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Information-Theoretic Approaches for Sensor
Selection and Placement in Sensor Networks for

Target Localization and Tracking
Hanbiao Wang, Kung Yao, and Deborah Estrin

Abstract— In this paper, we describes the information-
theoretic approaches to sensor selection and sensor place-
ment in sensor networks for target localization and
tracking. We have developed a sensor selection heuristic
to activate the most informative candidate sensor for
collaborative target localization and tracking. The fusion
of the observation by the selected sensor with the prior
target location distribution yields nearly the greatest re-
duction of the entropy of the expected posterior target
location distribution. Our sensor selection heuristic is
computationally less complex and thus more suitable to
sensor networks with moderate computing power than
the mutual information sensor selection criteria. We have
also developed a method to compute the posterior target
location distribution with the minimum entropy that could
be achieved by the fusion of observations of the sensor
network with a given deployment geometry. We have found
that the covariance matrix of the posterior target location
distribution with the minimum entropy is consistent with
the Cramer-Rao lower bound (CRB) of the target location
estimate. Using the minimum entropy of the posterior
target location distribution, we have characterized the
effect of the sensor placement geometry on the localization
accuracy.

Index Terms— information theory, sensor selection, sen-
sor placement, sensor networks, target localization and
tracking.

I. INTRODUCTION

The emerging sensor networks could revolutionize a
wide range of applications including target localization
and tracking [1]. Multi-sensor data fusion is one of
the key technologies to exploit the huge potential of
sensor networks [2]. Information-theoretic concepts not
only provide guidance to minimize the consumption
of sensor resources for a given information gain re-
quirement through selective sensor activation but also
provide guidance to maximize the information gain of
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a given set of sensors through intelligent sensor con-
figuration. Information-theoretic sensor management has
been shown to be able to greatly improve the cost-
effectiveness of multi-sensor data fusion [3], [4], [5], [6],
[7], [8], [9], [10].

The existing information-theoretic sensor selection ap-
proaches are not optimized for computational complexity
required by the moderate/low computational powers of
sensor networks. In this paper, we describe a sensor
select heuristic that is nearly as effective as the mutual
information based sensor selection in the sense that
the selected sensor observation results in the maximum
average information gain. Our sensor selection heuristic
is computationally much less complex and thus more
suitable to sensor networks with moderate computing
power than the mutual information sensor selection cri-
teria. Much of the existing work on the information-
theoretic sensor configuration is mostly about adaptive
control of advanced sensors such as radars and cameras
[11], [12]. In this paper, we describe an information-
theoretic method to analyze the effect of the sensor
placement geometry on the posterior target localization
distribution that is produced by multi-sensor data fusion.
An earlier version of our sensor selection heuristic
has appeared in [9]. An earlier version of our sensor
placement strategy has apeared in [10]. In this paper, we
will discuss these two related problems in a coherent and
unified framework based on Bayesian information fusion
and information theory.

The rest of this paper is organized as follows. Sec. II
reviews the recursive Bayesian estimation for target lo-
calization and tracking and discusses different measures
of the estimation error of a target location distribution.
Sec. III describes our sensor selection heuristic and
compares it to the mutual information based sensor
selection. Sec. IV describes our information-theoretic
approach to analyze the effect of the sensor placement
geometry on localization accuracy. Sec. V concludes this
paper.



2 CENS TECHNICAL REPORT 52

II. DATA FUSION FORLOCALIZATION

In this section, we review the recursive Bayesian es-
timation for target localization and tracking and discuss
different measures of the target location estimation error.

In the recursive Bayesian estimation for target local-
ization and tracking [13], [14], both the sought target
location and the sensor observations are modeled as
stochastic processes, and the posterior target location
distribution conditioned on sensor observations is com-
puted recursively from additional sensor observations.
Let X andx denote the target location random variable
and its realization value respectively. LetZi and zi

denote the observation random variable of sensori and
its realization value respectively. The posterior target
location distribution is incrementally updated by one
sensor observation at a time,

p(x|z1, . . . ,zi+1)

=Cp(zi+1|x,z1, . . . ,zi)p(x|z1, . . . ,zi) ,

where C is a normalization constant. When
Z1, . . . ,Zi+1 are conditionally independent with
one another conditioned onX, The above equation is
simplified to

p(x|z1, . . . ,zi+1) = Cp(zi+1|x)p(x|z1, . . . ,zi) .

The incremental update of the target location distribu-
tion by a direction-of-arrival (DOA) sensor through the
recursive Bayesian estimation is illustrated in Fig. 1. The
left sub-figure of Fig. 1 shows the prior target location
distribution p(x|z1, . . . ,zi) denoted by the oval image.
The beam image originating from the DOA sensor is the
target location distribution based only on this sensor’s
observation,p(x|zi+1), which represents the new infor-
mation provided by this sensor. We have assume a Gaus-
sian DOA observation model with a standard deviation of
2 degrees. The right sub-figure of Fig. 1 shows the pos-
terior target location distributionp(x|z1, . . . ,zi,zi+1)
denoted by the round image. The true target location
is denoted by marker+. The posterior target location
distribution has much smaller estimation error than the
prior target location distribution.

