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Information-Theoretic Approaches for Sensor
Selection and Placement in Sensor Networks for
Target Localization and Tracking

Hanbiao Wang, Kung Yao, and Deborah Estrin

Abstract— In this paper, we describes the information- a given set of sensors through intelligent sensor con-
theoretic approaches to sensor selection and sensor placefiguration. Information-theoretic sensor management has
ment in sensor networks for target localization and heen shown to be able to greatly improve the cost-

tracking. We have developed a sensor selection heuristic offactiveness of multi-sensor data fusion [3], [4], [5].[6
to activate the most informative candidate sensor for [71, 18], [9], [10]

collaborative target localization and tracking. The fusim

of the observation by the selected sensor with the prior . . . .
target location distribution yields nearly the greatest re The existing information-theoretic sensor selection ap-

duction of the entropy of the expected posterior target Proaches are not optimized for computational complexity
location distribution. Our sensor selection heuristic is required by the moderate/low computational powers of
computationally less complex and thus more suitable to sensor networks. In this paper, we describe a sensor
sensor networks with moderate computing power than select heuristic that is nearly as effective as the mutual
the mutual information sensor selection criteria. We have jnformation based sensor selection in the sense that
also developed a method to compute the posterior target (e gejected sensor observation results in the maximum

location distribution with the minimum entropy that could o 2 e information gain. Our sensor selection heuristic
be achieved by the fusion of observations of the sensor.

network with a given deployment geometry. We have found IS _computatlonally much less (_:omplex and thus m‘?fe
that the covariance matrix of the posterior target location Suitable to sensor networks with moderate computing

distribution with the minimum entropy is consistent with ~Power than the mutual information sensor selection cri-
the Cramer-Rao lower bound (CRB) of the target location teria. Much of the existing work on the information-
estimate. Using the minimum entropy of the posterior theoretic sensor configuration is mostly about adaptive
target location distribution, we have characterized the control of advanced sensors such as radars and cameras
effect of the sensor placement geometry on the Iocalization[ll], [12]. In this paper, we describe an information-
accuracy. theoretic method to analyze the effect of the sensor
Index Terms— information theory, sensor selection, sen- placement geometry on the posterior target localization
sor placement, sensor networks, target localization and distribution that is produced by multi-sensor data fusion.
tracking. An earlier version of our sensor selection heuristic
has appeared in [9]. An earlier version of our sensor
placement strategy has apeared in [10]. In this paper, we
will discuss these two related problems in a coherent and

The emerging sensor networks could revolutionize ified framework based on Bayesian information fusion
wide range of applications including target localizatiognd information theory.

and tracking [1]. Multi-sensor data fusion is one of

the key technologies to exploit the huge potential of The rest of this paper is organized as follows. Sec. I
sensor networks [2]. Information-theoretic concepts ngdviews the recursive Bayesian estimation for target lo-
only provide guidance to minimize the consumptiogalization and tracking and discusses different measures
of sensor resources for a given information gain ref the estimation error of a target location distribution.
quirement through selective sensor activation but alsrec. 11l describes our sensor selection heuristic and
provide guidance to maximize the information gain afompares it to the mutual information based sensor
_ _ _ selection. Sec. IV describes our information-theoretic
H. Wang and D. Estrin are with UCLA Computer Science Deparhpproach to analyze the effect of the sensor placement
ment, email:{hbwang,destri@cs.ucla.edu. . .
K. Yao is with UCLA Electrical Engineering Department, einai 9€0Metry on localization accuracy. Sec. V concludes this
yao@ee.ucla.edu paper.

. INTRODUCTION
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Il. DATA FUSION FORLOCALIZATION

In this section, we review the recursive Bayesian es-
timation for target localization and tracking and discuss "
different measures of the target location estimation error

In the recursive Bayesian estimation for target local-
ization and tracking [13], [14], both the sought target
location and the sensor observations are modeled as S
stochastc. processes, and the posterir target locafy ! ereena thée o e e oenor S 8
distribution conditioned on sensor observations is COQBstimation.
puted recursively from additional sensor observations.
Let X andx denote the target location random variable
and its realization value respectively. Lét; and z; p(z|...,z,...), || - || is the Ly norm. In practice, the
denote the observation random variable of sersamd true target locatiorx; is usually unknown. In this paper,
its realization value respectively. The posterior targite assume the target location estimation is unbiased,
location distribution is incrementally updated by one

. : r, = E(x) ,
sensor observation at a time,
p(xz|z1,. .., zis1) where E(_-) is_ expectation w.r.tp(m|...,zi,.:.). An-

other estimation error measure is the covariance matrix

50 100 150 200 250 300 50 100 150 200 250 300

=Cp(zi1|x, 21,. .., z)p(x|21,. .., 25)
where C is a normalization constant. When COV(X) = E((x — E(x))?) , (2)
Zy,...,Ziyx are conditionally independent withyhere 15(.) is expectation w.rtp(z|...,2;,...). Yet
:ir:spﬁ‘f?géhg conditioned o', The above equation is 5ngther estimation error measure is the Shannon entropy

that measures the uncertainty of the posterior target
p(xlz1,. .., ziv1) = Cp(zip1|@)p(@|21, ..., 24) location distribution, [15],

The incremental update of the target location distribu- H(X|...,z;,...) = —E(lnp(x|...,zi,...)) , (3)

tion by a direction-of-arrival (DOA) sensor through th(\a/vhere B() is expectation W.rtp(z|..., z:...). A

recursive Bayesian estimation is illustrated in Fig. 1. qur e entrony of the bosterior taraet location distribatio
left sub-figure of Fig. 1 shows the prior target location 9 Py P 9

distribution p(x|z1, . .., z;) denoted by the oval image.mdlcates a large estimation error of the target location.

