
JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 9, NO. 4, DECEMBER 2007 1

Lightpaths Routing for Single Link Failure Survivability
in IP-over-WDM Networks

Muhammad Javed, Krishnaiyan Thulasiraman, and Guoliang (Larry) Xue

Abstract: High speed all optical network is a viable option to sat-
isfy the exponential growth of internet usage in the recent years.
Optical networks offer very high bit rates and, by employing tech-
nologies like internet protocol over wavelength division multiplex-
ing (IP-over-WDM), these high bit rates can be effectively utilized.
However, failure of a network component, carrying such high speed
data traffic can result in enormous loss of data in a few seconds
and persistence of a failure can severely degrade the performance
of the entire network. Designing IP-over-WDM networks, which
can withstand failures, has been subject of considerable interest in
the research community recently. Most of the research is focused
on the failure of optical links in the network. This paper addresses
the problem of designing IP-over-WDM networks that do not suf-
fer service degradation in case of a single link failure. The paper
proposes an approach based on the framework provided by a re-
cent paper by M. Kurant and P. Thiran. The proposed approach
can be used to design large survivable IP-over-WDM networks.

Index Terms: Internet protocol over wavelength division multi-
plexing (IP-over-WDM), lightpath routing, optical networks, sur-
vivability.

I. INTRODUCTION

Developments in the wavelength division multiplexing

(WDM) technology have made it possible to effectively uti-

lize the huge bandwidth offered by optical networks. One such

development is the ability to implement internet protocol (IP)

directly over the optical network using IP routers and optical

crossconnects (OXC). This combination allows a more flexible

use of optical networks, which were initially limited to point-

to-point communication. Since most of the current end user

communications are based on the transmission control protocol

(TCP)/IP, the option of implementing IP directly over the opti-

cal network has attracted significant interest from the research

community and such networks are commonly referred to as IP-

over-WDM networks.

A commonly proposed method of implementing IP-over-

WDM is to embed an IP topology, referred to as logical topol-
ogy, in a physical WDM topology, commonly called physical
topology. The embedding involves finding a lightpath for an IP

(logical) link in the physical topology, which connects the two

end points of the logical link [1]. A lightpath is an all optical

path established by the allocation of a wavelength between a

source and a destination. A lightpath, once established, does not

require processing or buffering at intermediate nodes and quite

possibly no intermediate optical-electrical conversions [1]. Usu-

Manuscript received May 16, 2007.

M. Javed and K. Thulasiraman are with the Department of Computer Science
at University of Oklahoma, Norman, OK, email: { javed, thulasi}@ou.edu.

G. L. Xue is with School of Computing and Informatics at Arizona State Uni-
versity (ASU), email: xue@asu.edu.

ally a single fiber carries multiple lightpaths and all of them get

disconnected if the fiber carrying them fails. Even a single fiber

failure can result in enormous loss of data, usually in the order

of gigabits per second [2]. Therefore, the entire network may

suffer severe degradation of service if the failure persists for a

longer duration.

Unfortunately, fiber failures are very common and are mainly

due to fiber cuts [3]. Frequent failures in optical networks de-

mand mechanisms that would allow the network to tolerate such

failures. A network capable of surviving single or multiple fail-

ures is usually referred to as “survivable”. There are two widely

discussed methodologies for providing such capability; protec-

tion and restoration. Protection requires pre-computed alternate

paths for the failed components and restoration requires compu-

tation of alternate paths after the failure has occurred. Protec-

tion provides very fast recovery time but spare capacity must be

reserved when network is being designed, which makes the net-

work less efficient in terms of capacity utilization. Restoration

is generally slow but does not require dedicated capacity at the

design time. Upon failure of a network component (link, router,

or OXC), a restoration scheme finds alternate paths in the spare

capacity of the network. The choice between using protection

or restoration, to make the network survivable, largely depends

upon the desired recovery speed, cost involved in terms of spare

capacity and equipment dedication, and the network layer be-

ing considered [4]. Some networks may even implement both

protection and restoration strategies but at different network lay-

ers [4].

In IP-over-WDM networks survivability can be provided at

the WDM layer (protection) or at the IP layer (restoration) [2].

At WDM layer, survivability is provided by establishing backup

lightpaths for the primary (or working) lightpaths, which do not

use any of the fibers that are on the paths used by the primary

lightpaths. The traffic on the primary lightpath is always routed

on its corresponding backup lightpath. This may require invest-

ment in installation of additional fibers to provide diverse routes.

To make the network more capacity efficient, a single backup

lightpath may be shared by several primary lightpaths (which

are not expected to fail simultaneously). However, providing

diverse routes may be difficult and expensive due to geograph-

ical and right of way constraints. Providing survivability at the

IP layer does not require dedicated backup lightpaths. Instead

the network is provisioned with some additional capacity, and

backup paths are found for the failed lightpaths within this addi-

tional capacity at the time of failure. Both protection and restora-

tion mechanisms have the capability to make a network surviv-

able but it is not clear which would be a better choice [2]. This

paper focuses only on the protection strategies implemented at

the IP layer.

1229-2370/07/$10.00 c© 2007 KICS

2 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 9, NO. 4, DECEMBER 2007

Fig. 1. Illustration of mapping and survivability: (a) Logical topology, (b)
physical topology, (c) an unsurvivable mapping, and (d) a survivable
mapping.

