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Joint Transmitter and Receiver Optimization for

Improper-Complex Second-Order Stationary Data

Sequence

Jeongho Yeo, Joon Ho Cho†, and James S. Lehnert

Abstract

In this paper, the transmission of an improper-complex second-order stationary data sequence is considered over

a strictly band-limited frequency-selective channel. It is assumed that the transmitter employs linear modulation and

that the channel output is corrupted by additive proper-complex cyclostationary noise. Under the average transmit

power constraint, the problem of minimizing the mean-squared error at the output of a widely linear receiver is

formulated in the time domain to find the optimal transmit andreceive waveforms. The optimization problem is

converted into a frequency-domain problem by using the vectorized Fourier transform technique and put into the

form of a double minimization. First, the widely linear receiver is optimized that requires, unlike the linear receiver

design with only one waveform, the design of two receive waveforms. Then, the optimal transmit waveform for
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the linear modulator is derived by introducing the notion ofthe impropriety frequency function of a discrete-time

random process and by performing a line search combined withan iterative algorithm. The optimal solution shows

that both the periodic spectral correlation due to the cyclostationarity and the symmetric spectral correlation about

the origin due to the impropriety are well exploited.

Index Terms

Cyclostationarity, improper-complex, joint transmitterand receiver optimization, mean-squared error (MSE),

vectorized Fourier transform (VFT).

I. INTRODUCTION

An information-bearing signal encountered in communications and signal processing often exhibits

periodicity in its mean and auto-covariance functions and thus it is well modeled by a wide-sense

cyclostationary (WSCS) random process [1]. This structurein the first-order and the second-order statistics

has long been exploited in the design of many communicationsand signal processing systems [2], [3].

One of the classical problems related to the processing of WSCS random processes is a joint optimization

of the transmitter (Tx) and receiver (Rx) in a communicationsystem. In [4]–[7], real-baseband pulse

amplitude modulation (PAM) of a wide-sense stationary (WSS) real-valued data symbol sequence is

considered with a linear Rx for use over an additive WSS colored noise channel. Under the minimum

mean-squared error (MMSE) optimality criterion and the average transmit power constraint, the jointly

optimal transmit and receive waveforms are derived. It is shown that, interestingly, the waveforms have

nonzero spectral values only on a generalized Nyquist interval [6] with length equal to the minimum

bandwidth required to satisfy the Nyquist condition for zero intersymbol interference (ISI) [1].

This joint optimization problem is extended in [8] to complex-baseband quadrature amplitude mod-

ulation (QAM) of a WSS complex-valued data symbol sequence.Under the linear MMSE (LMMSE)

optimality criterion and the average transmit power constraint, the jointly optimal transmit and receive

waveforms are derived for use over an additive WSCS noise channel. It is well known that a WSCS noise
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model is better than a WSS model for the case in which data-like QAM interferences are present as well

as an ambient Gaussian noise [1]. In contrast to the previousresults only with an additive WSS noise,

the optimal waveforms are shown in general to have nonzero spectral values on a frequency interval

whose length is greater than that of the generalized Nyquistinterval. This is because, unlike a WSS

random process, a WSCS random process possesses non-zero correlation in the frequency domain among

the components that are spaced integer multiples of the symbol rate apart [9]. To exploit such spectral

correlation of the WSCS random process, a vectorized Fourier transform (VFT) technique is employed in

[8]. This technique is motivated by the harmonic series representation [9] of a WSCS random process,

and the use of that representation for joint Tx and Rx optimizations in cyclostationary interference and

noise has been examined in [10] and [11].

The results in [8], [10], [11], however, have considered only the real passband or, equivalently, the

complex baseband transmission of a proper-complex data sequence. Hence, these results are not directly

applicable to, e.g., the real passband transmission of a BPSK data sequence, which is an improper-

complex data sequence in complex baseband. Recall that complex-valued random variables, vectors, and

processes are called proper if their complementary covariance, complementary covariance matrix, and

complementary auto-covariance function (a.k.a. pseudo-covariance, pseudo-covariance matrix, and pseudo-

covariance function) vanish, respectively [12]. Otherwise, they are called improper [13]. Although the

complex envelopes of the majority of digitally modulated signals are proper, there still remain other

digitally modulated signals whose complex envelopes have non-vanishing complementary auto-covariance

functions [13]. For example, the complex envelopes of PAM, vestigial sideband PAM, unbalanced QAM,

offset quaternary phase-shift keying (OQPSK), and Gaussian minimum shift keying are improper.

Among these improper-complex signals, we focus in this paper on a linear modulation of an improper-

complex data sequence using only one transmit waveform. In particular, we consider an improper-complex

data sequence that is well modeled by a zero-mean improper-complex second-order stationary (SOS)

random process for which the auto-covariance and the complementary auto-covariance functions depend

only on the time difference [13]. This results in an improper-complex second-order cyclostationary (SOCS)
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transmitted signal. For example, PAM, vestigial sideband PAM, and unbalanced QAM fall into this

category. It is assumed that such an improper-complex SOCS signal is transmitted over a strictly band-

limited frequency-selective linear time-invariant (LTI)channel whose output is corrupted by an additive

proper-complex SOCS random process. As already mentioned,proper-complex SOCS random processes

well model the complex envelopes of the majority of digitally modulated signals as well as the complex

envelope of an additive Gaussian noise.

Our objective is to extend the aforementioned joint optimizations of the Tx and Rx for proper-complex

WSCS signaling to a joint Tx and Rx optimization problem for improper-complex SOCS signaling under

the MMSE optimality criterion and the average transmit power constraint. It is well known that the

second-order properties of an improper-complex signal arenot well captured by a linear Rx, but instead

by a class of nonlinear Rx’s called widely linear Rx’s [13]. There are two types of widely linear Rx’s.

The first one linearly processes the signal augmented by its complex conjugate, whereas the second one

linearly processes the real part of the signal augmented by the imaginary part. In this paper, the first type

of widely linear processing also referred to as the linear-conjugate linear (LCL) filtering [14] is employed.

It is noteworthy that, unlike the joint optimizations in [8], [10], [11], we now need to find two receive

waveforms under the widely linear MMSE (WLMMSE) optimalitycriterion, where one is employed to

filter the complex envelope of the received signal and the other to filter its complex conjugate.

