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Abstract: This paper presents a computationally efficient imple-

hardware platform [14]. It allows system reconfiguratiornusy

mentation of a Hamming code decoder on a graphics process-ing software commands, because users are required to switch

ing unit (GPU) to support real-time software-defined radio (SDR),
which is a software alternative for realizing wireless commnica-
tion. The Hamming code algorithm is challenging to paralleize ef-
fectively on a GPU because it works on sparsely located datgeims
with several conditional statements, leading to non-coaseed, long
latency, global memory access, and huge thread divergencko ad-
dress these issues, we propose an optimized implementatiohthe
Hamming code on the GPU to exploit the higher parallelism inter-
ent in the algorithm. Experimental results using a compute mified
device architecture (CUDA)-enabled NVIDIA GeForce GTX 560
including 335 cores, revealed that the proposed approach heved
a 99x speedup versus the equivalent CPU-based implementati.

Index Terms: Hamming code, GPU optimization, Software-defined
radio.

[. INTRODUCTION

Many existing wireless communication systems employ
application specific integrated circuits (ASICs) basedide

cated devices for particular communication protocol stads,

including worldwide interoperability for microwave acees
(WIMAX, IEEE 802.16), Wi-Fi (IEEE802.11), digital high defi

nition TV, wideband code division multiple access (W-CDMA)
and global system for mobile communication (GSM) [1]-[7]
However, the fixed functionality of such ASIC devices limit

their application to emerging communication standardabse

they were fixed for specific coding schemes, data rates, f
guency ranges, and types of modulation [8]. In addition, man

from one standard to another standard very frequently [IkB].
addition, it enables the radio device to change transrgitiimd
receiving characteristics by means of the software witladut
tering the hardware platform [15]. In SDR, some or all of the
physical layer functions are coded in the software, whiatsru

on general-purpose programmable processors (GPPs) and dig
ital signal processors (DSPs) [16],[17]. GPPs and DSPs offe
the necessary programmability and flexibility for variousrs
applications. However, neither GPPs nor DSPs can meet the
much higher levels of performance required by high computa-
tional workloads in SDR [18].

Among many available computational models, graphics pro-
cessing units (GPUs) perform well when performing latency-
tolerant, highly parallel, and independent tasks. At&ddby
the features of modern GPUs, many researchers have dedelope
GPU-based SDR systems including turbo decoders, LDPC de-
coders, Viterbi decoders, and MIMO detectors to meet thk hig

roughput required by the SDR algorithm [19]-[25]. In this
paper, we present an optimized implementation of a Hamming
decoder on a GPU; the Hamming decoder is widely used as
a forward error correction (FEC) mechanism in wireless com-
munication. Practical applications of the Hamming decader
clude Ethernet (IEEE 802.3), WIMAX (IEEE 802.16€), Wi-Fi

éIEEE 802.11n), telecommunication, digital video broastiicey-

satellite second generation (DVB-S2), wireless sensavargs
I(WSNS), underwater wireless sensor networks (UWSNSs), and
e- S

space communication [26]-[31].

facturing costs are high and time-to-market of hardwaréogsv ~ Contributions of this study are as follows:

is long [9].

Software-defined radio (SDR) is an emerging technology thtThiS paper presents a massively parallel and optimized im-
offers software alternatives to existing hardware sohgifor Plémentation of a Hamming decoder on a GPU by exploring
wireless communication [10],[11], SDR technology has ngige Me€mory transfer, memory transact!on, and kernel commutati .
attracted the interest of the communication research canitgnu ® 1he performance of the Hamming decoder on the GPU is
[12],[13]. SDR comprises software implementation of multithoroughly evaluated for various packet sizes, code lengifd

standard and multi-protocol communication systems usirgy o2/Tor tolerance. _
e The performance of the proposed GPU approach is compared

with the equivalent sequential approach run on a conveation
CPU.
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II. REVIEW OF THE HAMMING DECODER 3 OUT
Hamming decoding is performed at the destination end of the — |Pa P3| Py | P p—>

packet, and involves the exact reverse process of encoeéing p
formed at the transmitter end. Figure 1 shows a Hamming code CPU buffer size: L
decoder that consists of three components: splitter, decod
and merger. The splitter receives the Hamming encoded packe PS:
H={b; b=0 | b=1}, and splits the message into t segmehHts, (Packet Send)
H,,..., H;, wheret is the error tolerance. The main decoder con- >