In IP-over-WDM networks, IP (logical) links are embedded

in the physical WDM topology as lightpaths. When a network

component fails, all the lightpaths passing through this compo-

nent are disrupted. The IP routers adjacent to the failed com-

ponent can detect the failure and initiate the protocol to find al-

ternate routes for the failed lightpaths. These routers will find

alternate routes, if the logical topology stays connected after the

failure. If the failed network component is a link and the logical

topology remains connected after the failure, such an embedding

of logical links in the physical topology is called link-survivable
mapping. Similarly, if the failed component is an IP router or

an OXC (or simply node failure) and the logical topology re-

mains connected, such a embedding is called node-survivable
mapping. A network can be protected against node failures by

providing redundant equipment. Since links failures are much

more common than node failures, this paper focuses on mak-

ing logical topology survivable, in case of a single physical link

failure.

A necessary pre-condition for a network to be able to survive

a link failure is that both physical and logical networks must be

at least two-connected. If this condition is fulfilled, then the log-

ical topology can be made survivable by requiring that some or

all of the logical links are mapped in the physical topology in

a disjoint manner (i.e. paths followed by the mapped links do

not have a physical link in common). This requirement ensures

that a single physical link failure will not disconnect the logical

topology. Since the logical topology is two-connected, it is al-

ways possible for the IP routers to find an alternate path between

the affected nodes as illustrated in the following example.

The logical topology consists of a ring 1-2-4-6 as shown in

Fig. 1(a). The physical topology is shown in Fig. 1(b). Fig. 1(c)

shows a possible mapping of the logical topology. Here the log-

ical links (1, 2), (2, 4), (4, 6), and (6, 1) are mapped to the phys-

ical paths 1-2, 2-5-4, 4-5-6, and 6-1, respectively. However, this

mapping is not survivable because if the physical link 4-5 fails,

the logical links 2-4 and 4-6 fail, isolating node 4. Fig. 1(d)

shows another possible mapping for the same logical and physi-

cal topologies. If the logical links (1, 2), (2, 4), (4, 6), and (6, 1)

are mapped respectively to the physical paths 1-2, 2-3-4, 4-5-6,

and 6-1, the routing is survivable. Any physical link failure does

not disconnect the logical topology because these paths are link

disjoint. For example, if the physical link 2-3 fails, the logical

link 2-4 fails but the topology remains connected.

Fig. 2. Illustration of mapping and survivability: (a) Logical topology, (b)
physical topology, (c) an unsurvivable mapping, and (d) a survivable
mapping.

Fig. 2(a), a more general logical topology is considered. The

physical topology is shown in Fig. 2(b). Fig. 2(c) shows a pos-

sible mapping for the logical topology in the physical topology.

Here, the logical links (1, 2), (2, 4), (4, 6), (6, 1), and (2, 6) are

mapped to the physical paths 1-2, 2-5-4, 4-5-6, 6-1, and 2-5-6,

respectively. However, this mapping is not survivable because

the physical link 4-5 is being used by logical links (2, 4) and

(4, 6) and if the physical link 4-5 fails, the logical links 2-4 and

4-6 fail, isolating node 4. Fig. 2(c) also shows that the physical

link 5-6 is common to the mapping of logical links (4, 6) and (2,

6). But it can be observed that when the physical link 5-6 fails,

logical links (4, 6) and (2, 6) fail but the logical topology still re-

mains connected. Fig. 2(d) shows another possible mapping of

the logical topology. Here logical links (1, 2), (2, 4), (4, 6), (6,

1), and (2, 6) are mapped respectively to the physical paths 1-

2, 2-3-4, 4-5-6, 6-1, and 2-5-6 and it can be observed that, even

though all the paths are not link disjoint, any single physical link

failure does not disconnect the logical topology. For example, if

the physical link 5-6 fails, the logical links 4-6 and 2-6 fail but

the topology remains connected.

The above examples illustrate some of the difficulties in-

volved in finding survivable mappings of logical topologies. If

the logical topology is a cycle, the problem is reduced to finding

edge disjoints paths for the logical links in the physical topology,

which is a well known non-deterministic polynomial time (NP)-

complete problem [5]. For general logical topologies, it may not

be necessary to find edge disjoint paths for all the logical links

in the physical topology. Mapping a subset of the logical links

in a disjoint manner would be sufficient but again problem of

finding disjoint paths is NP-complete, if number of logical links

to be mapped is more than 2 for arbitrary topologies [6].

II. LITERATURE REVIEW

The problem of finding edge disjoint path bears a very close

resemblance to the multicommodity flow problem (MCF). The

multicommodity flow problem involves simultaneously routing

several different commodities in a network, from their sources

to their respective destinations, such that the maximum flow on

each edge is not greater than its capacity while meeting certain

objective. In case of minimum cost maximum flow multicom-
modity flow (MCMF), the aim is to maximize the flows while

minimizing the cost of the routing the flows. When the logical

JAVED et al.: LIGHTPATHS ROUTING FOR SINGLE LINK FAILURE SURVIVABILITY... 3

topology is cycle, MCMF formulation can be directly used to

find survivable mapping by setting the capacities, demands and

costs to 1 and requiring integer flows only. Then a survivable

mapping is possible only if a feasible solution to the MCMF

exists. For arbitrary graphs, a feasible solution to the integer

MCMF implies that a survivable mapping exists but an infeasi-

ble solution does not imply that such mapping does not exist.

This is due to the fact that we are interested in finding disjoint

paths for some rather than all logical edges.

In [5], Modiano et. al. provide an integer linear program (ILP)

for arbitrary logical topologies, based on the observation that

a single physical link failure can disconnect the logical topol-

ogy only if it carries the entire cut set of the logical topology.

The formulation adds a survivability constraint to the MCMF.

