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Expanding Generalized Hadamard
Matrices over �� by Substituting Several
Generalized Hadamard Matrices over �

Jong-Seon No and Hong-Yeop Song

Abstract: Over an additive abelian group � of order � and
for a given positive integer �, a generalized Hadamard matrix
����� �� is defined as a �� � �� matrix ����� ���, where � �
� � �� and � � � � ��, such that every element of � appears ex-
actly � times in the list ����� �������� ��, ����� �������� ��, � � � ,
����� ��� � ����� ���, for any �� �� ��. In this paper, we propose
a new method of expanding a ������ ��� � 	 � �	�� � over
�� by replacing each of its 
-tuple 	�� with 	�� � ����� ���
where 
 � ���. We may use ���� (not necessarily all distinct)
����� ���’s for the substitution and the resulting matrix is de-
fined over the group of order �.

Index Terms: Generalized Hadamard matrices, difference matri-
ces, ��-ary m-sequences.

I. INTRODUCTION

A Hadamard matrix, ��, of order � is a � � � matrix with
elements ��’s and ��’s such that �� ��

�
� � ���� where �� is

the identity matrix of order � [1]–[3]. This implies that any two
distinct rows of �� are orthogonal. For this reason and many
others, Hadamard matrices have been studied in many different
but related such areas as wireless communication systems engi-
neering, coding theory, and statistical design theory [3]–[8].

The symbol alphabet can be generalized to a group of order
� �. In this case, the notion of orthogonality should be suitably
modified as in the following definition [4], [9]–[13]. We will
restrict our discussion to abelian groups written additively in this
paper.

Definition 1: Let � be an additive abelian group of order �.
Let  � ��� �� � � � � ��� and � � ���� ��� � � � � ���� where
�� �� � �. Then  and � are said to be difference-balanced if
every element of � appears exactly � times in the list of com-
ponentwise differences � � ��, � � ��, � � � , �� � ���.

Definition 2: Let � be an additive abelian group of order
�. For a positive integer �, a generalized Hadamard matrix
����� �� is a �� � �� matrix over � in which any two dis-
tinct rows are difference-balanced.

Remark 1: ����� ���� is a (binary) Hadamard matrix of
order �.
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Fig. 1. A Hadamard matrix of order � from Sylvester construction.

For � � �, an easy example of ����� �� is the group table of
the cyclic group of order � � �. For any other pair of � and �,
see [4], [9]–[12] for specific constructions.

One of the well-known constructions for (binary) Hadamard
matrices was originally from Sylvester [1], [2], [4]. It works
as follows: If there exist Hadamard matrices �� and �� �
���� � of orders 
 and �, respectively, then the matrix obtained
by replacing each ��� � 	� with 	�� is a Hadamard matrix
of order 
�. A Hadamard matrix of order 8 from Sylvester
construction is shown in Fig. 1. Observe that �� in Fig. 1 has
16 blocks of order � and these blocks are either �� or ���,
exclusively. Similarly, there is a construction for generalized
Hadamard matrices ����� ������ over � of order � assuming
that there exist 	 � �	�� � � ����� ��� and � � ����� ���,
both over � [10]. It replaces each element 	 �� of 	 with 	�� �
�, and the blocks are of the form ��� for � � �. We will also
call this Sylvester’s method for generalized Hadamard matrices.

In this paper, we propose a new method of expanding a
������ ��� � 	 � �	�� � over �� by replacing each of its

-tuple 	�� with 	�� ������ ��� where 
 � ��� and where
the operation � will soon be defined in Section II. We may use
���� (not necessarily all distinct) ����� ���’s for the substitu-
tion and the resulting matrix is defined over the group of order
�.

We will prove the main construction in Section II and give
some examples. An example over �� is explicitly given using
a 	-ary m-sequence of length 15. A brief remark is given in
Conclusion.