The VFT technique again enables us to convert the objective function and the average transmit power

constraint described initially in the time domain into those in the frequency domain. Unlike the previous

joint optimizations, the objective function is now expressed in terms of the VFT of the transmit waveform

augmented by the VFT of its complex conjugate and the VFT of a receive waveform augmented by

the VFT of the other receive waveform. Using these augmentedvector-valued functions, we derive the

optimal waveforms of the WLMMSE Rx in a straightforward way as a function of the transmit waveform.

It is shown that the two receive waveforms of the WLMMSE Rx exploit not only the periodic spectral

correlation due to the cyclostationarity, but also the symmetric spectral correlation about the origin due

to the impropriety [13].
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To derive the optimal transmit waveform, we devise the notion of the impropriety frequency function

of the transmitted improper-complex SOS data sequence by using the relation between the power spectral

density (PSD) and the complementary PSD of the random process. This real-valued non-negative function

converts the transmit waveform optimization problem into an equivalent convex optimization problem to

find the optimal energy density of the transmit waveform. Then, a line search combined with an iterative

algorithm is proposed to solve the problem. After finding theoptimal energy density, the optimal transmit

and receive waveforms are obtained. Numerical results provide an example of joint waveform design and

also show the effect of the impropriety frequency function on the mean-squared error (MSE) performance.

The rest of this paper is organized as follows. In Section II,the system model is described and the

problem is formulated in the time domain. In Section III, theproblem is reformulated in the frequency

domain. In Section IV, the impropriety frequency function is introduced and the jointly optimal transmit

and receive waveforms are derived. Numerical results are provided in Section V, and concluding remarks

are offered in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system model and formulate the optimization problem in the time

domain. The system model is an extension of that in [8], whichonly considers the transmission and

reception of a proper-complex SOS data sequence, to now allow improper-complex SOS sequences. The

optimality criterion of the joint optimization problem is also extended from the LMMSE criterion to the

WLMMSE criterion.

A. System Model

A Tx and an Rx operate over a real passband to transmit a data sequence{b[l]}l∈Z. Fig. 1 shows

the system block diagram in complex baseband. The data sequence {b[l]}l∈Z is assumed well modeled

by a zero-mean improper-complex SOS random process with auto-covariance and complementary auto-

covariance functions given, respectively, bym[k] , E{b[k + l]b[l]∗} and m̃[k] , E{b[k + l]b[l]}, where

the superscript∗ denotes complex conjugation. By applying the discrete-time Fourier transform (DTFT)
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operations tom[k] and m̃[k], the PSDM(f) and the complementary PSD̃M(f) of the data sequence

{b[l]}l∈Z are derived, respectively, asM(f) ,
∑∞

k=−∞m[k]e−j2πfk andM̃(f) ,
∑∞

k=−∞ m̃[k]e−j2πfk.

The Tx to be designed employs linear modulation with symbol transmission rate1/T [symbols/sec],

where the transmit waveform is denoted bys(t). The transmitted signal
∑∞

k=−∞ b[k]s(t− kT ) is passed

through a strictly band-limited channel that is modeled by an LTI system with impulse responseh(t)

having the one-sided bandwidthB [Hz] in complex baseband.

The received signal denoted byZ(t) consists of the signal from the Tx and an additive interference-plus-

noise signalN(t), where the latter is modeled by a zero-mean proper-complex SOCS random process with

fundamental cycle periodT0. It is assumed that the multiplicative inverseT of the symbol transmission

rate of the desired signal is chosen as an integer multiple ofT0. Thus,Z(t) can be written as

Z(t) =
∞
∑

k=−∞

b[k]p(t− kT ) +N(t), (1)

wherep(t) , h(t)∗s(t) denotes the overall response with the operator∗ denoting the convolution integral.

There should be no confusion from the superscript∗ that denotes the complex conjugation.

In (1), it can be easily shown that the desired signal component X(t) ,
∑∞

k=−∞ b[k]p(t−kT ) becomes

a zero-mean SOCS random process due to the second-order property of the zero-mean SOS data sequence

{b[l]}l∈Z. In other words, the mean, the auto-covariance, and the complementary auto-covariance functions

of X(t) satisfy, respectively,µX(t) , E{X(t)} = 0, rX(t, s) , E{X(t)X(s)∗} = rX(t + T, s + T ), and

r̃X(t, s) , E{X(t)X(s)} = r̃X(t+T, s+T ), ∀t, ∀s. In what follows, we also callrX(t, s) andr̃X(t, s) the

auto-correlation and the complementary auto-correlationfunctions, respectively, becauseX(t) has mean

zero.

In (1), it can be straightforwardly shown that the interference-plus-noise signalN(t) is SOCS with mean

zero and cycle periodT , becauseT is assumed to be an integer multiple ofT0, i.e.,µN(t) , E{N(t)} = 0,

rN(t, s) , E{N(t)N(s)∗} = rN(t + T, s+ T ), and r̃N(t, s) , E{N(t)N(s)} = r̃N(t+ T, s + T ), ∀t, ∀s.

Now thatZ(t) is a summation of two uncorrelated zero-mean SOCS random processes with cycle period

T , it is also a zero-mean SOCS random processes with cycle period T .

It is well known [13] that, for a vector-valued signal model,a widely linear Rx employing two
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linear filters outperforms a linear Rx employing only one linear filter when either the desired signal

or the interference-plus-noise signal is improper. Thus, in this paper, we employ two LTI filters with

impulse responsesw1(−t)∗ and w2(−t)∗ to process the improper-complex SOCS processZ(t) and its

complex conjugateZ(t)∗, respectively. The two LTI filters are followed by uniform samplers with rate

1/T [samples/sec], and then the sequence of decision statistics {z[l]}l∈Z is obtained as the sum of the

sampler outputs, i.e.,
z[l] , z1[l] + z2[l], (2)

where the sampler outputsz1[l] andz2[l] are defined, respectively, as

z1[l] , w1(−t)∗ ∗ Z(t)
∣

∣

t=lT
=

∫ ∞

−∞

w1(t− lT )∗Z(t)dt and (3a)

z2[l] , w2(−t)∗ ∗ Z(t)∗
∣

∣

t=lT
=

∫ ∞

−∞

w2(t− lT )∗Z(t)∗dt. (3b)

B. Problem Formulation in Time Domain

Our objective is to find the transmit and receive waveformss(t), w1(t), andw2(t) that jointly minimize

the MSE given by
ε
(

s(t), w1(t), w2(t)
)

, E{|b[l]− z[l]|2}, (4)

where s(t), w1(t), andw2(t) are the parameters to be designed. SinceT is an integer multiple of the

fundamental cycle periodT0 of the interference-plus-noise signal, it can be easily shown that the MSE

defined in (4) as the objective function of the optimization problem is the same regardless of the value

of l.