If the formulation has a feasible solution, a survivable map-

ping exists for the logical topology and an infeasible solution

implies that no such mapping exists. [5] also notes that when

the logical topology is a cycle (ring), the survivability constraint

in the above formulation can be removed. [5] also proves that

the above formulation is NP-complete, even for a ring logical

topology.

[7] also considers the problem of survivable mappings under

the protection interoperable design paradigm. [7] defines a pro-
tected group with protection level k as a group of logical links

that can support up to k logical links failures. Such groups are

assumed to have the ability to reroute traffic on broken links as

long as the number of broken links is k or less. [7] imposes

three constraints (i) capacity constraint requires that a mapping

should respect the capacity constraints of the physical link (ii)

the bottleneck constraint demands that one physical link/node

failure should not cause more than k logical link failures (iii) the

connectivity constraint implies that the logical topology must re-

main connected for any single link/node failure in the physical

topology. [7] also notes that the problem is NP-complete.

Since the problem of finding disjoint paths is NP-complete

in general, efficient algorithms for finding such paths are un-

likely in their full generality. Therefore, a significant amount

of literature is dedicated to finding good heuristics. [5] pro-

poses a heuristic that considers only those cuts that prevent a

single node from being isolated. [7] proposes a heuristic based

on tabu search meta-heuristic, called protection interoperabil-
ity for WDM (PIW). The PIW starts by arbitrary routing logical

links, at each iteration PIW slightly modifies the routes of a log-

ical links to obtain a new mapping. The routing at each step is

the best network mapping that has not been visited yet. After a

given number of iterations, if the mapping does not improve, the

algorithm terminates.

[8] also provides a solution to the problem of finding disjoint

paths. Given a set of K source-destination (s, t) pairs, the ob-

jective is to determine disjoints paths among as many source-

destination pairs as possible. The same problem is considered

in [9] and an iterative greedy algorithm called bounded greedy
algorithm (BGA) is provided. BGA starts off with an empty

solution S, picks an (s, t) from K and routes it using a shortest

path P of length L or less. After routing, the edges along P are

removed from the graph and the algorithm proceeds by picking

the next (s, t) pair in K. An extension of BGA is proposed in [8]

called multi-start greedy algorithm (MSGA). In an iteration of

MSGA, Si is the solution under consideration and Sbest is the

best solution achieved so far. Also, in each iteration of MSGA, a

random permutation of K is used. The main contribution of [8]

is the development of an algorithm based on ant colony opti-
mization (ACO). A solution S is constructed by assigning an ant

to each (s, t) pair, which finds a path for the assigned (s, t) pair.

Initially the paths in S may not be mutually disjoint, edge dis-

joint paths are then obtained by iteratively removing the path

which has the most edges in common with other paths in S. The

algorithm continues until edge disjoint paths are found or the

termination condition is met.

III. KURANT THIRAN APPROACH

In [10], the authors provide a unique approach to find surviv-

able mapping for a general logical topology by mapping only

a subset of the logical links. [10] accomplishes this by intro-

ducing the concept of piecewise survivability, which proceeds

by recursively finding survivable mappings for the pieces of the

logical topology rather than for the entire logical topology. The

algorithm is based on the following important property. Suppose

the given logical topology is 2-edge connected. If a subgraph,

G1 is routable in a survivable manner and a subgraph G2 in the

contracted subgraph is also routable in a survivable manner, then

the subgraph of the logical topology containing the links of G1

and G2 is also routable in a survivable manner [11]. This ap-

proach greatly simplifies the process of finding survivable map-

pings for fairly large networks. The solution is applicable to

arbitrary logical and physical topologies and can be applied to

find link survivable mapping as well as to find node survivable

mappings.

The algorithm starts with the entire logical topology, and then

tries to find a subgraph for which a survivable mapping can be

found. If such a subgraph exists, the algorithm contracts this

subgraph by collapsing the edges and merging the nodes of the

subgraph to create a contracted logical topology. After con-

tracting the subgraph, the algorithm proceeds by finding another

subgraph that can be mapped in a survivable manner. The algo-

rithm terminates, if no such subgraph is found or the logical

topology is reduced to a single node. If the algorithm termi-

nates unsuccessfully, it returns a piecewise link/node-survivable
mapping, which consists of survivable pieces and the remaining

contracted logical topology.

However, in this approach, one may be required to consider

a large number of subgraphs until a survivable subgraph is

found. [10] also considers the special case when the selected

subgraph is always a cycle. If the subgraph is restricted to a

cycle at each iteration, then an undirected complete graph has

1
2

|N |∑
i=3

(|N |
i

)
(i − 1)! cycles, a number which grows faster with

|N | than the exponential 2|N | [12]. This is a computationally

expensive task. So an implementation of this algorithm would

be limited to considering a small number of subgraphs, and may

terminate unsuccessfully even though a survivable mapping was

possible.

Due to the NP-complete nature of the disjoint paths prob-

lem, [10] provides a simple heuristic to find mappings for logical

links when the subgraph is always a cycle (ring). The heuristic

4 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 9, NO. 4, DECEMBER 2007

is named SMART, survivable mapping algorithm by ring trim-
ming. The heuristic uses a variant of shortest path algorithm,

therefore does a local search. The algorithm assigns a weight of

1 to each physical link and finds a shortest path for each logi-

cal link. If the paths obtained are edge disjoint, the algorithm

proceeds by contracting the subgraph under consideration and

picking a new subgraph. If some or all the paths are not edge

disjoint, the weights assigned to the shared physical edges are

incremented by 1 and the process is repeated a predetermined

number of times. In their more recent work in [13], the heuristic

is referred to as SMART-H and the framework as SMART.