) . : DKE
sists of three fundamental units: error detection (EDprezor- PR-
rection (EC), and redundancy remover (RR). We use the terms (Packet Receive)
packet andmessage interchangeably throughout this paper. CPU/ GPU/

Host Device
t ; Fig. 2. Task partitioning for the proposed Hamming decoder.

v

H | M
B sy bl v, (M @

R — Encoded packe
Kernel: Checksum E_"El;;d:s;l;"_'

Fig. 1. Components in a Hamming code decoder. '
! calculation '
In the encoding process, some redundancy or checksum bits { Error detection |

. |
& correction !

are incorporated along with the original message for thepae Kernel: Error @ ........
of error detection, and these should be removed once they hav Ul [ e e
. . ! Redundancy |

served their purpose. Subsequently, the decoder retnieess | removing |
sage segmentd ;, M,,..., M, and the merger unifies them to tmeee- E
produce the decoded packit, which is similar to the original I:l CPU | Original packet |
packet sent by the sender or transmitter. pommee | L retrieval |
| ! GPU : '

Ill. GPU-BASED IMPLEMENTATION OF THE HAMMING
DECODER

This section presents a computationally efficient impletaen
tion of the Hamming code algorithm on a GPU. Encoded pack-
ets, namelyp,, Ps,...,P,,, are primarily received in the receiver Fig. 3. Execution flow of the Hamming decoding procedure oP&/@nd
buffer and the entire task can be divided into three steps, as GPU.
shown in Figure 2: (i) pre-processing in the CPU, (ii) packet
transfer between the CPU and GPU, and (iii) device kernel exe
cution (DKE). All of these steps are performed in an optirdize .
manner from a GPU computing viewpoint. A. Packet pre-processing

Figure 3 depicts an execution flow of the entire decoding pro-Instead of transferring the encoded packistH, +Ho+...+H,,
cess in the destination end of a network data packet, whgre o the GPU immediately, packet pre-processing is first per-
ular blocks represent the steps executed on the CPU andtthe ft’med, because the first step in a GPU is to calculate check-
ted blocks represent the tasks in the GPU. The CPU and GBWluins on each ofl;,Hs,...,H; ; this process accesses sparsely
are also called the Host and Device, respectively. At theaiyt located elements in global memory. Considering Hpythe in-
the encoded packet, undergoes pre-processing in the CPWex setdg, |1,...,I|r—1, shown in Figure 4, access indicestbf
which is explained in Section 3.1, before being transfetoegte that are not completely adjacent. For instance, (7, 4) Hargmi
GPU. A parallel algorithm executed on the GPU is called a kerede hasH;|=7+4=11 bits andR|=4. Thus},={1,3,5,7,9,1},
nel, and the proposed approach configures two kernels, gameE{2,3,6,7,10,1}, 1,={4,5,6,7, and15={8,9,10,1%. Con-
checksumanderror, as indicated in Figure 3. Thahecksumker- sequently, data items accessed Iyand |,are clearly non-
nel computes the redundancy information, anddtrer kernel adjacent. Even though elementd gfandl ;3 apparently seem to
performs error detection, correction, redundancy remavadl be adjacent for a small code length, they include non-adjace
finally retrieves the original packet. This packet, now refd indices for larger values ofi};]|.
to as the decoded packet, is transferred from the GPU back tdf the packet segment is transferred to the GPU without pre-
the CPU. processing, there are two major performance bottleneds: (
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_ N x(Tps+Tpke +Tpr)
Hy [1]2]3]4]s]e[7]s[o[w0]n] H,cH " Tps+ N xToxe + Trr
~ (N,...,2);when(Tps+Tpr < TpkE, ... ITps+TpPr = TpkE)

hy: [1]3]5]7]9]u]