One of the advantages of the recursive Bayesian
estimation is that we can stop updating the posterior
target location as soon as the estimation error is no
larger than allowed. There are several different measures
of the estimation error of the posterior target location
distribution. One estimation error measure is the root-
mean-square error (RMSE)

RMSE(X) =
√

E(‖x − xt‖2) , (1)

where xt is the true target location,E(·) is expec-
tation w.r.t. the posterior target location distribution
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Fig. 1. Incremental update of the target location distribution by a
DOA sensor denoted by the square through the recursive Bayesian
estimation.

p(x| . . . ,zi, . . .), ‖ · ‖ is the L2 norm. In practice, the
true target locationxt is usually unknown. In this paper,
we assume the target location estimation is unbiased,

xt = E(x) ,

where E(·) is expectation w.r.t.p(x| . . . ,zi, . . .). An-
other estimation error measure is the covariance matrix

COV (X) = E((x − E(x))2) , (2)

where E(·) is expectation w.r.t.p(x| . . . ,zi, . . .). Yet
another estimation error measure is the Shannon entropy
that measures the uncertainty of the posterior target
location distribution, [15],

H(X| . . . ,zi, . . .) = −E(ln p(x| . . . ,zi, . . .)) , (3)

where E(·) is expectation w.r.t.p(x| . . . ,zi, . . .). A
large entropy of the posterior target location distribution
indicates a large estimation error of the target location.

To sort posterior target location distributions in the
order of the estimation error, we need a scalar measure
of the estimation error. Since the covariance matrix
of the posterior target location distribution is a matrix
and not a scalar, it is not a proper measure to sort
the target location distributions. Both the RMSE and
the Shannon entropy are scalar and thus can be used
to sort posterior target location distributions. Because
the Shannon entropy is a core component of the well-
established information theory, we choose to use the
Shannon entropy to quantify the uncertainty reduction
(or information gain) of the target location distribution
due to the additional sensor observation. To be brief, we
will use the term entropy to denote the Shannon entropy
from now on.

III. SENSORSELECTION HEURISTIC

In this section, we describes our sensor selection
heuristic in detail. Subsec. III-A formulates the sensor
selection problem in the sensor networks for target local-
ization and tracking and reviews the mutual information
based sensor selection. Subsec. III-B defines our sensor
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selection heuristic. Subsec. III-C describes the relation
between the entropy difference used in our sensor selec-
tion heuristic and the mutual information. Subsec. III-D
validates our sensor selection heuristic using simulations.
Subsec. III-E compares the computational complexity of
our sensor selection heuristic to that of the mutual in-
formation based sensor selection. Subsec. III-F discusses
the potential discrepancy in selection decision between
our sensor selection heuristic and the mutual information
based sensor selection.

A. Sensor Selection Problem

A greedy strategy has been used for sensor selection
in sensor networks for target localization and tracking
[7], [8]. This strategy selects the currently unused sensor
whose observation is expected to result in the maxi-
mum entropy reduction of the posterior target location
distribution. The observation of the selected sensor is
incorporated into the target location distribution using
recursive Bayesian estimation [13], [14]. The greedy
sensor selection and the recursive information fusion
repeat until the entropy of the posterior target location
distribution is less than or equal to the desired level.
Thus the entropy of the target location distribution is
incrementally reduced to the desired level without con-
sumption of more sensor resources than necessary. The
core problem of the greedy sensor selection approach
is how to efficiently evaluate the expected entropy re-
duction attributable to each candidate sensor without
actually retrieving sensor data.

The sensor selection problem is formulated as follows.
Given

1) the prior target location distribution:p(x);
2) the set of candidate sensors for selection:S;
3) the locations of candidate sensors:xi,∀i ∈ S;
4) the observation models of candidate sensors:

p(zi|x),∀i ∈ S;
the objective is to find the sensorî whose observation
Z

î
minimizes the expected conditional entropy of the

posterior target location distribution,

î = arg min
i∈S

H(X |Zi) .

Equivalently, the observation of sensorî maximizes the
expected reduction of the target location entropy,

î = arg max
i∈S

(H(X) − H(X |Zi)) .

H(X) − H(X|Zi) is one expression ofI(X ;Zi), the
mutual information between the target locationX and
the predicted sensor observationZi,

I(X ;Zi) =

∫

p(x,zi) ln
p(x,zi)

p(x)p(zi)
dxdzi , (4)

where p(x,zi) = p(zi|x)p(x) and p(zi) =
∫

p(x,zi)dx. Thus the observation of sensorî maxi-
mizes the mutual informationI(X ;Zi),

î = arg max
i∈S

I(X ;Zi) . (5)

Sensor selection based on Eq. (5) is the maximum
mutual information criterion described in [7], [8]. The
target locationX could be three-dimensional. The sen-
sor observationZi could be two-dimensional (e.g. the
direction to a target in a three-dimensional space is two-
dimensional). ThusI(X;Zi) could be a complex inte-
gral in the joint state space(X,Zi) of five dimensions.
The computational complexity of evaluatingI(X;Zi)
could be more than that of the capability of the low-end
sensor nodes. If the observationZi is related to the target
locationX only through the sufficient statisticsZ(X),
then

I(X ;Zi) = I(Z(X);Zi) .

If Z(X) has fewer dimensions thanX, then
I(Z(X);Z i) is less complex to compute thanI(X ;Zi).
In the above special scenario,I(Z(X);Zi) has been
proposed to replaceI(X ;Zi) to reduce the complexity
of computing the mutual information in [7]. In this
paper, we describe an alternative entropy based sensor
selection heuristic. In general, the entropy based sensor
selection heuristic is computationally much simpler than
the mutual information based approaches. However, the
observation of the sensor selected by the heuristic would
still yield on average the greatest or nearly the greatest
entropy reduction of the target location distribution as
will be shown in Subsec. III-D.