Most approaches in literature consider the entire logical

topology while designing survivable networks. [10] provides

a different approach by considering only pieces of the logical

topology. Nonetheless, it has certain drawbacks due to the NP-

completeness of the problem. One drawback is the number of

subgraphs which it may have to consider before declaring that a

survivable mapping of the logical topology in the physical topol-

ogy does not exist. The other drawback is the heuristic used to

find mappings may terminate unsuccessfully even though sur-

vivable mappings may exist. The aim of this paper is to explore

more sophisticated methods for picking subgraphs and finding

survivable mappings.

In this paper, we consider the special case when the selected

subgraph is always a cycle. If the subgraph is a cycle, the prob-

lem of finding survivable mappings is reduced to the problem of

finding edge disjoints paths. In other words, if paths assigned to

all the links on the cycle are mutually edge disjoint, the mapping

is survivable. This is easy to verify in contrast to the case when

the subgraph is an arbitrary subgraph. In such a case, the exis-

tence of survivability must be checked by removing a physical

link and the logical links using this physical link, and conduct-

ing a test whether the logical topology remains connected after

their removal. It is also easy to pick a cycle as a subgraph using

a shortest path algorithm.

A cycle is the minimum two-connected graph, therefore, if an

arbitrary subgraph is picked which can be mapped in survivable

manner, it can be reduced to a set of links that form at least one

cycle and their mappings are edge disjoint. Therefore, just con-

sidering cycles as subgraphs should be sufficient to determine

whether a survivable mapping for a logical topology exists in a

given physical topology.

As mentioned earlier, a large number of cycles may exist in a

given graph and all of them must be considered before declaring

that a solution does not exist. In the worst case we may be forced

to find a Hamiltonian cycle, which is a well known NP-complete

problem. Therefore, in this paper we propose an enhancement

that picks a cycle and attempts to map it. If the chosen cycle

can be mapped in a disjoint manner, the algorithm proceeds by

contracting this subgraph and picking a new cycle. However,

if the chosen cycle cannot be mapped in a survivable manner,

the cycle is modified to make it survivable. In the next section,

we describe an approach that pick a cycle and tries to modify it,

if the cycle is not initially survivable. Section IV also provides

a mapping algorithm that does a more rigorous search to find

disjoint mapping.

Fig. 3. Illustration of enhancement 1: (a) Logical topology GL and a
cycle C, (b) survivable mapping not found for C (C is split into two
components and a component gets isolated.), (c) survivable mapping
not found for C (C is split into two components but the components
are not isolated.), and (d) modifying the cycle C using step 1.

IV. A ROBUST SURVIVABLE TOPOLOGY DESIGN
APPROACH

In this section we describe a new approach to design sur-

vivable networks based on the framework provided by Kurant-

Thiran as described in Section III. The new approach called

modify and map (MM) provides a more systematic approach to

finding subgraphs (cycles) to map in the logical topology (en-

hancement # 1) and a mapping algorithm based on the concept

of randomized rounding utilizing a fractional multicommodity

flow approximation algorithm (enhancement # 2).

Enhancement # 1: Subgraph Selection
Assume that we are given a physical topology G (N, E) and a

logical topology GL (NL, EL), where N is the set of physical

nodes, E is the set of physical edges, NL is the set of logi-

cal nodes such that NL ⊆ N , and EL is the set of logical links.

Also assume that both physical and logical topologies are at least

2-connected. The algorithm proceeds by picking a subgraph C
in the form of a cycle in the logical topology and attempts to

map it in the physical topology. If C can be mapped in a dis-

joint manner, the logical topology is contracted by collapsing

the edges and merging the nodes in C. However, if C cannot

be mapped in a disjoint manner, there is a set of links, such that

they share some physical link/links. In this case C will be split

into |ψ| components, C1, C2, · · ·, Cψ . Fig. 3 shows the case

when the cycle C is split into 2 components C1, and C2, i.e.,

|ψ| = 2. When C is split into two or more components and a

component gets isolated i.e. the component is no longer con-

nected to any other component or the graph GL − C, then it

is not possible for the entire logical topology to be survivable

without finding a cycle, which contains the links that connect

the isolated component to the other components. This scenario

is shown in Fig. 3(b). In this case, it is necessary to do an ex-

haustive search to verify that no such cycle exists. Fig. 3(c)

JAVED et al.: LIGHTPATHS ROUTING FOR SINGLE LINK FAILURE SURVIVABILITY... 5

shows another possibility. In this case none of the components

get isolated i.e. there exists a path or paths in GL − C that con-

nect one component to the other component. In that case we

proceed as follows:

Step 1: Pick a link li ∈ ψ (1 ≤ i ≤ ψ), and find the two

components C1 and C2 it connects. Let n1 be the set of degree

3 nodes in component C1 and n2 be the set of such nodes in the

component C2. Now pick a node n′ ∈ n1 and a node n′′ ∈ n2.

Let P ′ be the path between n′ and n′′ on the cycle C. After

finding such nodes, remove all the edges belonging to the cycle

C in the logical topology and find a shortest path P between

n′ and n′′. The edges are then restored and a cycle is formed

by concatenating P ′ and P and an attempt is made to map this

cycle. If this cycle can be mapped in disjoint manner, ψ is up-

dated by removing li and C is updated by collapsing the edges

and merging the nodes in P ′ and P . Otherwise, this procedure

is repeated by pairing the nodes from n1 with nodes from n2. If

for a link li ∈ ψ, no such cycle can be found, we proceed with

li+1 ∈ ψ.

Suppose that survivable mappings can be found for |ψ| − 1
links, then it can be shown that the edges in the |ψ| − 1 cycles

along with those in C form a graph which will connected for

any single physical link failure. So we contract these edges and

proceed with the remaining edges in the logical topology.