. T : To sort posterior target location distributions in the
The beam image originating from the DOA sensor is the T

: e : Qrder of the estimation error, we need a scalar measure
target location distribution based only on this senso

r o : ) )

) : . ot the estimation error. Since the covariance matrix

observationp(x|z;+1), which represents the new infor- : : S :
of the posterior target location distribution is a matrix

mation provided by this sensor. We have assume a Gaus- o7,
sian DOA observation model with a standard deviation a]nd not a scalar, it is not a proper measure to sort
9ne target location distributions. Both the RMSE and

2 degrees. The right sub-figure of Fig. 1 shows the pos-
€9 Ight sub-Tigur '9 W P tﬁe Shannon entropy are scalar and thus can be used
terior target location distributiom(x|z1,..., 2z, zi+1)

) .10 sort posterior target location distributions. Because
denoted by the round image. The true target Iocatl?n .
. , . the Shannon entropy is a core component of the well-
is denoted by marke#-. The posterior target location . ) .
R . . established information theory, we choose to use the
distribution has much smaller estimation error than t . ) .
. . o annon entropy to quantify the uncertainty reduction
prior target location distribution. ) ) : : S
, .(or information gain) of the target location distribution
One of the advantages of the recursive Bayesi neto the additional sensor observation. To be brief, we
estimation is that we can stop updating the posteri 4 ' ’
. L . will use the term entropy to denote the Shannon entropy
target location as soon as the estimation error is Ho oW on
larger than allowed. There are several different measures w-on.
of the estimation error of the posterior target location
distribution. One estimation error measure is the root-
mean-square error (RMSE) In this section, we describes our sensor selection
heuristic in detail. Subsec. IlI-A formulates the sensor
— Sl — 2 ) .
RMSE(X) = VE(|z —2?) , (1) selection problem in the sensor networks for target local-
where x; is the true target locationF(-) is expec- ization and tracking and reviews the mutual information

tation w.r.t. the posterior target location distributiotnased sensor selection. Subsec. 11I-B defines our sensor

[1l. SENSORSELECTION HEURISTIC



selection heuristic. Subsec. IlI-C describes the relatiovhere p(x,z;) = p(zi|x)p(x) and p(z;) =
between the entropy difference used in our sensor selg(z, z;)dz. Thus the observation of sensormaxi-
tion heuristic and the mutual information. Subsec. lll-Dnizes the mutual informatiofi(X; Z;),

validates our sensor selection heuristic using simulation .

Subsec. IlI-E compares the computational complexity of L= argmax 1(X;Z;) . (5)

our sensor selection heuristic to that of the mutual in- Sensor selection based on Eq. (5) is the maximum

formation based sensor selection. Subsec. llI-F dlscusF:neustu(,JlI information criterion described in [7], [8]. The

the potential discrepancy in selection decision between . ) )
P repancy in . .?arget locationX could be three-dimensional. The sen-
our sensor selection heuristic and the mutual information

. sor observatiorZ; could be two-dimensional (e.g. the
based sensor selection. N . . . .
direction to a target in a three-dimensional space is two-
dimensional). Thud (X; Z;) could be a complex inte-

gral in the joint state spaceX, Z;) of five dimensions.
A greedy strategy has been used for sensor selectig, computational complexity of evaluatingX:; Z;)

in sensor networks for target localization and tracking,, ;14 be more than that of the capability of the low-end
[7], [8]. This strategy selects the currently unused sensQtnsor nodes. If the observatidh is related to the target

whose observation is expected to result in the maxfication X only through the sufficient statisticg(X),
mum entropy reduction of the posterior target locatigpeap

distribution. The observation of the selected sensor is I(X;2Z,) = [(Z(X); Z:) .

incorporated into the target location distribution using

recursive Bayesian estimation [13], [14]. The greedy Z(X) has fewer dimensions thanX, then
sensor selection and the recursive information fusiditZ(X); Z;) is less complex to compute thd(X; Z;).
repeat until the entropy of the posterior target locatidn the above special scenaridé(Z(X); Z;) has been
distribution is less than or equal to the desired leveglroposed to replacé(X; Z;) to reduce the complexity
Thus the entropy of the target location distribution ief computing the mutual information in [7]. In this
incrementally reduced to the desired level without copaper, we describe an alternative entropy based sensor
sumption of more sensor resources than necessary. bkection heuristic. In general, the entropy based sensor
core problem of the greedy sensor selection approas#iection heuristic is computationally much simpler than
is how to efficiently evaluate the expected entropy réhe mutual information based approaches. However, the
duction attributable to each candidate sensor withoslbservation of the sensor selected by the heuristic would

A. Sensor Selection Problem

actually retrieving sensor data. still yield on average the greatest or nearly the greatest
The sensor selection problem is formulated as followmsntropy reduction of the target location distribution as
Given will be shown in Subsec. IlI-D.