B. Sensor Selection Heuristic

In our studies of sensor selection for localization,
we have observed that the reduction of the localization
uncertainty attributable to a sensor largely depends on
the difference of two quantities, namely, the entropy
of the noise-free sensor observation, and the entropy
of that sensor observation model corresponding to the
true target location. The noise-free sensor observation
assumes that no error is introduced into the sensor ob-
servation. The sensor observation model corresponding
to the true target location is the probability distribution
of the sensor observation conditioned on the true target
location. Loosely speaking, our sensor selection heuristic
selects the candidate sensor with the maximum entropy
difference described above.

Let Z
v
i denote the noise-free observation of sensor

i. BecauseZv
i assumes no randomness in the process

of observation regarding the target location,Z
v
i is a
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function of the target locationX and the sensor location
xi,

Z
v
i = f(X,xi) . (6)

In Eq. (6), because the target locationX is a ran-
dom variable, the noise-free sensor observationZ

v
i is

a random variable although the sensor locationxi is a
deterministic quantity. Since the noise-free sensor obser-
vation Z

v
i usually has less dimensions than the target

location X , the distribution of the noise-free sensor
observationZ

v
i is usually the geometric projection of

the target location distributionp(x) onto the observation
perspective of sensori,

P (Zv
i ≤ z

v
i ) =

∫

f(x,xi)≤z
v

i

p(x)dx , (7)

where the observation perspective of sensori largely
depends on the sensor locationxi.

In practice, the subset of the state space of the target
location X and the noise-free sensor observationZ

v
i

with the non-trivial probability density can be discretized
into a grid for numerical analysis. Any probability
density function value larger than a given threshold is
considered as non-trivial. The discrete representation of
p(zv

i ) can be computed as follows.
1) Let X be the set of the target location grid values

with the non-trivial probability density;
2) Let Z be the set of the noise-free sensor obser-

vation grid values of the non-trivial probability
density;

3) For each grid pointzv
i ∈ Z, initialize p(zv

i ) to
zero;

4) For each grid pointx ∈ X , determine the corre-
sponding grid pointzv

i ∈ Z using Eq. (6), and
update its probability asp(zv

i ) = p(zv
i ) + p(x);

5) Normalizep(zv
i ) to make the total probability of

Z to be1.
After the noise-free sensor observation distributionp(zv

i )
is computed, the noise-free sensor observation entropy
H(Zv

i ) can be computed using Eq. (3).
The numerical computation of the noise-free observa-

tion distribution p(zv
i ) for a DOA sensor is illustrated

in Fig. 2. In the left sub-figure of Fig. 2, the target
location distribution is denoted by the image color, and
the DOA sensor location is denoted by the square. The
subset of the target location state space with the non-
trivial probability density is discretized into a grid of
400×400. The true target location is denoted by marker
+. The right sub-figure of Fig. 2 shows the discrete
probability distribution of the DOA sensor’s noise-free
observation in the granularity of2o. Marker × denotes
the probability of the noise-free DOA observation in

the interval of [36o, 38o], which is the summation of
the probability of all target locations inside the sector
delimited by the36o line and the38o line in the left
sub-figure of Fig. 2.
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Fig. 2. A DOA sensor’s noise-free observation about the target
location.

The observation model of sensori is p(zi|x
t) when

the target is actually atxt. The sensor observation model
incorporates observation error from all sources, includ-
ing the noise corruption to the signal used to observe
the target, the signal modeling error in the estimation
algorithm used by the sensor, the inaccuracy of the
sensor hardware, and so on. The amount of uncertainty
in the sensor observation model may depend on the
target location. Since the true target location is unknown
during the process of target localization and tracking, we
have to use an estimated target location to approximate
the true target location in order to determine the sensor
observation model. For a single-modal target location
distributionp(x) that has a single peak, we can use the
maximum likelihood estimatêx of the target location to
approximate the true target location, and the entropy of
the approximate sensor observation model is

H(Zi|x̂) = −

∫

p(zi|x̂) ln p(zi|x̂)dzi . (8)

For a multi-modal target location distributionp(x) with
more than one peaks, namely,x̂

(m), m = 1, . . . ,M ,
the entropy of the observation model of sensori can
be approximated as a weighted average as follows

H(Zi|x̂) =

∑M
m=1 p(x̂(m))H(Zi|x̂

(m))
∑M

m=1 p(x̂(m))
, (9)

whereH(Zi|x̂
(m)) = −

∫

p(zi|x̂
(m)) ln p(zi|x̂

(m))dzi.
We have repeatedly observed that the incorporation of

the sensor observation with a larger entropy difference
H(Zv

i )−H(Zi|x̂) yields on average a larger reduction
in the uncertainty of the posterior target location distri-
bution. Thus, the entropy differenceH(Zv

i )−H(Zi|x̂)
can sort candidate sensors into nearly the same order
as the mutual informationI(X;Zi) . Specifically, the
sensor with the maximum entropy differenceH(Zv

i ) −
H(Zi|x̂) also has nearly the maximum mutual infor-
mationI(X ;Zi). Hence we propose to use the entropy
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differenceH(Zv
i ) − H(Zi|x̂) as an alternative to the

mutual information I(X ;Zi) for selecting the most
informative sensor. Formally, the entropy based sensor
selection heuristic is as follows.

