue that just takes a snap-
shot of each process status and registers it inldaal
bit vectors: la (its j-th bit shows whether the j-th process
passed its gate section at the time of a snapshot) and Ip
(it stores each process’ parity). In additionotwew
states (sixth and genth) are defined for each process
as:

6) aftergate - two variables: a and w are set to true
(aws=true,truedlse). Aprocess in the aftagate
state has»ecuted its gate sectionubdid not get
into the waiting room yet.

7) adwnced transient state - dwariables: a and s

are set to true (es=true,blse,true). A process in
the advanced transient state iaitimg until pro-
cesses thatxecuted gate section before it did
access the critical section.

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

The only transition from the entry state leada/no
to the afterate state and is made unconditionallize
distinction between the aftgate state and the entry
state is important only in theatg section, where a
process in the aftegate section has la bit set to true
while a process in the entry state causes this bit to be set
to false. Inother parts of the algorithm, thewnefter-
gae state and the entry state are eglant.

communication &riables:: aw, s p: boolean = false
private variables:: j0.n,k: 0.n=0
la, Ip: array[0..n-1] of boolean

pl: a=true;
gl: for(j=0;j<n;j++){
g2: lafjl=w; Ip[i]=pi;

D p='pi;

. Wi=true;

. for(j=0;j<n;j++)while(s);

. a=false;

: while(!s) {

for (j=0;j<n & laj;j++);

if (j==n) { si=true;
for(j=0;j<n & laj;j++);
if (j<n) s=false;
elsq wi=false;

for(j=0;j<n;j++)while(w; & ! &);

p6.1:
p6.2:
p6.3:
p6.49:

}
p7. if(j<n) for (j=0;j<n & (W | ');j++);
p8: if(j!'=i & j<n) {
p8.1: s=true; w=false;

}

}
d1: while(k<n){

g5: for(k=0;k<n& (Na[k] | px!=Ip[K] | 'wk & !'s<);k++);
d2: if(k<n){
d2.1: for(j=0;j<n;j++)if (j==i) ai=true;
d2.2: elsenhile(lg & sj);
d2.3: for(j=0;j<n;j++)if (j==i) ai=false;
d2.4: elsewhile(a & sj);
}
}

p9: for(j=0;j<i;j++) while(la & (wj |3));
Critical Section
el: s=false;

Figure 4. Four-Bit First-Come First-Served Algorithm

Unlike in the previous algorithm, a process in the
exit state is eligible to access the critical section only if
all processes that beat it at the gate alreadguted the
critical section (see statements g5-d2s previously,
the critical section is accessed by the eligible processes
in the order of their numberingProcesses that reached
the exit state it are not eligible yet to access the critical
section mee the advanced transient state. This transi-

tion is made in the order of numbering of processes that
are not eligible yet to access the critical section. In the
adwance transient state, each proceagsafor others to
leave the exit state, and then mes back into the it
state. This transition is also made in the order of pro-
cesses’ numbering (see statements d2.1-2t4hould

be noted that processes reach the advanced transient
state only after a separation took place, therefore no
process can bexecuting a leader selection code (state-
ments p5-p6.4) at that time. Thus, the condition for
leader selection can be simply ayaen of the \ariable

a (regardless of the value of the variable s).

The justification for an additional communication
variable p is simple.lf a process takes a snapshot of the
other process in the gate state, then this other process
can eecute its critical section and return to thatey
state before the first process gets to the wait loop in
statement g5.Consequentlythe process taking a snap-
shot needs to be able to recognize whether a process in
the gate state did or did noteeute the critical section
while the snapshoting procesasvprogressing from the
gate section to the loop of statement g5.

Suppose that a process P1 finishedate gection
before the other process P2 started it, and both processes
did not access the critical section after the most recent
execution of the gte section. Hence, the snapshot entry
la[p1] in P2 is true and Ip[p1] is equal to the value of the
variable p in P1.Thanks to the loop in statement g5, the
process P2 cannot reach the critical section before the
process P1. If the process P2 is inside the waiting room
in the subsequent separation, then the leader of this sep-
aration had to reach the transient state after the process
P2 decidedo move © the inside state, that, in turn, had
to happen after the process P1 left the pasdate.
Consequentlyadso process P1 ke © be nside the
waiting room in the subsequent separation, so there is
no deadlock on the loop in statement g5 in the discussed
case.