1) the prior target location distributiom(x);
2) the set of candidate sensors for selectién:
3) the locations of candidate sensars; Vi € S;

4) the observation models of candidate sensors:N Our studies of sensor selection for localization,
p(zi|z), Vi € S; we have observed that the reduction of the localization

uncertainty attributable to a sensor largely depends on
@e difference of two quantities, namely, the entropy
of the noise-free sensor observation, and the entropy
. of that sensor observation model corresponding to the
i = argg%{ng(X’Zi) : true target location. The noise-free sensor observation
assumes that no error is introduced into the sensor ob-
servation. The sensor observation model corresponding

to the true target location is the probability distribution
i = argmax(H(X) — H(X|Z))) . of the sensor observation conditioned on the true target

ies location. Loosely speaking, our sensor selection hearisti
H(X) — H(X|Z;) is one expression of (X; Z;), the gelects the candidate sensor with the maximum entropy

mutual information between the target locatidh and gjfference described above.
the predicted sensor observatiah, Let Z} denote the noise-free observation of sensor
p(x, z; 1. BecauseZ! assumes no randomness in the process
I(X;2;) = /p(w’zi)ln p(;)p(z)i)dwdzi @ 6t observation regarding the target locatiady is a

B. Sensor Selection Heuristic

the objective is to find the senserwhose observation
Z: minimizes the expected conditional entropy of th
posterior target location distribution,

Equivalently, the observation of sensomaximizes the
expected reduction of the target location entropy,
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function of the target locatiolX and the sensor locationthe interval of [36°,38°], which is the summation of
x;, the probability of all target locations inside the sector
Z) = f(X,x;) . (6) delimited by the36° line and the38° line in the left

In Eq. (6), because the target locatio¥ is a ran- sub-figure of Fig. 2.

dom variable, the noise-free sensor observatfn is
a random variable although the sensor locatignis a "o

300

deterministic quantity. Since the noise-free sensor ebser ..
vation ZY usually has less dimensions than the target =
location X, the distribution of the noise-free sensor
observationZj is usually the geometric projection of - .
the target location distributiop(x) onto the observation W e w s bee g mTe e
perspective of sensar

Pzi<a) = [ sz, @
fla,e)<zy The observation model of sensbis p(z;|z') when

. ¢ .
where the observation perspective of sensdargely _the target is actuallyazt_z . The sensor observation model
depends on the sensor location incorporates observation error from all sources, includ-

In practice, the subset of the state space of the tarJI%Q the noise corruption to the signal used to observe
location X and the noise-free sensor observatigii e tr_;lrget, the signal modeling error in the estimation
with the non-trivial probability density can be discretize®/90rithm used by the sensor, the inaccuracy of the
into a grid for numerical analysis. Any probabilityS€NSOr hardware, and so on. The amount of uncertainty
density function value larger than a given threshold {8 the sensor observation model may depend on the

considered as non-trivial. The discrete representation(@fget location. Since the true target location is unknown
p(2Y) can be computed as follows. during the process of target localization and tracking, we

1) Let X be the set of the target location grid value ave to use an estlmatgd target location t_o approximate
the true target location in order to determine the sensor

with the non-trivial probability density; b i del. F inal dal t t locati
2) Let Z be the set of the noise-free sensor obseg— servalion model. For a single-moadal target location

vation grid values of the non-trivial probability istribution p(z) that has a single peak, we can use the

Fig. 2. A DOA sensor’'s noise-free observation about theetarg
location.

maximum likelihood estimaté of the target location to

density: imate the true target location, and the entropy of
3) For each grid poinkY € Z, initialize p(z)) to approximate Ihe frue target location, and the entropy o
zero: the approximate sensor observation model is
4) For each grid pointc € X, determine the corre- H(Z|&) = —/p(zilfe) Inp(z;|&)dz; . (8)
sponding grid pointz} € Z using Eq. (6), and
update its probability ap(z)) = p(z}) + p(x); For a multi-modal target location distributigr{z) with
5) Normalizep(z}) to make the total probability of more than one peaks, namely™, m = 1,..., M,
Z to bel. the entropy of the observation model of sensoran

After the noise-free sensor observation distributiosy) be approximated as a weighted average as follows
is computed, the noise-free sensor observation entropy

M 2N H (Z 13
. m—1 P(Z i
H(ZY) can be computed using Eq. (3). H(Z;|z) = by 1p(M ) A((m) | ) . (9
The numerical computation of the noise-free observa- 2 m=1P(&")
tion distribution p(z}) for a DOA sensor is illustrated where H(Z;|&™)) = — [ p(z;|2™) In p(z;|&™)dz;.

in Fig. 2. In the left sub-figure of Fig. 2, the target We have repeatedly observed that the incorporation of
location distribution is denoted by the image color, antie sensor observation with a larger entropy difference
the DOA sensor location is denoted by the square. TRE Z]) — H(Z;|x) yields on average a larger reduction
subset of the target location state space with the nan-the uncertainty of the posterior target location distri-
trivial probability density is discretized into a grid ofbution. Thus, the entropy differendé(Z;) — H(Z;|x)