Step 2: If we are unable to find survivable cycles for |ψ| − 1
links, there are some for which survivable cycles could not be

found. Let C ′ be the cycle after step 1. Now we pick a pair

of nodes (x, y) with degree ≥ 3 in C ′ and find a cycle, which

includes the path on C ′ between x and y and a path between x
and y that does not include any edge from C ′. If this cycle can

be mapped in a survivable manner, the edges in this cycle are

collapsed. This procedure is repeated until all the edges have

been collapsed to create a single node or until all the nodes with

degree ≥ 3 have been processed.

Step 3: Let C ′′ be cycle after step 1 and 2. If C ′′ is not a single

node, we apply the mapping algorithm to C ′′. If the mapping

is survivable, the edges are contracted and nodes are merged.

However, if C ′′ cannot be mapped in a survivable manner, then

the unsurvivable mapping is accepted and the logical topology is

contracted but a flag is set to indicate that an unsurvivable map-

ping was accepted. This requirement guarantees the termination

of the algorithm. The algorithm then proceeds by selecting a

new cycle C.

Step 4: If the flag was set, after the termination of the algo-

rithm, logical edges that were not mapped earlier are mapped in

an arbitrary manner and a test is conducted to see if the mapping

of the entire logical topology is survivable. Since the problem of

finding disjoint mappings is NP-complete, any algorithm other

than the Integer Linear Program (ILP) formulation cannot guar-

antee that if a solution is not found then a solution does not exist.

The reasoning for accepting unsurvivable mapping for the cycle

and continuing is that the cycles selected in subsequent itera-

tions may aid in making the unsurvivable subgraphs survivable.

The entire algorithm is shown in Figs. 4, 5, 6, and 7.

Enhancement # 2: A Rigorous Mapping Algorithm
One key assumption in the above algorithm is that there ex-

ists a method to find disjoint mappings for a given set of links.

INPUT: An at least 2-connected, physical topology G(N ,E), a logical
topology GL (NL, EL)
OUTPUT: One link survivable mapping M of GL in G
While the termination condition is NOT met do

C ← a short cycle in GL

Call the mapping procedure
If mapping procedure returns a survivable mapping for
C then

Contract GL by collapsing the edges and merging
nodes in C

Else
call modify and map

End if
End While
If Survivable = false then

Map unmapped edges
For all physical edges do

Remove the physical edge from the physical
topology and remove the logical links that use
this edge from the logical topology.
If the logical topology remains connected the

Continue
Else

Logical topology cannot be mapped in survivable
manner
END

End If
End For

End If

Fig. 4. Main routine.

As mentioned earlier, the problem of finding mutually disjoint

paths for a given set of links is NP-complete in general. The

problem can be formulated as an ILP and solved exactly. Since

ILP exhibits excessive runtimes, it may not be suitable for large

networks. Due to the fundamental role played by disjoint paths

in designing telecommunication networks, a significant amount

of literature is dedicated to solving this problem without solving

the ILP formulation. Most of the proposed approaches assign

weights to the physical links which are then used to find paths,

usually using a shortest path algorithm. After finding a path the

weights are usually updated for the links in the path. The pro-

cess is repeated until disjoints paths are found or a termination

condition is met. Such approaches work well in practice but an

unsuccessful termination does not necessarily imply that disjoint

mappings are not possible.

In this paper we propose a variation of the randomized round-

ing technique proposed by Raghavan and Thompson to find

disjoint paths in an undirected network [14]. The algorithm

transforms the optimal solution of a relaxed 0-1 integer formu-

lation into a “provably good” solution to the original 0-1 for-

mulation [14]. The algorithm relaxes the integer constraint of

the MCF problem to obtain fractional solutions, which are then

used to obtain integer solutions. [14], however, does not provide

a method to solve the relaxed problem and assumes fractional

flows are available to the algorithm. Algorithms in [15] and [16]

provide fast algorithms to solve the fractional MCF problem in

polynomial times, which can then be used to get integer solu-

tions by applying the approach in [14].

To get fractional solutions we use a modified version of the

multicommodity flow approximation algorithm in [15]. To

use the algorithm in [15] and [16], the links belonging to

the subgraph (a cycle C) are viewed as commodities K =

6 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 9, NO. 4, DECEMBER 2007

INPUT: An at least 2-connected, physical topology G (N , E), a logical
topology GL (NL, EL), a cycle C
OUTPUT: Return success if the mapping is survivable
Procedure modify and map
ψ ← logical links belonging to C for which disjoint mappings could
not be found
For all logical link li ∈ ψ do

C1
i ← a component that li connects

C2
i ← other component that li connects

n1 ← list of nodes with degree > 2 in C1
i

n2 ← list of nodes with degree > 2 in C2
i

If n1 = φ OR n2 = φ then
continue

End If
For all n′ ∈ n1 do

For all n′′ ∈ n2 do
P ′ ← path between n′ and n′′ on the cycle C
P ← path between n′ and n′′ in GL - C
Ci ← P ∪ P ′
If mapping procedure returns a survivable
mapping for Ci then

Contract GL by collapsing edges and merging
nodes in Ci

Contract C by collapsing edges and merging
nodes in P ′
Remove li from ψ
Continue with the next li in ψ

End If
End For

End For
If |ψ| < 2 then

Contract GL by collapsing remaining edges
and merging nodes in Ci

Return Success
End If

End For
D = list of nodes with degree > 2 on cycle C′
While |D| > 1 do

γ1 ← remove a node from D
For all nodes γ2 ∈ D do

P ′ ← path between γ1 and
γ2 on the cycle C′
P ← a short path between γ1 and γ2 in GL - C′
C′

i ← P ∪ P ′
Call the mapping procedure
If mapping procedure returns a survivable mapping
for C′

i then

Contract GL by collapsing edges and merging
nodes in C′

i
Contract C′ by collapsing the edges and merging
the nodes in P ′

End if
End For

End While
If subgraph is reduced to a single node then

Return success
Else

If mapping procedure returns a survivable mapping
for C′′ then

Contract GL by collapsing the edges and merging nodes in C′′
Return success

Else
Contract GL by collapsing the edges and merging nodes in C′′
Survivable = false
Return success

End if
End If

Fig. 5. Modify and map.