1) compute the entropy differenceH(Zv
i )−H(Zi|x̂)

for the set of candidate sensorsS;
2) select sensor̂i such that

î = arg max
i∈S

(H(Zv
i ) − H(Zi|x̂)) .

We will see that our sensor selection heuristic is com-
putationally much simpler than the mutual information
based sensor selection in Subsec. III-E

C. Relation to Mutual Information

In this subsection, mathematical analysis reveals that
the entropy differenceH(Zv

i ) − H(Zi|x̂) can rea-
sonably approximate the mutual informationI(X ;Zi).
As a result, it is reasonably effective to use the en-
tropy differenceH(Zv

i )−H(Zi|x̂) to select the sensor
with the maximum mutual informationI(X;Zi). The
mutual informationI(X ;Zi) has another expression,
namely,H(Zi)−H(Zi|X). We will show thatH(Zv

i )
and H(Zi|x̂) can reasonably approximateH(Zi) and
H(Zi|X) respectively.

H(Zi) is the entropy of the predicted sensor ob-
servation distribution,p(zi) = p(zi|x)p(x). The pre-
dicted sensor observation distributionp(zi) becomes the
noise-free sensor observation distributionp(zv

i ) when
the sensor observation modelp(zi|x) is deterministic
without any uncertainty. The uncertainty in the sensor
observation modelp(zi|x) makes the predicted sensor
observation entropyH(Zi) larger than the noise-free
sensor observation entropyH(Zv

i ). When the sensor
observation modelp(zi|x) has only a small amount
of uncertainty, the predicted sensor observation entropy
H(Zv

i ) closely approximates the noise-free sensor ob-
servation entropyH(Zi).

H(Zi|X) is actually the entropy of the sensor obser-
vation model averaged over all possible target locations,

H(Zi|X) = −

∫

p(x,zi) ln p(zi|x)dxdzi

=

∫

p(x){−

∫

p(zi|x) ln p(zi|x)dzi}dx

=

∫

p(x)H(Zi|x)dx .

When p(x) is a single-modal distribution,H(Zi|x̂) is
defined in Eq. (8), which is the entropy of the sensor
observation model for the most likely target location
estimatex̂. When p(x) is a multi-modal distribution,
H(Zi|x̂) is defined in Eq. (9), which is the entropy

of the sensor observation model averaged over all tar-
get locations with local maximum likelihood. When
the entropy of the sensor observation modelH(Zi|x)
changes slowly with the target locationx, H(Zi|x̂) can
reasonably approximateH(Zi|X).

SinceH(Zv
i ) and H(Zi|x̂) can reasonably approxi-

mateH(Zi) andH(Zi|X) respectively, the entropy dif-
ferenceH(Zv

i )−H(Zi|x̂) can reasonably approximate
the mutual informationI(X ;Zi) = H(Zi)−H(Zi|X).
Such approximation is very close whenH(Zi|x̂) is
small relative toH(Zv

i ) and the entropy of the sensor
observation modelH(Zi|x) changes slowly with the
target locationx. Thus the entropy differenceH(Zv

i )−
H(Zi|x̂) sorts sensors into approximately the order of
the mutual informationI(X ;Zi) . As a result, the
sensor with the maximum entropy differenceH(Zv

i ) −
H(Zi|x̂) probably also has the maximum mutual infor-
mationI(X;Zi). Thus the entropy differenceH(Zv

i )−
H(Zi|x̂) is a reasonable alternative to the mutual infor-
mation I(X ;Zi) for sensor selection. The correlation
between the entropy differenceH(Zv

i ) − H(Zi|x̂) and
mutual informationI(X ;Zi) will be further explored
using simulations in Subsec. III-D.

D. Validation of Sensor Selection Heuristic

This subsection evaluates our sensor selection heuris-
tic relative to the mutual information based sensor selec-
tion using simulations. The Gaussian noise model has
been widely assumed for sensor observations in many
localization and tracking algorithms, e.g., the Kalman
filter [16]. As a starting point, we assume the Gaussian
sensor observation models in the evaluative simulations
for simplicity. The simple Gaussian sensor observation
models assumed here are not accurate especially when
sensors are very close to the target. To avoid the problem
of the over-simplified sensor observation models in the
simulations, we only analyze sensors with some mid-
dle distance range to the target. The heuristic will be
evaluated further under more realistic sensor observation
models in the future.

Four scenarios of sensor selection for localization have
been studied. Three of them involve DOA sensors, range
sensors, and time-difference-of-arrival (TDOA) sensors
exclusively as shown in Fig. 3, Fig. 4, and Fig. 5
respectively. In each of these scenarios, 500 candidate
sensors of different combination of location and observa-
tion standard deviation are considered. Another scenario
involves all these three types of sensors mixed together
as shown in Fig. 6. In this scenario, we have considered
100 candidate sensors with randomly assigned observa-
tion type, location, and observation standard deviation.
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In every sensor selection scenario, both the entropy
differenceH(Zv

i )−H(Zi|x̂) and the mutual information
I(X ;Zi) are evaluated and compared for all candidate
sensors.