The average transmit power constraint is then imposed on this joint optimization problem. Since the

transmitted signal is SOCS with cycle periodT , the average transmit power̄P can be defined as

P̄ , E







1

T

∫

〈T 〉

∣

∣

∣

∣

∣

∞
∑

k=−∞

b[k]s(t− kT )

∣

∣

∣

∣

∣

2

dt







, (5)

where〈T 〉 denotes any integration interval of lengthT [sec]. Thus, the constraint is given bȳP = PT for

somePT > 0. Therefore, the joint optimization problem is given by

Problem 1:

minimize
s(t), w1(t), w2(t)

ε
(

s(t), w1(t), w2(t)
)

(6a)

subject to P̄ = PT . (6b)

III. PROBLEM REFORMULATION IN FREQUENCY DOMAIN

In this section, Problem 1 described in the time domain is reformulated in the frequency domain. To

proceed, we first review the notions of the VFT and the matrix-valued PSD. Then, by proposing the
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notion of the matrix-valued complementary PSD and the methods to augment the VFTs of the transmit

and receive waveforms, we convert the objective function (4) and the average transmit power constraint

(5) to equivalent expressions in the frequency domain.

A. Review of VFT and Matrix-Valued PSD

In this subsection, we briefly review the notions of excess bandwidth, the Nyquist interval, the VFT,

and the matrix-valued PSD. For details, see [8].

Given a pair(B, 1/T ) of a bandwidth and a reference rate, the excess bandwidthβ is defined as

β , 2BT − 1 and the Nyquist intervalF is defined asF ,
{

f : − 1
2T

≤ f < 1
2T

}

.

Given a pair(B, 1/T ) and a deterministic functionp(t) having the continuous-time Fourier transform

(CTFT) P (ξ) ,
∫∞

−∞
p(t)e−j2πξtdt, the VFTp(f) of p(t) is defined as a vector-valued function off ∈ F

that is equivalent toP (ξ). In particular, thekth entry ofp(f) is given by [p(f)]k , P
(

f + k−L−1
T

)

for

k = 1, 2, · · · , 2L+ 1, whereL , ⌈β/2⌉.

Given a pair(B, 1/T ) and an SOCS random processN(t) with cycle periodT having the auto-

correlation functionrN (t, s), the matrix-valued PSDRN (f) of N(t) is defined as a matrix-valued function

of f ∈ F , whose(k, l)th entry is given by[RN(f)]k,l , R
(k−l)
N (f+(l − L− 1)/T ) for k, l = 1, 2, · · · , 2L+

1, whereR
(k)
N (ξ) is the CTFT ofr(k)N (τ) that is obtained by applying the Fourier series expansion to

rN(t, t− τ), i.e., rN(t, s) =
∑∞

k=−∞ r
(k)
N (t− s)ej2πkt/T .

In using the above definitions, it is assumed that the parameter B is chosen as bandwidth in complex

baseband over which the Rx can observe and process a signal and that the parameter1/T is chosen as

the symbol transmission rate of the Tx. It is also assumed that the frequency band over which the Tx can

emit non-zero power is identical to the frequency band of theRx. For a general case where these two

frequency bands are different, the notion of virtual legacyRx’s and the orthogonal constraint at the virtual

legacy Rx’s can be employed as is done in [15] for the transmission of a proper-complex data sequence.

Due to the above assumption on the frequency band that can be used by the Tx and the Rx, the first and

the last entries of the VFT of the transmit waveform need to bealways zero for−1/(2T ) ≤ f ≤ L/T −B

and B − L/T ≤ f ≤ 1/(2T ), respectively. For this, the notion of the effective VFT is employed as
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discussed in [8], [15], and [16]. The effective VFT is definedas a variable-length vector-valued function

of f ∈ F by removing the first and the last entries of the VFT for−1/(2T ) ≤ f ≤ L/T − B and

B − L/T ≤ f ≤ 1/(2T ), respectively. In what follows, the length of the effectiveVFT is denoted by

N (f). For details, see [16, Eq. (14)]. Similarly, the effective matrix-valued PSD can be also defined as

an N (f)-by-N (f) matrix-valued function off ∈ F by removing both the first row and column of the

matrix-valued PSD for−1/(2T ) ≤ f ≤ L/T − B and by removing both the last row and column for

B − L/T ≤ f ≤ 1/(2T ).

B. Problem Reformulation in Frequency Domain

In this subsection, the objective function and the average transmit power constraint in Problem 1 are

converted into equivalent expressions in the frequency domain. To begin with, we propose the notion of

the matrix-valued complementary PSD of an improper-complex SOCS random process.

Definition 1: Given a pair(B, 1/T ) and an improper-complex SOCS random processX(t) with cycle

periodT and complementary auto-correlation functionr̃X(t, s), let R̃(k)
X (ξ) be the CTFT ofr̃(k)X (τ) that

is obtained by applying the Fourier series expansion to the periodic signalr̃X(t, t − τ) = r̃X(t + T, t +

T − τ), ∀t, i.e., r̃X(t, s) =
∑∞

k=−∞ r̃
(k)
X (t − s)ej2πkt/T . Then, the matrix-valued complementary PSD

R̃X(f) is defined as a matrix-valued function off ∈ F , whose(k, l)th entry is given by[R̃X(f)]k,l ,

R̃
(k−l)
X (f + (l − L− 1)/T ) for k, l = 1, · · · , 2L+ 1.