II. MAIN CONSTRUCTION

Let � be a group of order �. Given a generalized Hadamard
matrix ����� �� over �, one can transform into another by (i)
interchanging any two rows (columns, resp.), and/or (ii) adding
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� � � to every element of a row (column, resp.). Two general-
ized Hadamard matrices which differ only by some combination
of these four operations are said to be equivalent. For a given
generalized Hadamard matrix we can find an equivalent one in
which the top row and the left-most column consist entirely of

’s, the identity of �. Such a generalized Hadamard matrix is
called normalized. Clearly the remaining rows (if any) must
contain every element of � exactly � times.

Note that if � is a group of order �, then all the 
-tuples of
elements of � form a group of order �� with respect to compo-
nentwise addition. We will denote this group by �� throughout
this section. We will use � as the operation of ��. With slight
abuse of notation, we will also use � as in the following defini-
tion:

Definition 3: (Operation �) Let � � ���� ��� � � � � ��� be
an 
-tuple over � and � be a ��
 matrix over �. Denote the
rows of � by ��� ��� � � � � �� . Then

� � � � � �

�
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...
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�
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The above operation plays the key role in our main construc-
tion. As a result of the operation � � �, each row � � of �
is replaced with � � ��. If we put it into another way, in ev-
ery column of �, for example, in �-th column, the element � ��
is replaced with �� � ��� for � � � � �, where �� is the �-th
component of � . This proves the following Lemma:

Lemma 1: Let � be a group of order � and let 
 � ��. If �
is an 
-tuple over � and � is a ����� �� over �, then � � �
is a ����� �� over �.

Theorem 1: (Main) We assume that there exists a general-
ized Hadamard matrix 	 � �	�� � � ������ ��� over ��

where � is a group of order �. We also assume that there exist
� generalized Hadamard matrices � ���� ����� � � � � ����, not
necessarily all distinct, all of which are ����� ��� over �. If
� � ���� and 
 � ���, then the matrix � over � of size

� � 
� obtained by replacing 	�� with 	�� � ���� is a
generalized Hadamard matrix ����� ������� over �.
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Proof: The resulting matrix � looks like the following:
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(1)

The matrix � has a natural partition of � � submatrices each
of size 
 � 
. Thus, we will call successive 
 rows of � a
row-block. That is, � has � row-blocks and each row-block
contains � submatrices of size 
 � 
. All we have to show
is that any two distinct rows of � of length � (� 
� ) over
� are difference-balanced in the sense of Definition 1. We will
distinguish two cases: (I) two rows from the same row-block
and (II) two rows from different row-blocks.

(CASE I) By Lemma 1, each of the 
 � 
 submatrices
	�� ����� for all � and � is a ����� ��� over �. Therefore, any
two distinct rows of � from the same row-block are difference-
balanced. In this case, note that we used the assumption that
each ���� is a generalized Hadamard matrix.

(CASE II) Now assume � �� � and consider �-th row of �-th
row-block and �-th row of �-th row-block for some �� � with
� � � � 
 and � � � � 
. If we denote �-th row of � ��� and
�-th row of � ��� by �

���
	 and �

���

 , respectively, then the two

rows look like the following at the bottom of this page. Note
that 	�� , 	�� , ����

	 , and ����

 are 
-tuples over �. If we regard

two rows in (2) as vectors of length M over ��, then they are
difference-balanced over �� since �-th row and �-th row of 	
are difference-balanced. These differences over �� are, letting
�

���
	 
 �

���

 � �,

	�� 
	�� ��� for � � �� �� � � � ��� (3)

Note that � is an 
-tuple over � and is only a constant bias of
the differences 	�� 
 	�� , regardless of �. On the other hand,
	�� 
	�� is computed componentwise, so we may concentrate
on the components of the differences in (3). Similarly, we may
regard two rows in (2) as vectors of length 
� over �, and
consider their componentwise differences over �. They are ex-
actly the same as the differences listed in (3) except now that we
are looking at the components. They are difference-balanced
over � since in the list of � 
-tuples over � in which every

-tuple of �� appears exactly �� times, every element of �
appears exactly 
��� times. Note, in this case, that we used
the assumption that 	 is a generalized Hadamard matrix over
��. �
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Remark 2: A generalized Hadamard matrix over a group is a
square array. A rectangular array with the same condition on the
list of differences of any two distinct rows is called a difference
matrix [10]. Our main construction applies easily to the con-
struction of difference matrices, since the proof of Theorem 1
does not use the fact that either 	 or � is a square array. There-
fore, our method directly applies to difference matrices 	 over
�� and �’s over � to construct larger size difference matrix
over �.