In the left sub-figures of Fig. 3, Fig. 4, Fig. 5, and
Fig. 6, the image color depicts the prior target location
distribution p(x). The subset of the state space of the
target locationX with the non-trivial probability density
is enclosed by the solid rectangle. The true target location
is denoted by marker+. Sensors are uniformly randomly
placed outside the dotted rectangle. The squares, circles,
and triangles denote DOA sensors, range sensors, and
TDOA sensors respectively. All TDOA observations are
relative to a common reference sensor denoted by marker
×. The size of the sensor marker in the left sub-figure of
Fig. 6 indicates the observation standard deviationσ that
is randomly chosen to be 2, 4, 8, 16, or 32. The right
sub-figures of Fig. 3, Fig. 4, Fig. 5, and Fig. 6 show
the plot of the mutual informationI(X ;Zi) vs entropy
differenceH(Zv

i ) − H(Zi|x̂) of all candidate sensors.
Each marker denotes(H(Zv

i ) − H(Zi|x̂), I(X ;Zi))
pair evaluated for one candidate sensor.σ is the standard
deviation of the Gaussian observation model assumed for
candidate sensors.
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Fig. 3. Scenario of sensor selection for localization usingDOA
sensors exclusively.
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Fig. 4. Scenario of sensor selection for localization usingrange
sensors exclusively.

In all sensor selection scenarios, the entropy differ-
enceH(Zv

i ) − H(Zi|x̂) correlates very well with the
mutual informationI(X ;Zi) . Thus, the entropy differ-
enceH(Zv

i ) − H(Zi|x̂) can sort all candidate sensors
into nearly the same order as the mutual information
I(X ;Zi) does. The sensor with the maximal entropy
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Fig. 5. Scenario of sensor selection for localization usingTDOA
sensors exclusively.
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Fig. 6. Scenario of sensor selection for localization usingDOA
sensors, range sensors, and TDOA sensors together.

differenceH(Zv
i ) − H(Zi|x̂) selected by the heuristic

always has the maximum or nearly the maximal mutual
informationI(X ;Zi). The larger is the mutual informa-
tion I(X ;Zi) , the more consistent will be the decision
between these two sensor selection criterion. Only when
the mutual informationI(X;Zi) is very small, such
correlation starts to show small dispersion as shown in
Fig. 4 and Fig. 5. A sensor observationZi with very
small mutual information with the target locationX is
expected to contribute very small amount of uncertainty
reduction to the the target location distribution.

E. Complexity of Sensor Selection Heuristic

In this subsection, we analyze the computational com-
plexity of our sensor selection heuristic and compare it
to that of the mutual information based sensor selection.
The computational complexity of these two sensor se-
lection criterion depends on the number of dimensions
of the target locationX and the sensor observation
Zi. We use the DOA sensor based three-dimensional
target localization and tracking as an example to compare
the computational complexity of these sensor selection
criterion. The target locationX is three-dimensional.
Both the noise-free DOA observationZv

i and the noisy
DOA observationZi are two-dimensional. We assume
that all random variables are discretized for numerical
computation. Specifically, the three-dimensional target
location subspace with non-trivial probability density is
discretized into a grid ofn× n×n. The scope of DOA
observations with non-trivial probability density is also
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discretized into a grid ofn × n. We assume there are
K candidate sensors for selection.K is usually a small
number relative ton.

Our sensor selection heuristic evaluates the entropy
differenceH(Zv

i )−H(Zi|x̂) of all candidate sensors for
selection and then selects the sensor with the maximum
entropy difference. As shown in Subsec. III-B,p(zv

i ) can
be computed fromp(x) with costO(n3). As shown in
Eq. (3),H(Zv

i ) can be computed fromp(zv
i ) with cost

O(n2). As shown in Eq. (8) and (9),H(Zi|x̂) can be
computed fromp(zi|x̂) with costO(n2). Thus, the cost
to compute the entropy differenceH(Zv

i )−H(Zi|x̂) for
one candidate sensor isO(n3). Thus, the total cost for
our heuristic to select one out ofK candidate sensors is
O(n3).

The mutual information based sensor selection eval-
uates the mutual informationI(X ;Zi) of all candidate
sensors for selection and then select the one with the
maximum mutual information. As shown in Eq. (4), the
mutual informationI(X ;Zi) can be directly computed
from p(x) and p(zi|x) with cost of O(n5). Thus, the
total cost to select one out ofK candidate sensors is
O(n5). As we mentioned early in Subsec. III-A, the com-
putational cost of mutual informationI(X ;Zi) could be
reduced in some special scenarios. In general, however,
our sensor selection heuristic is computationally much
simpler than the mutual information based approaches.

F. Dispersion of Correlation with Mutual Information

As pointed out in Subsec. III-D, there is a little dis-
persion in the correlation between the entropy difference
H(Zv

i )−H(Z i|x̂) and the mutual informationI(X ;Zi)
when the mutual information is very small. Such dis-
persion can be seen in the convex part of the plot of
the entropy differenceH(Zv

i )−H(Z i|x̂) vs the mutual
information I(X;Zi) in Fig. 4 and Fig. 5. Very small
mutual informationI(X ;Zi) indicates that the sensor
observationZi on average can only reduce very little
uncertainty of the target locationX . Thus, there might
be a discrepancy in selection decision between our sensor
selection heuristic and the mutual information based
sensor selection if and only if no candidate sensor is very
informative. However, our simulations have shown that
there is very little degradation in selection decision made
by our sensor selection heuristic even if no candidate
sensor is very informative.