Note that the matrix-valued complementary PSD̃RN(f) of the interference-plus-noise signalN(t)

becomes an all-zero matrix becauseN(t) is modeled by a zero-mean proper-complex SOCS random

process. Note also that the effective matrix-valued complementary PSD can be defined similarly to the

effective matrix-valued PSD. In what follows, each of the VFT, the matrix-valued PSD, and the matrix-

valued complementary PSD is an effective one.

By using the above definitions, the matrix-valued PSD and thematrix-valued complementary PSD of

the desired signal component in (1) are derived as follows.

Lemma 1:The N (f)-by-N (f) matrix-valued PSDRX(f) and theN (f)-by-N (−f) matrix-valued

complementary PSD̃RX(f) of the desired signalX(t) =
∑∞

l=−∞ b[l]p(t− lT ) are given by
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RX(f) =
1

T
M(fT )p(f)p(f)H and R̃X(f) =

1

T
M̃(fT )p(f)

(

J(−f)p(−f)∗
)H

, (7)

respectively, wherep(f) denotes the VFT ofp(t), J(f) denotes theN (f)-by-N (f) backward identity

matrix whose(m,n)th entry is given by1 for m + n = N (f) + 1, and 0 otherwise, andH denotes

Hermitian transposition.

Proof: By using the CTFT ofr(k)X (τ) andr̃(k)X (τ), it can be easily shown thatR(k)
X (f) = M(fT )P (f+

k/T )P (f)∗/T and R̃
(k)
X (f) = M̃(fT )P (f + k/T )P (−f)/T . Therefore, the conclusion follows from the

definitions reviewed in Section III-A and Definition 1. ✷

Note thatJ(−f)p(−f)∗ in (7) is nothing but the VFT ofp(t)∗. Thus,R̃X(f) can be interpreted as the

correlation between the frequency components atf of X(t) andX(t)∗.

Now, we are ready to convert the objective function. The MSEε , ε
(

s(t), w1(t), w2(t)
)

defined in (4)

can be rewritten as

ε = E{|b[l]|2}− 2ℜ
(

E{b[l]∗z1[l]}
)

+E{|z1[l]|2}− 2ℜ
(

E{b[l]∗z2[l]}
)

+2ℜ
(

E{z1[l]z2[l]∗}
)

+E{|z2[l]|2},

(8)
whereℜ(·) denotes the real part. In the following propositions, each component of the right side of (8)

is expressed in terms of the VFT, the matrix-valued PSD, and the matrix-valued complementary PSD.

Proposition 1:The first three terms of the right side of (8) can be rewritten asE{|b[l]|2} =
∫

F
TM(fT )df ,

E{b[l]∗z1[l]} =
∫

F
w1(f)

HM(fT )p(f)df , andE{|z1[l]|2} =
∫

F
w1(f)

HR(f)w1(f)df , respectively, where

w1(f) is the VFT ofw1(t) andR(f) , RN(f) +RX(f).

Proof: See [8, Proposition 1-4]. ✷

Proposition 2:. The last three terms of the right side of (8) can be rewrittenasE{b[l]∗z2[l]} =
∫

F
w2(f)

H

M̃(fT )∗J(−f)p(−f)∗df ,E{z1[l]z2[l]∗} =
∫

F
w1(f)

HR̃(f)w2(f)df , andE{|z2[l]|2} =
∫

F
w2(f)

HJ(−f)

R(−f)∗J(−f)w2(f)df , respectively, wherew2(f) is the VFT ofw2(t) andR̃(f) , R̃X(f).

Proof: It can be shown similarly to Proposition 1. ✷

Note in E{|z2[l]|2} =
∫

F
w2(f)

HJ(−f) R(−f)∗J(−f)w2(f)df that the pre-multiplication of the

backward identity matrixJ(f) reverses the order of the rows whereas the post-multiplication reverses

that of the columns. Note also thatp(f) = H(f)s(f), ∀f ∈ F , wheres(f) is the VFT of the transmit

waveforms(t) andH(f) is defined asH(f) , diag
{

h(f)
}

with h(f) representing the VFT ofh(t).
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To simplify the expression of the objective function, we define N̄ (f) , N (f) +N (−f),

s̄(f) ,
[

s(f)T ,
(

J(−f)s(−f)∗
)T ]T

and w̄(f) ,
[

w1(f)
T , w2(f)

T
]T

, (9)

where T denotes transposition. Here, the length-N̄ (f) vector-valued functions̄s(f) and w̄(f) are the

VFT of the transmit waveform augmented by the VFT of its complex conjugate and the VFT of a

receive waveform augmented by the VFT of the other receive waveform, respectively. Also, let the

N̄ (f)-by-N̄ (f) matricesH̄(f), M̄(f), and R̄(f) be defined, respectively, as̄H(f) , diag
{

H(f),

J(−f)H(−f)∗J(−f)
}

, M̄ (f) , diag
{

M(f)I(f), M̃(f)∗ I(−f)
}

, and

R̄(f) ,

[

R(f) R̃(f)

R̃(f)H J(−f)R(−f)∗J(−f)

]

(10)

with I(f) denoting theN (f)-by-N (f) identity matrix and diag{A,B} denoting the block diagonal matrix

whose diagonal blocks are the matricesA andB. These notions enable us to derive the optimal receive

waveforms in a straightforward way.

By substituting the results of Propositions 1 and 2 into (8),we can rewrite the objective functionε as

ε
(

s̄(f), w̄(f)
)

=

∫

F

(

TM(fT ) + w̄(f)HR̄(f)w̄(f)− 2ℜ{w̄(f)HH̄(f)M̄(fT )s̄(f)}
)

df, (11)

which is a function ofs̄(f) and w̄(f). Also, by using [8, Eq. (32)] and the definition of̄s(f), we can

rewrite the average transmit powerP̄ defined in (5) as

P̄ =
1

T

∫

F

M(fT )s(f)Hs(f)df =
1

2T

∫

F

M(fT )s̄(f)Hs̄(f)df. (12)

This leads to the equivalent joint optimization problem to find s̄(f) and w̄(f) as

Problem 2:

minimize
s̄(f), w̄(f)

ε
(

s̄(f), w̄(f)
)

(13a)

subject to P̄ = PT . (13b)

In the next section, we solve this optimization problem to obtain the VFTs of the optimal receive and

transmit waveforms.