hy: [2[3]6]7 1011
ha: 5 - Therefore, the minimum expected gain is two times; in our
s [4]s]6]7]
b = implementation,I'ps + Tpr > Tpxr, Which accelerates the
4 Hi| by [ b | by [ by | process toward N.
H, H, H,
<+ >4 »> <+ » ) Jocys s iy o = J_['—ﬂ
He PP LT - PR B ﬁ* = gpiJL_g
1'),5.<— Tm—‘i —>Tox Tosie—— Tpxe —>Tpg " i Tpgie—— Tpge —>Tpg
Fig. 4. Encoded packet re-construction for achieving wad global memory B D : = e PDZ‘“.EZZ’:S’E?S:;’:’
access in GPU. DKE R B Packet Receive (device-host)
DKE v
Tog Tps Tox ¥ Execotion Timdine
Tos ¢ Toge — > Tpge —> = & Tpg —> Ty

non-adjacent memory transactions from GPU global memory
result in long latency for memory READ, and (b) a number
of conditional statements are required to access thostédosa
leading to thread divergence. These issues are addrespee-by
processing, which achieves coalesced global memory acbess
this end, we re-organize the data items of the message segmen Device Kernel Execution (DKE)

H;, by arranging those sparse items together and forming CIuSAIgorithms that are executed in parallel on a GPU are called
ters such a#,, hy, hs, hy for each group. The clusters arek

placed side-by-side to shape the nelwas shown in Figure 4 ernels. Algorithm 1 and Figure 6 showchecksum kernel that
Finally, the reformed encoded packt is created by Concate_accesses the pre-processed encoded packet in the GPU global

nation ofH, 's such that=1,2....t, and this reformed encooledmemory. The main task pf thls kernell is to calculqte a check-
. sum vectorC;, on H;, which is the major computation of the
packet is transferred to the GPU.

Hamming decoder.

Fig. 5. Packet transfer using ADT and SDT.

B. Packet transfer between CPU and GPU Algorithm 1: K'ernel — Checksum(H1, C4)
o o ) Input: Packet segmenit, from the pre-processed
Data transfer between host and device is a vital issue in Gpléncoded packeH

computing. We utilize an optimized data transfer approach t Output: Checksum vecto€;
achieve high performance. A GPU facilitates two modes od dat Step 1 READ H, from global memory

transfer: synchronous data transfer (SDT) and asynchlsonOLStep 2 For each block of GPU in parallel, do segmentation
data transfer (ADT). Referring to Figure 2, three indepernde onH; by index set g, | k)
) RRRS) 1

tasks, namely encoded packet transfer to the GPU [PS], DKEStep 3 WRITE segments to the shared memory
and decoded packet receive from the GPU [PR], are accomss aach block

plished in the GPU. As shown in Figure 5, these tasks are PeIStep 4 Perform module 2 (XOR) operation on the shared
formed concurrently in ADT, where most of the transfer time memory packet segment

i_s hidden by kernel execut_ion. In contr_ast, SDT takes a |0n95tep 5 WRITE the result of Step 4, the checksum vector
time and completes tasks in a sequen_tlal manner. A§ a resulél[l]’ C1[2], .., C1[r(H1)], in global memory
ADT outperforms SDT by due to its pipelined execution pat=
tern; therefore, we utilize ADT.

Figure 5 depicts the key differences between SDT and ADT inThe notationr(H;) corresponds to the number of redundant
terms of execution time linél’»5, Tk , andT'p indicate the or checksum bits required for error detection in iHe mes-
time required for the PS, DKE, and PR, respectively. The SI¥Rge segmentd,. The kernel declares(H;) blocks, where
based approach takes 3ps + 3xTp i p+3xTpr time unitsto  each block is responsible for calculating one checksunibié
process three packets, whereas ADT requites + 3xTprr checksum calculation is done by a modulo 2 operation on the bi
+Tpgr. Consequently, ADT savesPfs + Tpr) time units. In  strings stored in each block’s shared memory by applyingequ
general, the speedup of ADT over SDT for the processing ofthdns, as shown in Figure 6. The proposed approach removes

packets can be expressed by bank conflicts by accessing items from a different shared mem
' ' ory bank. This kernel is accelerated by three optimizatigis
ADT Speedup — SDT Ew@cutl_fm Tl_me (1) coalesced global memory access, (i) bank conflict avoieanc
ADT Ezecution Time by a reduction tree, and (iii) most computations based oresha

memory.
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Fig. 6. Kernelchecksumto calculate checksum on packet segntént