(s1, t1), (s2, t2),, (sk, tk), where k is the number of links in

the cycle and si and ti are the end nodes of a logical link l ∈ C .

All the physical links are assigned a capacity of 1 (uij = 1) and

INPUT: A network G, capacities u(e), commodity pairs K = (sk, tk),
1 ≤ k ≤ |K|, and accuracy ε
OUTPUT: Best mapping possible for pairs in K, solve fractional mul-
ticommodity flow problem.
Procedure mapping algorithm:
Initialize l(e) = δ, ∀e, x ≡ 0
K′ ← K
Best Mapping MBest ← φ
|MBest| ← α /*number of non-disjoint links*/
Commodities ← |K′|
While there is a path P between a (sk, tk) ∈ K′ such that l(P) < 1 do

Mapping M ← φ
For all (sk, tk) ∈ K′

Find the shortest paths P using l
M ← M ∪ P
If l(P) < 1 then

u ← mine∈P u(e)
x(P) ← x(P) + u

∀e ∈ P, l(e) ← l(e)
(
1 + εu

u(e)

)

else
K′ ← {K′ − (sk, tk)}

End If
End For
If Commodities = |K′| and M is edge disjoint then

Return Success
Else If commodities = |K′| then

If number of non-disjoint links in M < |MBest| then
MBest ← M

End If
End If
permute K′

End While
Call Randomized Rounding

Fig. 6. Fractional multicommodity flow approximation algorithm.

the objective is to find flows fi from si to ti without violating

the capacity constraints of the physical edges.

Algorithms in [15] and [16] are based on the combinatorial

knowledge of the dual of the path-flow multicommodity flow

formulation to provide ε-approximate solutions. The formula-

tion is given below:

max
∑
p∈P

x(P)

Capacity constraints:
∑

P :(i,j)∈P

x(P) ≤ uij , ∀(i, j) ∈ P

Flow constraints: x(P) ≥ 0, ∀P. (1)

Here, x(P) is the amount of flow sent along a path P (initially

0), then the dual of above formulation can be formed by as-

signing lengths to the edges of the graph. The length of an

edge, lij , is related to the amount of flow it carries and the

maximum flow computations are done only on this length func-

tion. The objective is to minimize
∑

(i,j)∈E uij .lij , such that

the length of the any shortest path between any (si, ti) pair is

at least 1, for all (si, ti) ∈ K. The length of each edge is set

to δ = (1+ε)

((1+ε)L)
1
ε

, where L is the length of the longest path be-

tween any(si, ti) ∈ K and ε is the desired accuracy. The algo-

rithm proceeds by finding shortest paths Pi for all (si, ti) ∈ K
using the length function and picking the shortest path P ∈ Pi,

the flows and lengths of the edges on P are then updated.

The algorithm in [15] always picks the commodity with the

shortest path among all the commodities to push flow, which

JAVED et al.: LIGHTPATHS ROUTING FOR SINGLE LINK FAILURE SURVIVABILITY... 7

INPUT: A network G, capacities u(e), flow matrix f , commodity pairs
K = (sk, tk), 1 ≤ k ≤ |K|, the Best Mapping from mapping algo-
rithm MBest

OUTPUT: Disjoint paths
Procedure randomized rounding:
πk ← set of paths for commodity k
For all commodities k in K do

Gk(V, Ek) ← A directed graph with Ek ⊆ E such
that e ∈ Ek iff e has a non-zero fractional flow in the
solution to MMCF for commodity k
While there is non-zero flow leaving Si do

P ← a directed path in Gk for commodity k, using
Dijikstra shortest path algorithm
πk ← πk ∪ P
fm ← flow along the bottleneck link (minimum
flow)in path P

Add the path P and the flow fm to πk

Reduce flows for all e ∈ P for commodity k by fm

Remove the edges from Gk for commodity k for
which fe = 0

End While
End For
While no of rounds is less than threshold do

Mapping M ← φ
For all commodities k in K do

Cast a die with number of faces = |πk| with the
face probabilities equal to flows for the paths in πk

Roll the dice and assign the path P to commodity k whose
face comes up
M ← M ∪ P

End For
If M is edge disjoint then

Return Success
Else If number of non-disjoint links in M < |MBest|
then

MBest ← M
End if

End While

Fig. 7. Randomized rounding.

may starve some commodities i.e. they may not get any flow.

This is undesirable when finding disjoint paths using random-

ized rounding. To circumvent this problem we use a modified

version of the above algorithm. Instead of picking the commod-

ity with the shortest path, we go through the commodities in a

round robin manner to provide each a chance to send flow. To

introduce further fairness, the commodities are permuted after

each iteration. The modified algorithm is given in Figs. 6 and 7.