IV. OPTIMIZATION OF TRANSMIT AND RECEIVE WAVEFORMS

In this section, we first derive the optimal̄w(f) that minimizes the objective function in (13a) for

a given s̄(f). Then, by substituting this̄w(f) and introducing the notion of the impropriety frequency

function, we obtain the optimization problem overs(f). By solving this problem, we finally obtain the

optimal transmit and receive waveforms.
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A. Optimization of Widely Linear Receiver

As in [8, Theorem 2], to find the optimal̄w(f) for given s̄(f), an unconstrained quadratic optimization

problem is solved. Thus, by using the first-order necessary condition, we have the solution

w̄(f) = R̄(f)−1H̄(f)M̄(fT )s̄(f), ∀f ∈ F . (14)

By substituting the above solution into (11), we can rewritethe MSE as

ε
(

s̄(f)
)

=

∫

F

(

TM(fT )− s̄(f)HM̄(fT )HH̄(f)HR̄(f)−1H̄(f)M̄(fT )s̄(f)
)

df. (15)

which is a function only of̄s(f).

B. Impropriety Frequency Function

To convertε
(

s̄(f)
)

into a function only ofs(f), the notion of the impropriety frequency function is

introduced as follows.

Definition 2: Given a discrete-time improper-complex SOS random processwith PSD M(f) and

complementary PSD̃M(f), its impropriety frequency functionk(f) is defined as

k(f) ,







0, if M(f)M(−f) = 0,
|M̃(f)|

√

M(f)M(−f)
, otherwise. (16)

The above definition is motivated by the impropriety coefficient of an improper-complex random

variable [13, Definition 3.1] and by a relation betweenM(f) and M̃(f) shown in [17, Eq. (5)]. By

using the phaseφ(f) of M̃(f), we can rewrite the complementary PSD asM̃(f) = |M̃(f)|ejφ(f) =

k(f)
√

M(f)M(−f)ejφ(f), where0 ≤ φ(f) ≤ 2π. In the next lemma, the properties of the impropriety

frequency and the phase functions are provided.

Lemma 2:The impropriety frequency functionk(f) and the phase functionφ(f) satisfy

0 ≤ k(f) ≤ 1, k(−f) = k(f), and φ(−f) = φ(f), ∀f. (17)

Proof: Sincem̃[−k] = m̃[k] by definition, we haveM̃(−f) = M̃(f), which impliesφ(−f) = φ(f).

This also leads tok(−f) = k(f) by (16). By using the property|M̃(f)|2 ≤ M(f)M(−f) shown in [17,

Eq. (5)], we have0 ≤ k(f) ≤ 1. ✷
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For example, an uncorrelated real-valued PAM data sequenceresults ink(f) = 1, ∀f , whereas any

proper-complex data sequence results ink(f) = 0, ∀f . By using the impropriety frequency function, we

can rewrite the MSE (15) in the form of a function ofs̄(f) as a function ofs(f).

Lemma 3:Definec(f) as

c(f) ,
1

T
M(fT )s(f)HH(f)HRN(f)

−1H(f)s(f). (18)

By usingc(f) andk(f), also defineD(f) andk(f), respectively, as

D(f) ,

[

c(f) 0

0 c(−f)
1+c(−f)(1−k(fT )2)

]

and k(f) ,

[

1

k(f)

]

. (19)

Then, the MSEε
(

s̄(f)
)

in (15) can be rewritten as

ε
(

s(f)
)

=

∫

F

TM(fT )

1 + k(fT )T D(f)k(fT )
df, (20)

which is a function ofs(f).

Proof: See Appendix B. ✷

C. Optimization of Transmitter

Let ε(f) denote the integrand in (20), i.e.,ε(f) , TM(fT )/(1 + k(fT )T D(f)k(fT )). Then, by the

definitions of c(f) and D(f) in (18) and (19), respectively, it can be seen thatε(f0) for somef0 is

affected by the choice ofs(f) at bothf0 and−f0. Thus, Problem 2 can be rewritten as

Problem 3:
minimize
a(f), a(−f)







minimize
s(f), s(−f)

∫

F+

ε(f) + ε(−f)df

subject to ‖s(f)‖2 = a(f), ∀f ∈ F
(21a)

subject to
1

T

∫

F+

M(fT )a(f) +M(−fT )a(−f)df = PT , (21b)

where a(f) , ‖s(f)‖2 is the energy density ofs(f) and F+ , {f : 0 ≤ f < 1/(2T )} denotes the

half-Nyquist interval. Note that the problem is now in the form of a double minimization problem, where

the constraint set ofs(f) is partitioned into subsets, each of which has alls(f) having the samea(f).

Proposition 3:Givena(f), the optimal solution to the inner optimization problem in (21a) is given by

s(f) =
√

a(f)v(f)ejθ(f), ∀f ∈ F , (22)

wherev(f) is the normalized eigenvector corresponding to the largesteigenvalue ofH(f)HRN(f)
−1H(f),

andθ(f) can be chosen arbitrarily.

Proof: Note that the integrandε(f) + ε(−f) in (21a) can be rewritten as

ε(f) + ε(−f) = T
M(−fT )(1 + c(f)k̄(fT )) +M(fT )(1 + c(−f)k̄(fT ))

1 + c(f) + c(−f) + c(f)c(−f)k̄(fT )
, (23)
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wherek̄(f) , 1−k(f)2. Sinceε(f)+ε(−f) evaluated at somef0 is a function only ofs(f0) ands(−f0)

throughc(f0) andc(−f0), respectively, we just need to minimize by optimizingc(f0) andc(−f0) in the

integrand at eachf ∈ F+ subject to the constraint. Letc(f0) = c1 andc(−f0) = c2. Then, it can be shown

that ∂
(

ε(f0) + ε(−f0)
)

/∂c1 < 0 and∂
(

ε(f0) + ε(−f0)
)

/∂c2 < 0. Moreover, sincea(f0) = s(f0)
Hs(f0),

c(f0) is constrained bya(f0) throughs(f0) andc(−f0) is constrained bya(−f0) throughs(−f0). Thus,

we now can separately finds(f0) that maximizesc(f0) for givena(f0) ands(−f0) that maximizesc(−f0)

for given a(−f0). This maximization ofc(f) defined in (18) subject toa(f) = ‖s(f)‖2 is exactly the

same problem solved in [8, Section IV-B], where the optimal solution is given by (22) at eachf ∈ F .