400 x 400. The true target location is denoted by markeran sort candidate sensors into nearly the same order
+. The right sub-figure of Fig. 2 shows the discretas the mutual informatiod (X; Z;) . Specifically, the
probability distribution of the DOA sensor’s noise-fresensor with the maximum entropy differenég Z7Y) —
observation in the granularity &. Marker x denotes H(Z;|z) also has nearly the maximum mutual infor-
the probability of the noise-free DOA observation imation/(X; Z;). Hence we propose to use the entropy



difference H(Z}) — H(Z;|«) as an alternative to theof the sensor observation model averaged over all tar-
mutual informationI(X; Z;) for selecting the most get locations with local maximum likelihood. When
informative sensor. Formally, the entropy based senghe entropy of the sensor observation modg|Z;|x)

selection heuristic is as follows. changes slowly with the target locatian H(Z;|x) can
1) compute the entropy differendé(Zy)— H(Z;|&) reasonably approximatl (Z;X).
for the set of candidate sensafs Since H(Z?Y) and H(Z;|x) can reasonably approxi-
2) select sensar such that mateH (Z,;) andH (Z;| X)) respectively, the entropy dif-
. Y . ferenceH (ZY) — H(Z;|&) can reasonably approximate
t= argﬂﬂe%x(H(Zi) - H(Zi|z)) . the mutual information (X; Z;) = H(Z;)— H(Z;| X).

, . e Such approximation is very close whel(Z;|z) is
We will see that our sensor selection heuristic is com- .
) . . __small relative toH (Z7) and the entropy of the sensor
putationally much simpler than the mutual information . .
based sensor selection in Subsec. llI-E observatlon_ model (Z;|z) change_s slowly with the
target locatione. Thus the entropy differencH (Z7) —
H(Z;|x) sorts sensors into approximately the order of
C. Relation to Mutual Information the mutual information/(X;Z;) . As a result, the
In this subsection, mathematical analysis reveals tisgtnsor with the maximum entropy differene& Z7) —
the entropy differenceH (ZY) — H(Z;|&) can rea- H(Z;|z) probably also has the maximum mutual infor-
sonably approximate the mutual informatiéX ; Z;). mationI(X; Z;). Thus the entropy differencH (Z7) —
As a result, it is reasonably effective to use the el (Z;|x) is a reasonable alternative to the mutual infor-
tropy differenceH (Z}) — H(Z;|z) to select the sensormation I(X; Z;) for sensor selection. The correlation
with the maximum mutual informatiod(X; Z;). The between the entropy differendé(Z}) — H(Z;|x) and
mutual information(X; Z;) has another expressionmutual information/(X; Z;) will be further explored
namely,H(Z;) — H(Z;| X ). We will show thatH (Z}) using simulations in Subsec. IlI-D.
and H(Z;|x) can reasonably approximaté(Z;) and

H(Z;|X) respectively. o . -
H(Z,) is the entropy of the predicted sensor obI-D' Validation of Sensor Selection Heuristic

servation distributionp(z;) = p(z;|x)p(x). The pre- This subsection evaluates our sensor selection heuris-
dicted sensor observation distributip(z;) becomes the tic relative to the mutual information based sensor selec-
noise-free sensor observation distributip(e}) when tion using simulations. The Gaussian noise model has
the sensor observation modglz;|z) is deterministic been widely assumed for sensor observations in many
without any uncertainty. The uncertainty in the senstfcalization and tracking algorithms, e.g., the Kalman
observation modep(z;|z) makes the predicted sensofilter [16]. As a starting point, we assume the Gaussian
observation entropyH (Z;) larger than the noise-freesensor observation models in the evaluative simulations
sensor observation entrops{ (ZY). When the sensor for simplicity. The simple Gaussian sensor observation
observation modep(z;|z) has only a small amountmodels assumed here are not accurate especially when
of uncertainty, the predicted sensor observation entrop§nsors are very close to the target. To avoid the problem
H(ZY) closely approximates the noise-free sensor obf the over-simplified sensor observation models in the
servation entropyH (Z;). simulations, we only analyze sensors with some mid-
H(Z;|X) is actually the entropy of the sensor obseflle distance range to the target. The heuristic will be

vation model averaged over all possible target locatior@yaluated further under more realistic sensor observation
models in the future.

H(Z)|X)=— /p(a:, z;) Inp(z;|x)dxdz; Four scenarios of sensor selection for localization have
been studied. Three of them involve DOA sensors, range

:/p(a:){—/p(zi]w)lnp(zi]a:)dzi}da: sensors, and time-difference-of-arrival (TDOA) sensors

exclusively as shown in Fig. 3, Fig. 4, and Fig. 5

:/p(a:)H(Zi]a:)da: . respectively. In each of these scenarios, 500 candidate

sensors of different combination of location and observa-

When p(x) is a single-modal distributionf/ (Z;|z) is tion standard deviation are considered. Another scenario
defined in Eq. (8), which is the entropy of the sensamvolves all these three types of sensors mixed together
observation model for the most likely target locatioas shown in Fig. 6. In this scenario, we have considered
estimatez. When p(x) is a multi-modal distribution, 100 candidate sensors with randomly assigned observa-
H(Z;|z) is defined in Eqg. (9), which is the entropytion type, location, and observation standard deviation.
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In every sensor selection scenario, both the entropy
differenceH (Z})— H(Z;|&) and the mutual information
I(X; Z;) are evaluated and compared for all candidate
Sensors.