We model the dispersion of the correlation between
the entropy differenceH(Zv

i ) − H(Zi|x̂) and the mu-
tual informationI(X ;Zi) using a uniform distribution
bounded by a parallelogram where a candidate sensor
could assume any(H(Zv

i ) − H(Zi|x̂), I(X ;Zi)) pair

within the parallelogram with uniform probability. As
illustrated in Fig. 7, the geometry of the parallelogram
is defined by three parameters, namely,a, b and c. Pa-
rametera is the variation scope of the entropy difference
H(Zv

i ) − H(Zi|x̂) of the candidate sensors considered
in the current selection decision-making. Parameterc
indicates the variation scope of the mutual information
I(X;Zi) of the candidate sensors considered in the
current selection decision-making. Parameterb describes
the magnitude of dispersion of the correlation between
the entropy differenceH(Zv

i )−H(Zi|x̂) and the mutual
informationI(X ;Zi). We choose this dispersion model
for simplicity. As the first order approximation, this
dispersion model does capture the major features of the
correlation dispersion revealed by simulations in Subsec.
III-D, and help to reveal some major characteristics of
the impact of the correlation dispersion on the perfor-
mance of our sensor selection heuristic.
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Fig. 7. Correlation dispersion between the entropy difference
H(Zv

i ) − H(Zi|x̂) and the mutual informationI(X ; Zi) modeled
by a uniform distribution bounded by a parallelogram.

Fig. 7 shows a typical dispersion scenario where
no candidate sensor is very informative. The mutual
information I(X ;Zi) of the candidate sensors varies
from 0 bit to 1 bit. Correspondingly, the entropy dif-
ference H(Zv

i ) − H(Zi|x̂) of the candidate sensors
changes from−2 bit to 0 bit. The disperse of the
correlation betweenH(Zv

i ) − H(Zi|x̂) and the mutual
information I(X ;Zi) is 0.1 bit. Given the above dis-
persion scenario, we run10, 000 simulations. In each
simulation, 8 candidate sensors randomly assume their
(H(Zv

i )−H(Zi|x̂), I(X ;Zi)) pairs within the specified
dispersion range. In each simulation, we identify both
the sensor with the maximum entropy difference and the
sensor with the maximum mutual information. Fig. 7 also
shows one particular realization of the simulations. Eight
× markers are uniformly randomly distributed inside
the parallelogram denote candidate sensors. Our sensor
selection heuristic selects the rightmost sensor that is
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enclosed by a square marker. The mutual information
based approaches select the uppermost sensor that is
enclosed by a diamond-shaped marker. The rightmost
sensor happens also to be the uppermost sensor in this
simulation.

For the dispersion shown in Fig. 7, with87.8% chance,
the sensor selected by our sensor selection heuristic also
has the maximum mutual information. Even when our
sensor selection heuristic fails to select the sensor of the
maximum mutual information, the mutual information of
the selected sensor is on average only about0.026 bit less
than the maximum mutual information. On average, the
mutual information of the sensor selected by our sensor
selection heuristic is about0.026×(1−87.8%) = 0.0032
bit less than the maximum mutual information when
there is dispersion in the correlation between the entropy
differenceH(Zv

i )−H(Zi|x̂) and the mutual information
I(X ;Zi). Overall, our sensor selection heuristic intro-
duces very little degradation to the quality of the sensor
select decision even when no candidate sensor is very
informative.

IV. STRATEGY FOR SENSORPLACEMENT

In Sec. III, we have described a computationally effi-
cient strategy to select the most informative sensor from
a given a sensor network deployment. In this section,
we describe a strategy of sensor placement to minimize
the localization uncertainty given the region where the
target needs to be localized and tracked. Subsec. IV-
A describes a method to compute the posterior target
location distribution with the minimum entropy given
a sensor placement geometry. Subsec. IV-B uses the
minimum entropy of the posterior target location distri-
bution to characterize the dependency of the localization
uncertainty on the sensor placement geometry and the
sensor observation type. Such dependency characteristics
provide guidance to choose the optimal sensor placement
geometry to minimize the localization uncertainty in a
given region.

A. Min-Entropy Location Distribution

Given the deployment ofN sensors to localize a
target at locationxt, the estimation error in the posterior
target location distributionp(x|zi, 1 ≤ i ≤ N) depends
on the sensor observation valueszi, 1 ≤ i ≤ N as
shown in Eq. (1), (2), and (3). In other words, given
the same senor network deployment and the same true
target locationxt, all three estimation error measures,
namely the RMSE, the covariance, and the entropy
of the posterior target location, can vary greatly with
different realization of the sensor observation. One way

to remove the randomness in the error measures of the
posterior target location estimation is to use the lower
bound of the posterior localization error to compare
the localization capability of two sensor networks with
different deployment geometry. The CRB is widely used
in analysis of the lower bound of unbiased estimators
[17], [18], [19]. The minimum covariance matrix of the
posterior target location distribution is the CRB if the
target location estimation is unbiased,

COV (X |zi, 1 ≤ i ≤ N)

≥
1

−E(∂2[ln p(zi, 1 ≤ i ≤ N |x)]/∂x2)
,

whereE(·) is expectation w.r.t. the sensor observation
modelsp(zi, 1 ≤ i ≤ N |x). As we pointed out in Sec.
II, only scalar measures of the estimation error can be
directly sorted into an order. Because the CRB is a matrix
and not a scalar, the CRB can not be directly sorted into
any order. The CRB of the target location estimation
was converted into the RMSE of the target location
estimation to compare the localization capability of mul-
tiple sensor networks of different deployment geometry
in [20]. Because the covariance matrix does not fully
describe a distribution, the conversion from the CRB
to the RMSE can not be accurate when the distribution
itself is unknown. We choose the minimum entropy of
the posterior target location distribution over the lower
bound of the RMSE of the posterior target location
distribution to compare the localization capability of
different sensor network deployment because the entropy
has deep roots in the well-established information theory.