Therefore, the conclusion follows. ✷

According to (22), the optimals(f) given a(f) is not affected by the impropriety frequency function

k(f). However, it actually affects the outer optimization ofa(f), which will be performed in what follows.

Let λ(f) denote the largest eigenvalue ofH(f)HRN(f)
−1H(f). Then, by (22),c(f) can be simplified

as c(f) = M(fT )λ(f)a(f)/T , ∀f ∈ F . Thus, the outer minimization problem of Problem 3 to find the

optimal energy densityaopt(f) for f ∈ F becomes

Problem 4:

minimize
a(f), a(−f)

T 2

∫

F+

ε̄(f)df (24a)

subject to
1

T

∫

F+

M(fT )a(f) +M(−fT )a(−f)df = PT , (24b)

whereε̄(f) is given by

ε̄(f) ,

M(−fT )
T

(

1 + M(fT )
T

λ(f)a(f)k̄(fT )
)

+ M(fT )
T

(

1 + M(−fT )
T

λ(−f)a(−f)k̄(fT )
)

1 + M(fT )
T

λ(f)a(f) + M(−fT )
T

λ(−f)a(−f) + M(fT )
T

λ(f)a(f)M(−fT )
T

λ(−f)a(−f)k̄(fT )
, (25)

with k̄(f) , 1− k(f)2 as already used in (23). Now, we are ready to present the optimal a(f). In what

follows,FM andFλ denote the supports ofM(fT ) andλ(f), respectively, i.e.,FM , {f ∈ F : M(fT ) 6=

0} andFλ , {f ∈ F : λ(f) 6= 0}.

Proposition 4: The optimal solution to Problem 4 can be found by performing aline search for a

parameterν in (0, νmax], whereνmax , maxf λ(f)
(

M(−fT )k(fT )2+M(fT )
)

. For eachν ∈ (0, νmax],

a candidate density function can be constructed by using thealgorithm described in Table I, where

u(ν, f) =























[

1√
ν
− 1 +M(−fT )λ(−f)a(−f)

√

λ(f)ν(f)

]+ √

λ(f)ν(f)

λ(f)M(fT )g(−f)
, for f ∈ FM ∩ Fλ,

0, for f ∈ FM ∩ (Fλ)
c,

arbitrary, for f ∈ (FM)c,

(26)

with g(f) , 1+M(fT )λ(f)a(f)k̄(fT ), ν(f) , M(−fT )k(fT )2+M(fT )g(−f)2, and[x]+ , max(x, 0).
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The candidate function that satisfies the power constraint (24b) is the optimal density functionaopt(f).

Proof: See Appendix C. ✷

Note that any line search algorithm can be used to findaopt(f) in Proposition 4. Note also that the

algorithm in Table I allows the construction of an approximate solution with arbitrary accuracy if the

intervalF+ is partitioned finely enough.

Now, by usingaopt(f), we can find the VFTs of the optimal transmit and receive waveforms as follows.

Theorem 1:The VFT sopt(f) of the jointly optimal transmit waveformsopt(t) as the solution to

Problem 1 are given by

sopt(f) =

{
√

aopt(f)v(f)e
jθ(f), for f ∈ FM ,

arbitrary, for f ∈ (FM)c,
(27)

where θ(f) can be chosen arbitrarily. Then, the VFTsw1,opt(f) and w2,opt(f) of the jointly optimal

receive waveformsw1,opt(t) andw2,opt(t) can be found by using (14).

Proof: The conclusion immediately follows from the relation (9) among sopt(f), s̄opt(f), w1,opt(f),

w2,opt(f), andw̄opt(f), and Propositions 3 and 4. ✷

As already mentioned, cyclostationarity and impropriety,respectively, imply the periodic spectral cor-

relation and the symmetric spectral correlation about the origin [13, Ch. 10], [18]. Theorem 1 vividly

shows these structures in the optimal transmitted signal. Specifically, the use of the VFT technique and

the augmentation ofs(f) and s(−f) to form s̄(f) take care of the periodic spectral correlation and the

symmetric spectral correlation, respectively.

V. NUMERICAL RESULTS

In this section, numerical results are provided that show the magnitude square of the optimal transmit

and receive waveforms and that show the MSE performance achieved by the optimal waveforms as a

function of the amount of impropriety. For illustrative purposes, it is assumed throughout this section that

an interferer linearly modulates a data sequence consisting of uncorrelated zero-mean proper-complex

QPSK symbols withEs/N0 = 10 [dB] and a square-root raised cosine transmit waveform having excess

bandwidthβ = 0.25. It is assumed that the Tx linearly modulates a data sequenceconsisting of uncorrelated

zero-mean improper-complex QAM symbols with uncorrelatedin-phase and quadrature components. It is
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also assumed that all the channels are frequency flat and corrupted by AWGN.

The first results are to compare the PSD of data-like interference with the squared magnitudes of the

optimal transmit and receive waveforms. There is a single interferer in Figs. 2-(a) and (b), whereas there

are two uncorrelated interferers in Fig. 2-(c). The QAM symbols of the Tx haveEs/N0 = 5 [dB]. For

Fig. 2-(a), the QAM symbols have the in-phase variance the same as the quadrature variance, which

implies k(f) = 0, ∀f . For Figs. 2-(b) and (c), the QAM symbols have the in-phase variance4-times the

quadrature variance, which impliesk(f) = 0.8, ∀f . It can be seen thatw2,opt(t), processing the complex

conjugate of the received signal, is zero for the data sequence havingk(f) = 0, ∀f , but it is non-zero for

the data sequence havingk(f) = 0.8, ∀f .

The next results are to compare the MSEs achieved by the optimal transmit and receive waveforms for

different levels of impropriety. We consider the same number of interferers and interference parameters

as Fig. 2-(c). In Fig. 3-(a), the QAM symbols of the Tx haveEs/N0 from 0 to 15 [dB] and have

k(f) = 0.0, 0.2, 0.4, 0.6, 0.8, or 1.0, ∀f . In Fig. 3-(b), the QAM symbols of the Tx haveEs/N0 = 0, 5, 10

or 15 [dB] and havek(f) from 0 to 1, ∀f . In both cases, as the amount of impropriety increases, the

optimal pair of the Tx and Rx more exploits impropriety and cyclostationarity of the desired signal in

suppressing the data-like interference and, consequently, the MSE performance monotonically improves.