In the left sub-figures of Fig. 3, Fig. 4, Fig. 5, and )
Fig. 6, the image color depicts the prior target location . S
distribution p(x). The subset of the state space of the ERE
target locationX' with the non-trivial probability density Fig. 5. Scenario of sensor selection for localization uslfizOA
is enclosed by the solid rectangle. The true target locatigshsors exclusively.
is denoted by market-. Sensors are uniformly randomly
placed outside the dotted rectangle. The squares, cCircles, ..
and triangles denote DOA sensors, range sensors, anc5a
TDOA sensors respectively. All TDOA observations are | B3
relative to a common reference sensor denoted by marker =g )
X . The size of the sensor marker in the left sub-figure of
Fig. 6 indicates the observation standard deviatighat el e,
is randomly chosen to be 2, 4, 8, 16, or 32. The right e e
sub-figures of Fig. 3, Fig. 4, Fig. 5, and Fig. 6 shovl\:/ig 5
the plot of the mutual informatiod(X; Z;) vs entropy ¢engors,
difference H(Z}) — H(Z;|x) of all candidate sensors.

Each marker denote§H (Z)) — H(Z;|z),1(X; Z;))
pair evaluated for one candidate sensois the standard difference H(Z}) — H(Z;|&) selected by the heuristic
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information(X; Z;). The larger is the mutual informa-
tion I(X; Z;) , the more consistent will be the decision
between these two sensor selection criterion. Only when
the mutual information/(X; Z;) is very small, such
correlation starts to show small dispersion as shown in
Fig. 4 and Fig. 5. A sensor observatidy with very
small mutual information with the target locatioX is
expected to contribute very small amount of uncertainty
reduction to the the target location distribution.

E. Complexity of Sensor Selection Heuristic

In this subsection, we analyze the computational com-
plexity of our sensor selection heuristic and compare it
to that of the mutual information based sensor selection.
The computational complexity of these two sensor se-
lection criterion depends on the number of dimensions
of the target locationX and the sensor observation
Z;. We use the DOA sensor based three-dimensional
target localization and tracking as an example to compare
the computational complexity of these sensor selection
criterion. The target locationX is three-dimensional.
Both the noise-free DOA observatidi; and the noisy

In all sensor selection scenarios, the entropy diffeDOA observationZ; are two-dimensional. We assume
enceH(Z}) — H(Z;|z) correlates very well with the that all random variables are discretized for numerical
mutual information/ (X ; Z;) . Thus, the entropy differ- computation. Specifically, the three-dimensional target
enceH(Z}) — H(Z;|z) can sort all candidate sensor¢ocation subspace with non-trivial probability density is
into nearly the same order as the mutual informatiatiscretized into a grid ofi x n x n. The scope of DOA
I(X; Z;) does. The sensor with the maximal entropgbservations with non-trivial probability density is also



discretized into a grid of, x n. We assume there arewithin the parallelogram with uniform probability. As
K candidate sensors for selectidi. is usually a small illustrated in Fig. 7, the geometry of the parallelogram
number relative ton. is defined by three parameters, namelyp andc. Pa-
Our sensor selection heuristic evaluates the entrometera is the variation scope of the entropy difference
differenceH (Z))— H(Z;|¢) of all candidate sensors forH(Z}) — H(Z;|x) of the candidate sensors considered
selection and then selects the sensor with the maximimthe current selection decision-making. Parameter
entropy difference. As shown in Subsec. lllsBz)) can indicates the variation scope of the mutual information
be computed fronp(z) with costO(n?). As shown in 1(X;Z;) of the candidate sensors considered in the
Eq. (3), H(Z}) can be computed from(zY) with cost current selection decision-making. Paramétdescribes
O(n?). As shown in Eq. (8) and (9)H(Z;|&) can be the magnitude of dispersion of the correlation between
computed fromp(z;|2) with costO(n?). Thus, the cost the entropy differencéf (Z})— H(Z;|z) and the mutual
to compute the entropy differendé(ZY)— H(Z;|x) for informationl(X; Z;). We choose this dispersion model
one candidate sensor 3(n?). Thus, the total cost for for simplicity. As the first order approximation, this
our heuristic to select one out & candidate sensors isdispersion model does capture the major features of the
O(n?). correlation dispersion revealed by simulations in Subsec.
The mutual information based sensor selection evdll-D, and help to reveal some major characteristics of
uates the mutual informatioh(X; Z;) of all candidate the impact of the correlation dispersion on the perfor-
sensors for selection and then select the one with thi@nce of our sensor selection heuristic.
maximum mutual information. As shown in Eq. (4), the
mutual information/ (X; Z;) can be directly computed 2
from p(z) and p(z;|x) with cost of O(n%). Thus, the
total cost to select one out dk candidate sensors is
O(n’). As we mentioned early in Subsec. Ill-A, the com-
putational cost of mutual informatioh X ; Z;) could be
reduced in some special scenarios. In general, however,
our sensor selection heuristic is computationally much
simpler than the mutual information based approaches.
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o