If the process P1 alreadyeeuted the critical sec-
tion, then tvo new ases hee b be onsidered. In the
first case, a snapshot Ip[pl] stores the value of pafity
the process P1 associated with the original gate section
execution. Inthis case, the process P1 will not cause a
delay of the process P2 in the loop in statementTgie
second case happens when the variable Ip[pl] in the
process P2 stores the parity of P1 from the subsequent
gae execution. This means that the snapshot of P2 in P1
would not delay the process P1 in its progresegtds
the critical section. The process P2 will be delayed by
P1, but the process P2 cannot get into the waiting room
without P1 being there in the same separation, so no
deadlock is possible eitheFinally, when gate xecu-
tions of two processes intersect, then these processes
will set the corresponding la bits to false before reaching

the loop in statement g5 and therefore none will be
delayed by the other there. In summathye loop in
statement g5 together with theatg section gl-g4
enforces first-come first-served order of accessing the
critical section without introducing grdeadlocks.

communication &riables:: aw, s p: boolean = false
private variables:: jk:0..n,c:0..n-1=n-1
la, Ip: array[0..n-1] of boolean

pl: a=true;
gl: for(j=0;j<n;j++){
g2: lafjl=w; Ip[i]=pi;
}
D p=lpi;
© w=true;
. for(k=1;k<n;k++)for(j=0;j<n;j++)
while(s && i<>j) { ai*=*true; s*=*false; }
: while(!s) { wi*=*true; ai*=*false;
for (j=0;j<n & laj;j++);
if (j==n) { si=true;
for(j=0;j<n & laj;j++);
if (j<n) s=false;
elsavi=false;

p6.1:
p6.2:
p6.3a:

if (j<n) for (j=0;j<n & (W | 'g);j++);
if (j'=i & j<n) { si=true;

if(lsj) s=false;

elsavi=false;

p7:
p8:
p8.la:
p8.1b:
}
}
p6.4:for(j=0;j<n;j++) while(w& ' g && i<>))
p6.4a: {a*=*false; wi*=*false; }

dil: dof
g5: for(k=0;k<n& (Na[k] | pk!=Ip[K] | !sk);k++);
d2: if(k<n){c--;
d2.1: for(j=0;j<n;j++)while('a & sj)
d2.2: {a*=*j>=i; w i*=*false; }
d2.3: for(j=0;j<n;j++)while(g & sj)
d2.4: {a*=*j<i; w i*=*false; }
}

d3: }while(k<n & c>0)
p9: for(j=0;j<i;j++) while(!g & Sj && i<>j)
p9a: {a*=*false; wi*=*false; }
Critical Section
el: s=false;

Figure 5. Four-Bit Robust First-Come First-Served Algorithm

The last algorithm presented in Figure Sviles
first-come first-served robust mutual exclusion using
just four one-bit communicationaviables. It is created
by modifying and combining the robust lineaaithalgo-
rithm in Figure 2 with the first-come first-sed/ algo-
rithm presented in Figure 4. It should be noted that,
unlike the other communicatioraviables, the variable p
should not be reset to initiablue at the end of abor
tions. In the first-come first-sezd algorithm, the code
after the gte section is almost the same as in the basic

algorithm shown in Figure 1. In the last algorithm pre-
sented in Figure 5, the aftgate code is nearly identical
with the robust linear wait algorithmThe important
difference between those dwdgorithms is that pro-
cesses waiting for their turn to access critical section in
the third algorithm can get deadlocked in the presence
of transient malfunctions. As the result of transient mal-
functions two or more processes may be placed immedi-
ately after the gate section with suchlues of their
snapshot vectors la and Ip thatytheill wait for each
other in the loop of statement g5. In the robust algorithm
in Figure 5 the separation of processes enalelash
process to disa@r such a deadlock. Statements d1-d3
at the end of prologue in Figure 5 are used to synchro-
nize deadlock checking by all processesiting after

the gate.