V. SIMULATION STUDY

To study and compare the behavior of the proposed algorithm,

and SMART-H, they were implemented using library of efficient

data type and algorithms (LEDA) [17] and VC++ 8.0. For sim-

ulation physical and logical topologies with varying number of

nodes and edges were generated. Physical topologies were reg-

ular topologies with 500 and 1000 nodes (|N |) and degrees 6

and 8. The regular topologies were constructed using a proce-

dure originally given by Harary and described in [18]. Logical

topologies were random topologies generated using LEDA. The

logical nodes (|NL|) were a random subset of physical nodes

(0.8 × |N |). The number of logical links (EL) were 1.5 and 2.0

times the logical nodes. After generating the logical topologies,

they were admitted for further processing only if they were at

least two edge connected. SMART-H and the proposed algo-

rithm were then applied to each logical-physical topology pair.

Table 1. Performance comparison of SMART-H and MM.

|N | =500, |NL| =400

No. of Ave. Ave Time

Degree |EL| Survivable subgraph per
Mappings size Topology

(edges) (min)

MM 6 600 884 4 5.074

SMART-H 6 600 800 4 4.286

MM 8 600 1056 3 5.735

SMART-H 8 600 932 3 5.081

MM 6 800 1061 3 3.895

SMART-H 6 800 1004 3 3.027

MM 8 800 1101 3 3.344

SMART-H 8 800 1020 3 2.875

Table 2. Performance comparison of SMART-H and MM.

|N | = 1000, |NL| = 800, Degree=8, |EL| = 1600

No. of Ave. Ave Time per Ave. No of
Survivable Subgraph Topology Shortest
Mappings Size (min) path

edges applications

MM 1104 3 12.88 3598

SMART-H 991 3 9.286 3085

The total number of such logical-physical topology pair was

1200 for each case (40 physical and 30 logical topologies).

To make the SMART-H practical, if a disjoint mapping could

not be obtained after applying the mapping method 100 times

for |N | = 500 and 200 for |N | = 1000, a new subgraph was

selected and SMART-H terminated after unsuccessfully exam-

ining 100 subgraphs for |N | = 500 and 200 for |N | = 1000.

For the proposed algorithm, ε was 0.15 and the number of ran-

domized rounding rounds were set 50. To find a subgraph, two

nodes were randomly picked and two link disjoint paths were

found between these nodes. The two paths were then concate-

nated to get the subgraph.

The results are summarized in Tables 1 and 2. It can be seen

that the proposed algorithm can map more logical topologies

in survivable manner then SMART-H (Table 1). As one would

expect, the proposed algorithm does more exploration and so

performs more number of shortest path computations, leading

to increased execution times (Table 2). But the increased execu-

tion times is compensated by the increased number of survivable

mappings generated.

To understand why SMART-H finds fewer survivable map-

pings, first recall that when a mapping of a subgraph is not sur-

vivable, only the weights of the shared physical edges are up-

dated in SMART-H. This may modify the paths obtained in the

next iteration only slightly. This means that the mapping gen-

erated in the next iteration may still not be survivable. Since

the number of unsuccessful attempts is set to a predetermined

value, SMART-H may not be examining as many mappings as

one would have expected. Since the subgraph selection is ran-

dom, therefore, it may take several unsuccessful attempts before

a survivable subgraph can be found. Also SMART-H does not

have a mechanism to keep track of the subgraphs that have al-

ready been considered, it may pick an unsurvivable subgraph

several times, thereby again not exploring as many subgraphs as

one would have expected.

8 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 9, NO. 4, DECEMBER 2007

To explain why the proposed algorithm takes more execution

time, note that if a subgraph is not survivable, enhancement #

1 is applied, which may map the chosen subgraph and/or some

subgraphs surrounding it. However, finding such subgraphs re-

quires extra overhead. Also, keeping track of the best mapping

is another overhead involved. The increased time required by

the overheads is alleviated to some extent by the efficient ran-

domized rounding approach. Also, in the randomized rounding

approach the weights (length) of all the links that are part of the

current mapping are updated, thereby reducing the possibility of

an unsuccessful mapping being considered more than once.

It can also be seen in Tables 1 and 2 when the topologies

(logical or physical) are sparse, fewer logical topologies can be

mapped in survivable manner. However, making the topologies

dense increases the number of survivable mapping. This is why

dense logical topology implies that more subgraphs are avail-

able. Also if the physical topology is dense a larger number of

paths will be available.

VI. CONCLUSION

In this paper we have proposed an algorithm based on the

framework developed in [10] that starts by picking a subgraph

in the logical topology and attempts to map the links in the sub-

graph in disjoint manner in the physical topology. This greatly

simplifies the process of finding survivable mapping. The pro-

posed algorithm uses the concept of randomized rounding dis-

cussed in [14] to find disjoint paths, and is able to achieve higher

success rate than SMART-H.

ACKNOWLEDGMENTS

The work of K. Thulasiraman has been supported in part by

NSF ECS grants ANI-0312435 and ECS 04-26831 and the work

of G. Xue has been supported by NSF ITR grant ANI-0312635.

We would also like to thank the referees for their comments and

suggestions to improve the quality of this paper.

REFERENCES
[1] I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications an ap-

proach to high bandwidth optical WDM,” IEEE Trans. Commun., vol. 40,
no. 7, pp. 1171–1182, July 1992.

[2] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee, “Fault management
in IP-over-WDM networks: WDM protection versus IP restoration,” IEEE
J. Sel. Areas Commun., vol. 20, no. 1, pp. 21–33, Jan. 2002.

[3] R. Ramaswami and K. Sivarajan, Optical Networks: A Practical Perspec-
tive. Morgan Kaufmann, 1998.