VI. CONCLUSIONS

In this paper, we have considered a joint optimization of theTx and Rx for the transmission of an

improper-complex SOS data sequence over an additive proper-complex cyclostationary noise channel. An

MSE minimization problem is formulated under the average transmit power constraint to find the jointly

optimal transmit waveform of a linear modulator and the receive waveforms of a widely linear Rx. This

problem is converted into an equivalent problem described in the frequency domain with the help of the

VFT technique and solved by introducing the notion of the impropriety frequency function. It is shown

that the optimal transmit and receive waveforms well exploit the frequency-domain second-order structure

of the improper-complex SOS data sequence and the additive proper-complex SOCS noise.
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APPENDIX

A. Proof of Lemma 3

Proof: Define the2-by-2 matricesM̂(f), M(f), andK(f), respectively, as

M̂(f) ,

[

M(f) M̃(f)

M̃(f)∗ M(−f)∗

]

, M(f) ,

[

M(f)ejφ(f) 0

0 M(−f)e−jφ(f)

]

1

2

, andK(f) ,

[

1 k(f)

k(f) 1

]

. (28)

Then, we can rewriteM̂(f) as M̂(f) = M(f)K(f)M(f)H. Also, define theN̄ (f)-by-N̄ (f) ma-

trix R̄N(f) and theN̄ (f)-by-2 matrix S̄(f) as R̄N(f) , diag
{

RN(f),J(−f)RN(−f)∗J(−f)
}

and

S̄(f) , diag
{

s(f),J(−f)s(−f)∗
}

, respectively. Due to the ambient noise component inN(t), RN(f)

and R̄N(f) are positive definite for allf ∈ F . By using R̄N(f)
−1/2, define theN̄ (f)-by-2 matrix

P̃ (f) as P̃ (f) , R̄N (f)
−1/2H̄(f)S̄(f)M(fT )/

√
T . Then, it can be shown that̄H(f)M̄(fT ) s̄(f) =

√

TM(fT )e−jφ(fT )/2 R̄N(f)
1/2P̃ (f)k(fT ). Thus, the second term of the integrand in (15), which contains

H̄(f)M̄(fT )s̄(f), can be rewritten as

s̄(f)HM̄ (fT )HH̄(f)HR̄(f)−1H̄(f)M̄(fT )s̄(f)

= TM(fT )k(fT )T P̃ (f)H
(

I + P̃ (f)K(fT )P̃ (f)H
)−1

P̃ (f)k(fT ), (29)

whereI conveniently denotes the appropriately sized identity matrix throughout this proof. Let̂p(f) ,
√

M(fT )/Tejφ(f)/2RN(f)
−1/2H(f)s(f). Then, we can rewritẽP (f) andc(f) defined in (18) as̃P (f) =

diag
{

p̂(f), J(−f)p̂(−f)∗
}

and c(f) = ‖p̂(f)‖2, respectively. Ifc(f)c(−f) = 0, then it can be shown

that (29) leads to (20) by using the matrix inversion lemma showing I − uH(I + uuH)−1u = (1 +

uHu)−1 for any vectoru. If c(f)c(−f) 6= 0, then, sinceP̃ (f)HP̃ (f) = diag
{

c(f), c(−f)
}

is invertible,

it can be shown thatP̃ (f)H
(

I + P̃ (f)K(fT )P̃ (f)H
)−1

P̃ (f)C̃(f) = I, where C̃(f) is defined as

C̃(f) ,
(

P̃ (f)HP̃ (f)
)−1

+K(fT ). Sincec(f) andc(−f) are not zero, we can rewritẽC(f) asC̃(f) =

diag
{

c(f)−1, c(−f)−1 + 1− k(fT )2
}

+ k(fT )k(fT )T . Thus, we now can rewrite the right side of (29)

asTM(fT )k(fT )T C̃(f)−1k(fT ). By using the matrix inversion lemma, the conclusion follows. ✷

B. Proof of Proposition 4

Proof: For convenience, the integration intervalF+ is partitioned intoN equal-length subintervals.

Then, the solution can be straightforwardly extended to theoriginal problem by lettingN tend to infinity.

Let ξi , i/(2NT )−1/(4NT ), ai , a(ξi), âi , a(−ξi), mi , M(ξiT )/T , m̂i , M(−ξiT )/T , λi , λ(ξi),
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λ̂i , λ(−ξi), andki , k(ξiT ). Then, the original optimization problem can be approximated by

minimize
ai,âi≥0

N
∑

i=1

fi(ai, âi) subject to
N
∑

i=1

(

miai + m̂iâi
)

≤ PTT, (30)

wherefi(ai, âi) is given byfi(ai, âi) ,
(

m̂i(1 +miλiaik̄i) +mi(1 + m̂iλ̂iâik̄i)
)

/
(

1 +miλiai + m̂iλ̂iâi +

miλiaim̂iλ̂iâik̄i
)

for non-negative real numbersmi, m̂i, λi, λ̂i, andk̄i , 1−k2
i with 0 ≤ ki < 1, ∀i. It can

be easily shown that, ifmi = 0, ai can be chosen arbitrarily becauseai does not affect both the objective

function and the constraint. It can be also easily shown thatλi = 0 results inai = 0 to keep from wasting

the transmit power. Similarly, if̂mi = 0, then âi can be chosen arbitrarily, and if̂λi = 0, then âi = 0.

The case ofki = 1 is discussed after solving the optimization problem forki < 1. Thus, in what follows,

we assume thatmim̂i 6= 0, λiλ̂i 6= 0, andki < 1, ∀i.