Remark 3: We may use in the construction all the same
����’s, some different but equivalent� ���’s, all distinct����’s, or
all inequivalent � ���’s. We note that the construction method is
different from those by Sylvester even if � ���’s are all the same.

Example 1: We take � to be the additive group of the finite
field �� of � elements for some prime �. For example, we take
� � �
� �� �� to be the additive group of integers mod 3 so that
� � � � �. If we have 	 � ������ ��� over �� and � (not
necessarily distinct) ����� ���’s over � where 
 � ��� and
� � ����, the contruction gives a �����
���� over �.

Example 2: If we have 	 � ������ ��� over ��� and �
(not necessarily distinct) ����� ���’s over �� where 
 � ���
and � � ����, the contruction gives a �����
���� over
��. Here, we consider the elements of ��� as 
-tuples over
��.

For example, consider the case � � �. If ��  � �

� �� �� � � � � � � �� is a ��-ary maximal-length linear feedback
shift register sequence [14]–[18] of period � � ��� � � for
some �, then the �� � ��� �� � �� matrix given by

	 �

�
��������


 
 
 
 � � � 


 �� �� �� � � � ����

 �� �� �� � � � ��

 �� �� �� � � � ��
...

...
...

... � � �
...


 ���� �� �� � � � ����

�
��������

(4)

� 
 � � � 	 �  � � � �
 �� �� �� �	
� 
 � �  � � 
   �  
  �  �   � (5)

	 �

�
�����������������������


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 � �  � � 
   �  
  �  �   �


 � �  � � 
   �  
  �  �   � 


 �  � � 
   �  
  �  �   � 
 �

  � � 
   �  
  �  �   � 
 � �

 � 
   �  
  �  �   � 
 � �  �


 
   �  
  �  �   � 
 � �  � �

   �  
  �  �   � 
 � �  � � 


  �  
  �  �   � 
 � �  � � 
  

 �  
  �  �   � 
 � �  � � 
   

  
  �  �   � 
 � �  � � 
   �

 
  �  �   � 
 � �  � � 
   �  

  �  �   � 
 � �  � � 
   �  


  �   � 
 � �  � � 
   �  
  �


   � 
 � �  � � 
   �  
  �  �


  � 
 � �  � � 
   �  
  �  �  

�
�����������������������

(6)

Table 1. Substitution Rule for ����� ��� over �� where � � ����� ��

over ��.
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is a generalized Hadamard matrix ������ ��� � ������
�������� over the additive group of ��� . Here, 
 and � in
(4) can be represented [17] as m-tuples over ��. Let � �
� � � � ���. If we have � (not necessarily all distinct)
binary Hadamard matrices �����
��� over ��, then we can
construct a �����
���� � �����
������ over��, which
is a binary Hadamard matrix of size 
��� �
���.

Specifically, let 
 � � and � � �. Denote �� �
�
� ��  �  ��. Then, � in (5) is a 	-ary m-sequence of period
15 at the bottom of this page. This gives a ���	� 	� over ��

given as (6) at the bottom of this page.
Denote 
� ��  �  � in �� by �-tuples 

� 
�� �
� �� over ��, re-

spectively. Suppose we use � ��� �

�

 �

 


�
for � � � � �,

and its transpose as � ��� for � � � � �, then a �� � �� bi-
nary Hadamard matrix is obtained if we replace 
� ��  �  � in 	
according to Table 1.

III. CONCLUDING REMARKS

A feature of the main construction is that we replace each

-tuple 	�� of 	 with 	�� � ���� for all �. A direction of fu-
ture research is to investigate equivalence of two generalized
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Hadamard matrices obtained by the proposed construction us-
ing some different sets of � ���’s.
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