IV. Experimental Results and Analysis ©0-400 ©400-800 1800-1200 [1200-1600 ©1600-2000
To execute the CPU code, we use a machine running on Win- s
dows 7 (32 bit) with a 4-core 3.40GHz Intel processor that uti e
lizes 8GB main memory. We evaluate the performance of the
1600 +— ﬁ_,q.-_—__;

proposed GPU implementation on a 1.62GHz NVIDIA GeForce
GTX 560 GPU with seven streaming multiprocessors (SM) and
1GB of main memory, where the GPU employed 336 processing
elements and utilized 49,152 bytes of shared memory per SM.
Furthermore, the maximum threads per block are 1,024 and the
warp size is 32 threads. In this section, the execution twhtse
GPU-based and CPU-based Hamming decoders are compared.

CPU Execution time (ms)

A. Execution Time

W™
8
(=]

2

F
Iy,

€r;
(B *nce

Figures 7 and 8 show the consolidated execution time accord-
ing to packet sizeM, and error tolerance, for sequential and
parallel Hamming decoding on the CPU and GPU, respectively.
The packet length ranges from 400 bytes to 2000 bytes (}-axis Fig. 7. Execution time of the CPU-based decoder.
and the error tolerance is tested from 2 bits up to 6 bits {g}ax
the decoding time in milliseconds§) is shown on the z-axis.

Execution time generally increases with packet size for tI
following two reasons. First, longer messages have a greate
number of checksum bits attached to the message. Second
code used to calculate redundant information is also lemggt,
increasing the number of XOR operations required. In aoldjti

the computational time of CPU implementation is proporion Overall, the GPU outperforms the CPU in terms of time re-

ally influenced by the Hamming code length of the packet. ﬁ,]uwed to decode various packet_5|zes anc_i errprtoleramjd,—_y
INg a tremendous improvement in execution time. We atteibut

contrast, the time for the GPU to deche packages remains r(ﬁlﬁis to the massively parallel design of SP, DE, and ME of the
tively constant regardless of packet size.

Th . dual i ) tion ti ¢ IGPU. Detailed speedup information is summarized in Table 1;
ere 1 a gradual Increase In execution ime as eror 10gle, yayimum speedup gained by the GPU over the CPUsis 99
ance increases for the CPU, while execution time of the G

addition, greater partitioning of a packet results in aken

Sgb%ent size, which enables the GPU to achieve a faster-execu
tion time than the CPU.

decreases as error toleranteancreases. The increasetiim- Table 1. Speedup of GPU over CPU.

plies that a large number of bits in the packet are corrufited,

cause the transmission medium is erroneous. In theseisiigat Packetsize t=2 t=3 t=4 =5 (=6
the decoder splits away the packet into a higher number of seg M=400 13x 14x 16x 18x 21x
ments, as shown in Figure 1. The CPU-based approach finishes M=800 26x  27x  30x 35x 40x
these segments in a sequential manner, leading to an iedreas M=1200 38 40x 45x 51x 60x
decoding time. In contrast, the GPU deals with the segmants i M=1600 52« 54x 61x 70x 81x

parallel and thus mitigates the increasé with error tolerance.
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Fig. 8. Execution time of the GPU-based decoder.

V. Conclusions
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In this paper, we proposed a computationally efficient GPU
implementation of a Hamming code decoder for faster error
recovery in data communication networks. We compared the]
performance of the proposed GPU approach with an equivalent

sequential approach on a traditional CPU. The GPU-based
plementation strongly outperformed the CPU-based seiglien

approach in terms of execution time, yielding ax98peedup.
These results indicate that the proposed GPU approachtis dai]
able for application in time-sensitive and high-speed evaad
wireless communication systems.
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