Define a and m as a , [a1, â1, a2, â2, · · · , aN , âN ]T and m , [m1, m̂1, m2, m̂2, · · · , mN , m̂N ]
T ,

respectively. Then, it can be easily shown that the HessianFi(a) of the objective function
∑N

i=1 fi(ai, âi)

is a positive definite matrix for eacha and the equality constraint
∑N

i=1

(

miai+m̂iâi
)

= mT a is an affine

function of a. Thus, the problem in (30) is a strictly convex optimizationproblem. Since the Karush-

Kuhn-Tucker (KKT) condition is necessary and sufficient fora point to be the unique solution of a strictly

convex optimization problem [19, Theorem 22.9], we first need to find the KKT condition.

The Lagrangian function of (30) can be written asl(a, ν,u) =
∑N

i=1 fi(ai, âi)+ν(mT a−PTT )−µT a

by introducing the multipliersν andµ , [µ1, µ̂1, µ2, µ̂2, · · · , µN , µ̂N ]
T . Then, the KKT condition can be

written as−miλi

(

m̂ik
2+miĝi(âi)

2
)

/hi(ai, âi)
2+miν−µi = 0 and−m̂iλ̂i

(

mik
2+m̂igi(ai)

2
)

/hi(ai, âi)
2+

m̂iν− µ̂i = 0 with ai ≥ 0, âi ≥ 0, µi ≥ 0, µ̂i ≥ 0, µiai = 0, µ̂iâi = 0, ∀i, and
∑N

i=1(miai+m̂iâi) = PTT ,

wherehi(ai, âi) , 1+miλiai+m̂iλ̂iâi+miλiaim̂iλ̂iâik̄i, gi(ai) , 1+miλiaik̄i, andĝi(âi) , 1+m̂iλ̂iâik̄i.

Defineνi(ai, âi) , λi

(

m̂ik
2 +miĝi(âi)

2
)

/hi(ai, âi)
2 and ν̂i(ai, âi) , λ̂i

(

mik
2 + m̂igi(ai)

2
)

/hi(ai, âi)
2,

respectively. It can be easily shown that∂νi(ai, âi)/∂ai < 0, ∂νi(0, âi)/∂âi < 0, ∂ν̂i(ai, âi)/∂âi < 0,

and ∂ν̂i(ai, 0)/∂ai < 0 for all ai ≥ 0 and âi ≥ 0. Thus,νi(ai, âi) < νi(0, 0) and ν̂i(ai, âi) < ν̂i(0, 0),

respectively, for allai > 0 and âi > 0. It can be also shown that, ifν ≥ νi(0, 0) and ν ≥ ν̂i(0, 0), then

only ai = 0 and âi = 0 satisfy the KKT condition. It is noteworthy thatν satisfying the KKT condition is

upper-bounded byνmax that is defined as the largest value amongνi(0, 0) and ν̂i(0, 0), ∀i, which can be
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easily found and is finite and positive. Thus, to finda, ν, andµ that jointly satisfy the KKT condition, a

line search forν can be performed over the interval(0, νmax], where two steps are needed to construct

a candidate solutiona and the multiplierµ at eachν.

First, a candidate solutiona associated withν is constructed as follows. Givenν, we need to find the

pair of (ai, âi) satisfying the KKT condition, i.e.,ν − µi/mi = νi(ai, âi) andν − µ̂i/m̂i = ν̂i(ai, âi) with

ai ≥ 0, âi ≥ 0, µi ≥ 0, µ̂i ≥ 0, µiai = 0, µ̂iâi = 0, which can be rewritten as

ai = u1(âi) ,

[

√

λi

(

m̂ik2 +miĝi(âi)2
)

/
√
ν − (1 + m̂iλ̂iâi)

]+
(

λimiĝi(âi)
)−1

, (31a)

âi = u2(ai) ,

[

√

λ̂i

(

mik2 + m̂ig(ai)2
)

/
√
ν − (1 +miλiai)

]+
(

λ̂im̂ig(ai)
)−1

, (31b)

µi = 0 if ai > 0, and µ̂i = 0 if âi > 0. It can be easily shown thatu1(âi) is a decreasing function of

âi and u2(ai) is a decreasing function ofai. Thus,(u2 ◦ u1)(âi) becomes an increasing function ofâi.

It is noteworthy that the non-negative numbersai and âi are upper-bounded byu1(0) andu2(0). Thus,

when we alternately updateai and âi from âi = 0 by using (31a) and (31b), respectively, bothai and âi

converge to the solution satisfying the KKT conditions. This iteration algorithm can be also used to find

the candidate solutionai and âi for the case ofki = 1. Note that, ifki = 1 andλi = λ̂i, any pair ofai

and âi satisfyingmiai + m̂iâi = [
√

(mi + m̂i)/(λiν) − 1/λi]
+ can be the candidate solution associated

with ν. After finding ai and âi, µi and µ̂i can be computed by substitutingai, âi, andν into the KKT

condition.

Second, after constructing the candidate solutiona associated withν, we check whether the candidate

solution satisfies the power constraint
∑N

i=1

(

miai + m̂iâi
)

= PTT . If so, then the candidate solution

associated withνopt is the optimal solutionaopt. If not, then the line search continues. Therefore, the

conclusion follows. ✷
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✲

∞∑

k=−∞

b[k]δ(t− kT )

s(t) ✲ h(t)
X(t)✲⊕

✻

N(t)

✲ w1(−t)∗
Z(t)

(·)∗

✲ w2(−t)∗

❄

@ t = lT

✲
z1[l] ⊕ ✲ z[l]

❄

@ t = lT

z2[l]

✻

Fig. 1. System block diagram.

TABLE I
AN ALGORITHM TO CONSTRUCTCANDIDATE DENSITY FUNCTION AT ν ∈ (0, νmax]

1: Choosef0 ∈ F+.
2: Constructa(f0) anda(−f0) as follows.
3: Seta(−f0) := 0.
4: REPEAT
5: Updatea(f0) asa(f0) := u(ν, f0) by usingu(ν, f) defined in (26).
6: Updatea(−f0) asa(−f0) := u(ν,−f0).
7: UNTIL a(f0) anda(−f0) converge.
8: Repeat lines1− 7 for all f0 ∈ F+.
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Fig. 2. Comparison of squared-magnitudes of the optimal transmit and receive waveforms for (a)k(f) = 0, ∀f and single interferer, (b)
k(f) = 0.8, ∀f and single interferer, and (c)k(f) = 0.8, ∀f and two uncorrelated interferers.
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