As pointed out in Subsec. IlI-D, there is a little disfig. 7.  Correlation dispersion between the entropy difieee
persion in the correlation between the entropy differend&Z7) — H(Z:|&) and the mutual informatiodf(X; Z;) modeled
H(ZY)—H(Z;|&) and the mutual informatiof( X ; Z;) by a uniform distribution bounded by a parallelogram.
when the mutual information is very small. Such dis-
persion can be seen in the convex part of the plot of Fig. 7 shows a typical dispersion scenario where
the entropy differencéd (Z}) — H(Z;|x) vs the mutual no candidate sensor is very informative. The mutual
information I(X; Z;) in Fig. 4 and Fig. 5. Very small information I(X; Z;) of the candidate sensors varies
mutual information/(X; Z;) indicates that the sensorfrom 0 bit to 1 bit. Correspondingly, the entropy dif-
observationZ; on average can only reduce very littlference H(Z)) — H(Z;|z) of the candidate sensors
uncertainty of the target locatioX . Thus, there might changes from—2 bit to 0 bit. The disperse of the
be a discrepancy in selection decision between our sensoirelation betweert (ZY) — H(Z;|¢) and the mutual
selection heuristic and the mutual information basédformation I(X; Z;) is 0.1 bit. Given the above dis-
sensor selection if and only if no candidate sensor is vaegrsion scenario, we rui0,000 simulations. In each
informative. However, our simulations have shown thaimulation, 8 candidate sensors randomly assume their
there is very little degradation in selection decision madé/ (ZY)—H(Z;|x), I(X; Z;)) pairs within the specified
by our sensor selection heuristic even if no candidadéspersion range. In each simulation, we identify both
sensor is very informative. the sensor with the maximum entropy difference and the

We model the dispersion of the correlation betweesensor with the maximum mutual information. Fig. 7 also
the entropy differencd(ZY) — H(Z;|x) and the mu- shows one particular realization of the simulations. Eight
tual information/(X; Z;) using a uniform distribution x markers are uniformly randomly distributed inside
bounded by a parallelogram where a candidate senite parallelogram denote candidate sensors. Our sensor
could assume anyH(Z}) — H(Z;|z),I(X; Z;)) pair selection heuristic selects the rightmost sensor that is
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enclosed by a square marker. The mutual informatiém remove the randomness in the error measures of the

based approaches select the uppermost sensor thatoisterior target location estimation is to use the lower

enclosed by a diamond-shaped marker. The rightmdstund of the posterior localization error to compare

sensor happens also to be the uppermost sensor in thes localization capability of two sensor networks with

simulation. different deployment geometry. The CRB is widely used
For the dispersion shown in Fig. 7, wi#1.8% chance, in analysis of the lower bound of unbiased estimators

the sensor selected by our sensor selection heuristic disg], [18], [19]. The minimum covariance matrix of the

has the maximum mutual information. Even when oyosterior target location distribution is the CRB if the

sensor selection heuristic fails to select the sensor of lagget location estimation is unbiased,

maximum mutual information, the mutual information of

the selected sensor is on average only abd26 bit less COV(X|z;,1 <i < N)

than the maximum mutual information. On average, the > 1

mutual information of the sensor selected by our sensor ~ — —E(0?[lnp(z;,1 < i < Nlx)]/0x?) ’

s_elect|on heuristic is ab_00t026>< (1_87.'8%) - [.)'0032 where E(-) is expectation w.r.t. the sensor observation

bit less than the maximum mutual information when

- S . modelsp(z;,1 < i < N|x). As we pointed out in Sec.
there is dispersion in the correlation between the entroHyOnI scalar measures of the estimation error can be
differenceH (Z})— H(Z;|x) and the mutual information y

) ... . directly sorted into an order. Because the CRB is a matrix
I(X; Z;). Overall, our sensor selection heuristic intro- . .
. : . and not a scalar, the CRB can not be directly sorted into
duces very little degradation to the quality of the sensor . L
- : . —any order. The CRB of the target location estimation
select decision even when no candidate sensor is ver . )
. . was converted into the RMSE of the target location
informative. o . o
estimation to compare the localization capability of mul-
tiple sensor networks of different deployment geometry
in [20]. Because the covariance matrix does not fully
In Sec. lll, we have described a computationally effdescribe a distribution, the conversion from the CRB
cient strategy to select the most informative sensor froi the RMSE can not be accurate when the distribution
a given a sensor network deployment. In this sectioitself is unknown. We choose the minimum entropy of
we describe a strategy of sensor placement to minimigge posterior target location distribution over the lower
the localization uncertainty given the region where thsound of the RMSE of the posterior target location
target needs to be localized and tracked. Subsec. Bbistribution to compare the localization capability of
A describes a method to compute the posterior targifferent sensor network deployment because the entropy
location distribution with the minimum entropy giverhas deep roots in the well-established information theory.
a sensor placement geometry. Subsec. IV-B uses thes shown in Eq. (3), the entropy of the posterior target
minimum entropy of the posterior target location distrilpcation distributionH (X |z;,1 <4 < N) is a function
bution to characterize the dependency of the localizatigh sensor observations;, 1 < i < N. Formally,
uncertainty on the sensor placement geometry and the
sensor observation type. Such dependency characteristics H(X|z;,1 <i < N) = g(21,...,2n) , (10)
provide guidance to choose the optimal sensor placement

geometry to minimize the localization uncertainty in ¥/here g(-) is a complex multi-variate function. Let
given region. Hyin be the minimum entropy of the posterior target

location distribution. We can find ouf,,,;,, by searching
throughout the joint state space of sensor observations
Zi, 1 < ? < N:

IV. STRATEGY FORSENSORPLACEMENT

A. Min-Entropy Location Distribution

Given the deployment ofV sensors to localize a
target at locationx!, the estimation error in the posterior Hpin = . IlgigNg(Zh I
target location distributiomp(x|z;,1 < i < N) depends v (11)
on the sensor observation values1 < i < N as =9(21,---,2n)
shown in Eq. (1), (2), and (3). In other words, giveyhere 2,,1 < i < N is the sensor observation that
the same senor network deployment and the same timimizes entropy of the posterior target location dis-
target locationz®, all three estimation error measureyipution. If the partial derivatives ofy(-) relative to

namely the RMSE, the covariance, and the entropy 1 <; < N are well defined, Eq. (11) implies that
of the posterior target location, can vary greatly with

different realization of the sensor observation. One way 09(21,...,2N)/02; =0, 1<i< N . (12)



If the noise-free observation is a critical point of the sethat our method to compute the min-entropy posterior

sor observation model(z1,...,zy|x) and maximizes target location distribution is valid.
p(z1,...,2zN|x), then
Op(2y,...,z2\|x)/0z; =0, 1<i<N, , (13) - O I B

We can prove that the min-entropy sensor observation is
the noise-free sensor observation,

100 A 5|

2i=2,1<i<N . 14
(2

o
50 100 150 250 300 -5 0 20 25
x

5 10 15
Element of CRB

if the noise-free observation is a critical point of the sen-
sor observation model(z1, ..., zy|x) and maximizes Fig. 8. Comparison of the BB with the CRB in localization wgin
p(z1,...,2zn|x). Detail of the proof is in appendix |. TDOA sensors.

Condition in Eqg. (13) can be satisfied in most of the
currently used sensor observation models.

Given the sensor network deployment geometry and
the true target locatior:!, the noise-free sensor obser-
vationz},1 <i < N can be computed according to Eq. ..
(6). After the noise-free sensor observation is computed, ;
we can compute the min-entropy posterior target location - F
distribution as

300

© BB, VSCRB_

+ BB _vsCRB
W W

250 1 BExy Vs CRBxy

50 100 150 200 250 300 5 0 15 20 25
X

5 10
Element of CRB

p(x|z],...,zN) =p(2],..., zx[T)p(®) | Fig. 9. Comparison of the BB with the CRB in localization gsin

where p(x) is the prior target location distribution,"2"9¢ SENSors:
The minimum entropyH i, is simply the entropy of
p(x|zY,...,z)). We can also compute the covariance

matrix of the min-entropy posterior target location disB' Effects of Sensor Placement Geometry

tribution, In this subsection, we use the minimum entropy of
v v the posterior target location distribution to characteriz
COV(X|z1, ..., 2N) the dependency of the localization uncertainty on the
:/(m — B(x))(x —E(-’E))Tp(m|z¥7---727v)d$ , sensor network deployment geometry and the sensor

observation type through simulations. We define the
where T' is the transpose operatoF/(-) is expecta- coverage of a sensor network for localization as the
tion with respect to the min-entropy posterior targetgion where the target can be relatively accurately lo-
location distribution. We name such covariance matroated by the sensor network. The localization uncertainty
the Bayesian lower bound (BB) of the target locatiooharacteristics obtained in this section provides guidanc
estimation. to identify the coverage of sensor networks and to deploy
We compare the BB to the CRB through two simsensor networks for the optimal localization accuracy
ulations of two-dimensional localization using TDOAN a given region. We have considered three types of
sensors and range sensors as shown in Fig. 8 and fprmation provided by sensor observations, including
9 respectively. For simplicity, we assume the GaussidOA, the range to the target, and the direction-of-
distribution for all TDOA and range observations. Tharrival (DOA) of the target signal.
standard deviationr = 6 time units is assumed for In simulations as shown in Fig. 10, Fig. 11, Fig. 12,
TDOA observations. The standard deviatien = 4 and Fig. 13, we consider two-dimensional localization
distance units is assumed for range observations. ugsing a small number of sensors with Gaussian observa-
the left sub-figures of Fig. 8 and Fig. 9, the imag#don uncertainty for simplicity. Given a sensor network
color depicts 9 posterior target location distributions afeployment geometry, we consider the localization error
the minimum entropy. Both TDOA sensors and randewer bound at many different locations. The localization
sensors are denoted by squares. The right sub-figuregwbr lower bound is quantified using the minimum
Fig. 8 and Fig. 9 plot the elements of the BB matrix ventropy of the posterior target location distribution. The
the corresponding element of the CRB matrix. In botspatial variation of the localization error lower bound
simulations, the BB equals the CRB element to elemeiridicates where localization is more accurate and where
The consistency between the BB and the CRB indicatest. The left sub-figures of Fig. 10, Fig. 12, and Fig.
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13, and both sub-figures of Fig. 11, are the map views * o " 2.l% - 2 50
of the spatial variation of the localization error lower =
bound. Sensors are denoted by square markers. The righi
sub-figures of Fig. 10, Fig. 12, and Fig. 13 show the
spatial variation of the localization error lower bound in B %o Looo, |0
detail along profilesA B andC D that are defined in the : o
corresponding left sub-figure. '

ioo 150 200 250 300

>200 x of AB

>

150

Fig. 13. Spatial variation of localization uncertainty kembound
T of a DOA sensor network.