If there is no deadlock, eackiate around theat
state and the advanced transient state makes at least one
process in the exit state eligible to access the critical
section. Thus, without a deadlock, each process can
cycle around those twdates no more then n-2 times.
The counter ¢ keeps track of the number of madées
and is used in detecting and resolving the deadlock in
statement d3.

It should be noted that all unbounded waits in
conditions of while loops contain references to tag-v
ables a, ws and to the ngation of variable a. Conse-
quently al values of the variable a, and false values of
the \ariables w and s are restored in the while loops, if
necessary.

Due to the space limitation the more rigorous
proofs of the presented algorithms’ properties are omit-
ted here.

4. Conclusion

The robust, dir mutual exclusion algorithms that
are immune to seral types of malfunctions were pre-
sented. Thesalgorithms use fewer communication
variables per process than yampublished algorithms
with similar properties. The four-bit first-come first-
sened robust mutualxelusion algorithm contains just a
single robust mutual xelusion algorithm as a basic
component.

References

Davidson, C.M., "A Note on Concurrent Pro-
gramming Control,” IEEE Transaction on Soft-
ware Engineering, ®. SE-13, no. 7, July1987,
pp. 865-866.

Dijkstra, E.W. "Solution to a problem in concur

rent programming control," Communication of
the ACM, vol. 8, no. 9, SeptembdB67, p. 569.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Eisenbeg, M.A., and McGuire, M.R. "Further
comments on Dijkstra’ concurrent programming
control problem," Communication of theCM,
vol. 15, no. 11, Neembet 1972, pp. 999.

Femguson, M.J. "Multiaccess in a Nonqueueing
Mailbox Environment,” IEEE fansaction on
Software Engineering, vol. SE-10, no. 3, May
1984, pp. 237-243.

Knuth D.E., "Additional comments on a problem
in concurrent programming control,” Communi-
cation of the ACM, vol. 9, no. 5, May966, p.
321-322.

Lamport,L. "The mutual Exclusion ProblemaR
| - A Theory of Interprocess Communication,”
JACM, vol. 33, no. 2, April, 1986, pp. 313-326.

Lamport,L. "The mutual Exclusion ProblemaR
Il - Statement and Solutions AGM, vol. 33, no.
2, April, 1986, pp. 327-348.

Lycklama, E.A. "A First-Come First-Served Solu-
tion to the Critical Section Problem Usingv&i
Bits," M.Sc. thesis, Unersity of Toronto, Octo-
ber 1987.

Lycklama, E.A. and Hadzilacos, VA first come
first served mutual exclusion algorithm with small
communication a&riables," submitted for publica-
tion, draft dated May 12, 1989.

(10]

(11]

(12]

(13]

(14]

(15]

Morris, J.M. "A stanation-free solution to the
mutual exclusion problem," Information Process-
ing Letter vol. 8, no. 2, 1979, pp. 76-80.

Peterson,G.L. "A New Solution to Lamport
Concurrent Programming Problem Using Small
Shared Variables,” ACM Transactions on Pro-
gramming Languages and Systemd, %, no. 1,
January 1983, pp. 56-65.

Raynal, M. "Algorithms for Mutual Exclusion,"
The MIT Press, Cambridge, Massachusetts, 1986.

Szymanski,B.K. "A Simple Solution to Lam-
port's Concurrent Programming Problem with
Linear Wait," Proc. 1988 International Confer
ence on Supercomputing, St. Malo, France, July
4-8, 1988, pp. 621-626.

Szymanski, B.K. "Efficient First-Come-First-
Sene Mutual Exclusion Algorithm," &chnical
Report, RPI, Trg, NY, December1988.

Truuvert K. "A Self-Stabilizing First-Come-First-
Sened Mutual Exclusion Algorithm With Small
Shared Variables," Technical Note, Warsity of
Toronto, July 1989.