[4] A. Fumagalli and L. Valcarenghi, “IP restoration vs. WDM protection:
Is there an optimal choice?,” IEEE Network, vol. 14, no. 6, pp. 34–41,
Nov./Dec. 2000.

[5] E. Modiano and A. Narula-Tam, “Survivable lightpath routing: A new ap-
proach to the design of WDM-based networks,” IEEE J. Sel. Areas Com-
mun., vol. 20, no. 4, pp. 800–809, May 2002.

[6] T. Tholey, “Solving the 2-disjoint paths problem in nearly linear time,”
Theory of Computing Systems, vol. 31, no. 1, pp. 51–78, Feb. 2006.

[7] O. Crochat, J. L. Boudec, and O. Gerstel, “Protection interoperability for
WDM optical networks,” IEEE/ACM Trans. Networking, vol. 8, no. 3,
pp. 384–395, June 2000.

[8] M. Blesa and C. Blum, “Ant colony optimization for the maxi-
mum edge-disjoint paths problem,” Springer-Verlag Berlin Heidelberg,
vol. 3005/2004, pp. 160–169, 2004.

[9] Approximation Algorithms for Disjoint Paths Problems, Thesis by Jon
Michael Kleinberg.

[10] M. Kurant and P. Thiran, “On survivable routing of mesh topologies in IP-
over-WDM networks,” in Proc. IEEE INFOCOM 2005, vol. 2, Mar. 2005,
pp. 1106–1116.

[11] M. Javed, K. Thulasiraman, M. Gaines, and G. Xue, “Survivability aware
routing of logical topologies: On Thiran-Kurant approach, evaluation and
enhancements,” in Proc. IEEE Globecom 2006, Nov. 2006, pp. 1–6.

[12] P. Mateti and N. Deo, “On algorithms for enumerating all circuits of a
graph,” SIAM Journal on Computing, vol 5, no. 1, pp. 90–99, Mar. 1976.

[13] M. Kurant and P. Thiran, “Survivable routing of mesh topologies in IP-
over-WDM networks by recursive graph contraction,” IEEE J. Sel. Areas
Commun., vol. 25, no. 5, pp. 922–933, June 2007.

[14] P. Raghavan and C. Thompson, “Randomized rounding: A technique for
provably good algorithms and algorithmic proofs,” Combinatorica, vol. 7,
no. 4, pp. 365–375, Dec. 1987.

[15] N. Garg and J. Konemann, “Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems,” in Proc. IEEE Sympo-
sium on Foundations of Computer Science 1998, Nov. 1998, pp. 300–309.

[16] L. Fleischer, “Approximation fractional multicommodity flow independent
of the number of commodities,” SIAM J. Discrete Math, vol. 13, no. 4,
pp. 505–520, 2000.

[17] K. Mehlhorn and S. Näher, LEDA: A Platform for Combinatorial and Ge-
ometric Computing. Cambridge University, 1999.

[18] K. Thulasiraman and M. Swamy, GRAPHS: Theory and Algorithms.
Wiley-Inter-science, 1992.

Muhammad Javed received the Bachelor’s degree
(1995) in Civil Engineering from University of Engi-
neering and Technology, Pakistan, MBA (1997) from
Oklahoma City University, Oklahoma and Master’s
degree (2000) in Computer Science from the Univer-
sity of Oklahoma, Oklahoma. He is currently working
towards his Ph.D. at University of Oklahoma, Okla-
homa. His research interests include network comput-
ing, fault tolerant system, and graph theory.

Krishnaiyan Thulasiraman received the Bachelor’s
degree (1963) and Master’s degree (1965) in Electri-
cal Engineering from the University of Madras, India,
and the Ph.D. degree (1968) in Electrical Engineer-
ing from IIT, Madras, India. He holds the Hitachi
Chair and is Professor in the School of Computer Sci-
ence at the University of Oklahoma, Norman, where
he has been since 1994. Prior to joining the Univer-
sity of Oklahoma, he was professor (1981-1994) and
chair (1993-1994) of the ECE Department in Concor-
dia University, Montreal. He was on the faculty in the

EE and CS departments of the IITM during 1965-1981. His research interests
have been in graph theory, combinatorial optimization, algorithms and appli-
cations in a variety of areas in CS and EE. He has published more than 100
papers in archival journals, coauthored with M. N. S. Swamy two text books
“Graphs, Networks, and Algorithms” (1981) and “Graphs: Theory and Algo-
rithms” (1992), both published by Wiley Inter-Science. He has received several
awards and honors that include the 2006 IEEE Circuits and Systems Society
Technical Achievement Award. He has been very actively professionally in the
IEEE Circuits and Systems and other societies.

JAVED et al.: LIGHTPATHS ROUTING FOR SINGLE LINK FAILURE SURVIVABILITY... 9

Guoliang (Larry) Xue is a Professor in the School
of Computing and Informatics at Arizona State Uni-
versity (ASU). He earned a Ph.D. (1991) in Computer
Science from the University of Minnesota (Minneapo-
lis, USA), an MS (1984) in Operations Research and
a BS (1981) in Mathematics, both from Qufu Teach-
ers University (Qufu, China). Before joining ASU
in 2001, he had worked at Qufu Teachers University
as a Lecturer (1984-87), the Army High Performance
Computing Research Center as a Postdoctoral Fellow
(1991-93), and The University of Vermont as an As-

sistant/Associate Professor (1993-2001). He is a member of ACM and a senior
member of IEEE.

His interests include Quality of Service routing, resource allocation, surviv-
ability and security issues in networking (both wireless and wireline), with a
strong flavor of optimization and algorithmics. He has published over 160 pa-
pers in these areas.