As shown in Eq. (3), the entropy of the posterior target
location distributionH(X|zi, 1 ≤ i ≤ N) is a function
of sensor observationszi, 1 ≤ i ≤ N . Formally,

H(X|zi, 1 ≤ i ≤ N) = g(z1, . . . ,zN ) , (10)

where g(·) is a complex multi-variate function. Let
Hmin be the minimum entropy of the posterior target
location distribution. We can find outHmin by searching
throughout the joint state space of sensor observations
zi, 1 ≤ i ≤ N ,

Hmin = min
zi,1≤i≤N

g(z1, . . . ,zN )

= g(ẑ1, . . . , ẑN ) ,
(11)

where ẑi, 1 ≤ i ≤ N is the sensor observation that
minimizes entropy of the posterior target location dis-
tribution. If the partial derivatives ofg(·) relative to
zi, 1 ≤ i ≤ N are well defined, Eq. (11) implies that

∂g(ẑ1, . . . , ẑN )/∂zi = 0, 1 ≤ i ≤ N . (12)
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If the noise-free observation is a critical point of the sen-
sor observation modelp(z1, . . . ,zN |x) and maximizes
p(z1, . . . ,zN |x), then

∂p(zv
1, . . . ,z

v
N |x)/∂zi = 0, 1 ≤ i ≤ N, , (13)

We can prove that the min-entropy sensor observation is
the noise-free sensor observation,

ẑi = z
v
i , 1 ≤ i ≤ N . (14)

if the noise-free observation is a critical point of the sen-
sor observation modelp(z1, . . . ,zN |x) and maximizes
p(z1, . . . ,zN |x). Detail of the proof is in appendix I.
Condition in Eq. (13) can be satisfied in most of the
currently used sensor observation models.

Given the sensor network deployment geometry and
the true target locationxt, the noise-free sensor obser-
vationz

v
i , 1 ≤ i ≤ N can be computed according to Eq.

(6). After the noise-free sensor observation is computed,
we can compute the min-entropy posterior target location
distribution as

p(x|zv
1, . . . ,z

v
N ) = p(zv

1 , . . . ,z
v
N |x)p(x) ,

where p(x) is the prior target location distribution.
The minimum entropyHmin is simply the entropy of
p(x|zv

1, . . . ,z
v
1). We can also compute the covariance

matrix of the min-entropy posterior target location dis-
tribution,

COV (X|zv
1, . . . ,z

v
N )

=

∫

(x − E(x))(x − E(x))T p(x|zv
1 , . . . ,z

v
N )dx ,

where T is the transpose operator,E(·) is expecta-
tion with respect to the min-entropy posterior target
location distribution. We name such covariance matrix
the Bayesian lower bound (BB) of the target location
estimation.

We compare the BB to the CRB through two sim-
ulations of two-dimensional localization using TDOA
sensors and range sensors as shown in Fig. 8 and Fig.
9 respectively. For simplicity, we assume the Gaussian
distribution for all TDOA and range observations. The
standard deviationσ = 6 time units is assumed for
TDOA observations. The standard deviationσ = 4
distance units is assumed for range observations. In
the left sub-figures of Fig. 8 and Fig. 9, the image
color depicts 9 posterior target location distributions of
the minimum entropy. Both TDOA sensors and range
sensors are denoted by squares. The right sub-figures of
Fig. 8 and Fig. 9 plot the elements of the BB matrix vs
the corresponding element of the CRB matrix. In both
simulations, the BB equals the CRB element to element.
The consistency between the BB and the CRB indicates

that our method to compute the min-entropy posterior
target location distribution is valid.
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Fig. 8. Comparison of the BB with the CRB in localization using
TDOA sensors.
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Fig. 9. Comparison of the BB with the CRB in localization using
range sensors.

B. Effects of Sensor Placement Geometry

In this subsection, we use the minimum entropy of
the posterior target location distribution to characterize
the dependency of the localization uncertainty on the
sensor network deployment geometry and the sensor
observation type through simulations. We define the
coverage of a sensor network for localization as the
region where the target can be relatively accurately lo-
cated by the sensor network. The localization uncertainty
characteristics obtained in this section provides guidance
to identify the coverage of sensor networks and to deploy
sensor networks for the optimal localization accuracy
in a given region. We have considered three types of
information provided by sensor observations, including
TDOA, the range to the target, and the direction-of-
arrival (DOA) of the target signal.

In simulations as shown in Fig. 10, Fig. 11, Fig. 12,
and Fig. 13, we consider two-dimensional localization
using a small number of sensors with Gaussian observa-
tion uncertainty for simplicity. Given a sensor network
deployment geometry, we consider the localization error
lower bound at many different locations. The localization
error lower bound is quantified using the minimum
entropy of the posterior target location distribution. The
spatial variation of the localization error lower bound
indicates where localization is more accurate and where
not. The left sub-figures of Fig. 10, Fig. 12, and Fig.
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13, and both sub-figures of Fig. 11, are the map views
of the spatial variation of the localization error lower
bound. Sensors are denoted by square markers. The right
sub-figures of Fig. 10, Fig. 12, and Fig. 13 show the
spatial variation of the localization error lower bound in
detail along profilesAB andCD that are defined in the
corresponding left sub-figure.
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Fig. 10. Spatial variation of localization uncertainty lower bound
of a TDOA sensor network.
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of an unevenly placed TDOA sensors (left) and the AML based
localization (right).
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As shown in Fig. 10, if localization is essentially
based on the TDOA information among all sensors, the
coverage is the region inside the convex hull of all
sensors used. In the right sub-figure of Fig. 10, marker+

denotes the relatively small lower bound of localization
error inside the convex hull coverage. The convex hull
coverage is true no matter whether TDOA sensors are
evenly placed or not as shown in the left sub-figure of
Fig. 11. The near-field AML algorithm only indirectly
and partially relies on the time difference information
between sensors for localization [21]. However, the con-
vex hull coverage still holds even for the AML based
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Fig. 13. Spatial variation of localization uncertainty lower bound
of a DOA sensor network.