£ o (e}
g8 %o 50°

o
6
w °+++++++°

100 150 200 250 300
x of AB

. — localization as shown in the right sub-figure of Fig.
| pcog L] oo 11. The minimum entro lues in the right sub-fi
£, . . . py values in the right sub-figure
L Ee of Fig. 11 are converted from the CRB of the AML
algorithm[22]. Assuming the AML based posterior target
Fig. 10. Spatial variation of localization uncertainty lembound location estimation is Gaussian, the conversion follows
of a TDOA sensor network. Hpin = 1+1n(270,03), whereo, andoy, are the square
roots of the two eigen values of the CRB matrix. This
result is consistent with the early findings of the convex
= [N hull characteristics of TDOA based localization in [23].
As shown in Fig. 12, in contrast to the coverage of
the TDOA sensor networks, the coverage of the range
sensor networks not only includes the area inside the
convex hull of sensors, but also extends outward to the
o area enclosed by the arcs. These arcs have the convex
hull edges as diameters. In the right sub-figure of Fig.
Fig. 11. Spatial variation of localization uncertainty lembound 12, markeH_ denotes the re|ative|y small lower bound of
|°f an unevenly placed TDOA sensors (left) and the AML baseQl 47 ation error inside the coverage of the range senor
ocalization (right). . . ) . ) -
networks. This result is consistent with the localization
error characteristics of range sensors through the CRB

100 150 200 250 300 100 150 200
x xof CD

C

Y-axis in meter
2
°

8 8 8

8

100| [ 20
100 150 200 250 300 X-axis in meter

o T analysis in [24]. When four range sensors are unevenly
gé placed, our simulation indicates that the sensor network
§7 Oo oO . . . .
S IR P PT LAl | coverage is still enclosed by the arcs associated with the
x of AB
convex hull of sensors.
+ Inside
F] o o o . . . . .
"8 Outside
C 2% As shown in Fig. 13, the localization uncertainty
57.5] [e] o] . . . . . . .
5 characteristics using DOA information is very different
100 150 200 250 300 . . .
from those using TDOA or range information. Although
Fig. 12. Spatial variation of localization uncertainty kembound a target inside the convex hull of DOA sensors is still
of a range sensor network. more accurately located than a target far from any sensor,

the coverage of the DOA sensor networks is better

As shown in Fig. 10, if localization is essentiallydescribed as the vicinity of individual DOA sensors. In
based on the TDOA information among all sensors, thige right sub-figure of Fig. 13, the DOA sensor locations
coverage is the region inside the convex hull of alire denoted by vertical bars. We can clearly see that
sensors used. In the right sub-figure of Fig. 10, masker the relatively small lower bound of localization error
denotes the relatively small lower bound of localizatiois near individual DOA sensors. In the simulation as
error inside the convex hull coverage. The convex hudhown in Fig. 13, the standard deviatien= 180/r +
coverage is true no matter whether TDOA sensors d€r degrees is assumed for all DOA observations,
evenly placed or not as shown in the left sub-figure @fherer is the distance between the target and the DOA
Fig. 11. The near-field AML algorithm only indirectly sensor. Wherr changes with- differently, simulations
and patrtially relies on the time difference informatioimdicate that the coverage of a DOA sensor network is
between sensors for localization [21]. However, the coatill the vicinity of individual sensors, and is similar to
vex hull coverage still holds even for the AML basethat shown in Fig. 13.
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V. CONCLUSION Notice

In this paper, we have treated two related problems, ., \)=Cp(z,...,zx|x)p(x),1 <i< N |
in sensor networks for target localization and tracking,
namely, the sensor selection problem and the sen¥diere C' is a normalization constant. Thus, Eq. (15)
placement problem in a coherent and unified framewoP@comes
based on Bayesian information fusion and information Op(21,... 2x|®) /02 =0, 1<i <N . (16)
theory. We have described a sensor selection heuristic
that approaches the quality of the sensor selection ddéithe noise-free observation is a critical point of the sen-
sion of the mutual information criteria but has much lessor observation model(z;, ..., zy|x) and maximizes
computational complexity than the mutual informatiop(z1, ..., zn|x), then
criteria. Our sensor selection heuristic is more suitable t v v .
sensor networks with moderate computing powers than Op(z1,...,2N[@)/02i =0, 1 <i< N,
the mutual information based sensor selections. We halien one solution to Eq. (16) is
also described a method to compute the posterior target R _
location distribution with the minimum entropy. Using Zi=2z{, 1<i<N .
the minimum entropy of the posterior target locatiofrhjs js Eq. (14).
estimation, we have characterized the localization unceiroof is complete.
tainty of sensor networks with different placement geom-
etry and observation types. Such localization uncertainty
characteristics provide a strategy to optimize the sensor

network deployment geometry in order to achieve the NS Work is partially supported by NSF CENS pro-
optimal localization accuracy in a given region. gram under Cooperative Agreement CCR-0121778, NSF

grant EF-0410438, AROD-MURI PSU Contract 50126,
and UC-Discovery grant sponsored by ST Microelectron-
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