localization as shown in the right sub-figure of Fig.
11. The minimum entropy values in the right sub-figure
of Fig. 11 are converted from the CRB of the AML
algorithm[22]. Assuming the AML based posterior target
location estimation is Gaussian, the conversion follows
Hmin = 1+ln(2πσaσb), whereσa andσb are the square
roots of the two eigen values of the CRB matrix. This
result is consistent with the early findings of the convex
hull characteristics of TDOA based localization in [23].

As shown in Fig. 12, in contrast to the coverage of
the TDOA sensor networks, the coverage of the range
sensor networks not only includes the area inside the
convex hull of sensors, but also extends outward to the
area enclosed by the arcs. These arcs have the convex
hull edges as diameters. In the right sub-figure of Fig.
12, marker+ denotes the relatively small lower bound of
localization error inside the coverage of the range senor
networks. This result is consistent with the localization
error characteristics of range sensors through the CRB
analysis in [24]. When four range sensors are unevenly
placed, our simulation indicates that the sensor network
coverage is still enclosed by the arcs associated with the
convex hull of sensors.

As shown in Fig. 13, the localization uncertainty
characteristics using DOA information is very different
from those using TDOA or range information. Although
a target inside the convex hull of DOA sensors is still
more accurately located than a target far from any sensor,
the coverage of the DOA sensor networks is better
described as the vicinity of individual DOA sensors. In
the right sub-figure of Fig. 13, the DOA sensor locations
are denoted by vertical bars. We can clearly see that
the relatively small lower bound of localization error
is near individual DOA sensors. In the simulation as
shown in Fig. 13, the standard deviationσ = 180/r +
0.2r degrees is assumed for all DOA observations,
wherer is the distance between the target and the DOA
sensor. Whenσ changes withr differently, simulations
indicate that the coverage of a DOA sensor network is
still the vicinity of individual sensors, and is similar to
that shown in Fig. 13.
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V. CONCLUSION

In this paper, we have treated two related problems
in sensor networks for target localization and tracking,
namely, the sensor selection problem and the sensor
placement problem in a coherent and unified framework
based on Bayesian information fusion and information
theory. We have described a sensor selection heuristic
that approaches the quality of the sensor selection deci-
sion of the mutual information criteria but has much less
computational complexity than the mutual information
criteria. Our sensor selection heuristic is more suitable to
sensor networks with moderate computing powers than
the mutual information based sensor selections. We have
also described a method to compute the posterior target
location distribution with the minimum entropy. Using
the minimum entropy of the posterior target location
estimation, we have characterized the localization uncer-
tainty of sensor networks with different placement geom-
etry and observation types. Such localization uncertainty
characteristics provide a strategy to optimize the sensor
network deployment geometry in order to achieve the
optimal localization accuracy in a given region.

APPENDIX I
PROOF OFEQ. (14)

According to Eq. (3) and (10),

g(z1, . . . ,zN )

= −

∫

p(x|z1, . . . ,zN ) ln p(x|z1, . . . ,zN )dx .

∂g(z1, . . . ,zN )/∂zi

= − ∂[

∫

p(x|z1, . . . ,zN )lnp(x|z1, . . . ,zN )dx]/∂zi

= −

∫

∂[p(x|z1, . . . ,zN ) ln p(x|z1, . . . ,zN )]/∂zidx

= −

∫

∂p(x|z1, . . . ,zN )/∂zi ln p(x|z1, . . . ,zN )dx

−

∫

∂p(x|z1, . . . ,zN )/∂zidx

= −

∫

∂p(x|z1, . . . ,zN )/∂zi(1 + ln p(x|z1, . . . ,zN ))dx

=0 .

Then, according to Eq. (12),
∫

∂p(x|ẑ1, . . . , ẑN )/∂zi(1 + ln p(x|ẑ1, . . . , ẑN ))dx

=0, 1 ≤ i ≤ N .

One way to satisfy the above equation is

∂p(x|ẑ1, . . . , ẑN )/∂ẑi = 0, 1 ≤ i ≤ N . (15)

Notice

p(x|z1, . . . ,zN ) = Cp(z1, . . . ,zN |x)p(x), 1 ≤ i ≤ N ,

where C is a normalization constant. Thus, Eq. (15)
becomes

∂p(ẑ1, . . . , ẑN |x)/∂zi = 0, 1 ≤ i ≤ N . (16)

If the noise-free observation is a critical point of the sen-
sor observation modelp(z1, . . . ,zN |x) and maximizes
p(z1, . . . ,zN |x), then

∂p(zv
1 , . . . ,z

v
N |x)/∂zi = 0, 1 ≤ i ≤ N ,

then one solution to Eq. (16) is

ẑi = z
v
i , 1 ≤ i ≤ N .

This is Eq. (14).
Proof is complete.
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