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Computationally Efficient Implementation of a
Hamming Code Decoder using Graphics Processing

Unit
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Abstract: This paper presents a computationally efficient imple-
mentation of a Hamming code decoder on a graphics process-
ing unit (GPU) to support real-time software-defined radio (SDR),
which is a software alternative for realizing wireless communica-
tion. The Hamming code algorithm is challenging to parallelize ef-
fectively on a GPU because it works on sparsely located data items
with several conditional statements, leading to non-coalesced, long
latency, global memory access, and huge thread divergence.To ad-
dress these issues, we propose an optimized implementationof the
Hamming code on the GPU to exploit the higher parallelism inher-
ent in the algorithm. Experimental results using a compute unified
device architecture (CUDA)-enabled NVIDIA GeForce GTX 560,
including 335 cores, revealed that the proposed approach achieved
a 99x speedup versus the equivalent CPU-based implementation.

Index Terms: Hamming code, GPU optimization, Software-defined
radio.

I. INTRODUCTION

Many existing wireless communication systems employed
application specific integrated circuits (ASICs) based dedi-
cated devices for particular communication protocol standards,
including worldwide interoperability for microwave access
(WiMAX, IEEE 802.16), Wi-Fi (IEEE802.11), digital high defi-
nition TV, wideband code division multiple access (W-CDMA),
and global system for mobile communication (GSM) [1]-[7].
However, the fixed functionality of such ASIC devices limits
their application to emerging communication standards because
they were fixed for specific coding schemes, data rates, fre-
quency ranges, and types of modulation [8]. In addition, manu-
facturing costs are high and time-to-market of hardware devices
is long [9].

Software-defined radio (SDR) is an emerging technology that
offers software alternatives to existing hardware solutions for
wireless communication [10],[11], SDR technology has recently
attracted the interest of the communication research community
[12],[13]. SDR comprises software implementation of multi-
standard and multi-protocol communication systems using one
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hardware platform [14]. It allows system reconfiguration byus-
ing software commands, because users are required to switch
from one standard to another standard very frequently [15].In
addition, it enables the radio device to change transmitting and
receiving characteristics by means of the software withoutal-
tering the hardware platform [15]. In SDR, some or all of the
physical layer functions are coded in the software, which runs
on general-purpose programmable processors (GPPs) and dig-
ital signal processors (DSPs) [16],[17]. GPPs and DSPs offer
the necessary programmability and flexibility for various SDR
applications. However, neither GPPs nor DSPs can meet the
much higher levels of performance required by high computa-
tional workloads in SDR [18].

Among many available computational models, graphics pro-
cessing units (GPUs) perform well when performing latency-
tolerant, highly parallel, and independent tasks. Attracted by
the features of modern GPUs, many researchers have developed
GPU-based SDR systems including turbo decoders, LDPC de-
coders, Viterbi decoders, and MIMO detectors to meet the high
throughput required by the SDR algorithm [19]-[25]. In this
paper, we present an optimized implementation of a Hamming
decoder on a GPU; the Hamming decoder is widely used as
a forward error correction (FEC) mechanism in wireless com-
munication. Practical applications of the Hamming decoderin-
clude Ethernet (IEEE 802.3), WiMAX (IEEE 802.16e), Wi-Fi
(IEEE 802.11n), telecommunication, digital video broadcasting-
satellite second generation (DVB-S2), wireless sensor networks
(WSNs), underwater wireless sensor networks (UWSNs), and
space communication [26]-[31].

Contributions of this study are as follows:

• This paper presents a massively parallel and optimized im-
plementation of a Hamming decoder on a GPU by exploring
memory transfer, memory transaction, and kernel computation.
• The performance of the Hamming decoder on the GPU is
thoroughly evaluated for various packet sizes, code lengths, and
error tolerance.
• The performance of the proposed GPU approach is compared
with the equivalent sequential approach run on a conventional
CPU.

The remainder of this paper is organized as follows. A re-
view of the Hamming decoder is provided in Section II, opti-
mization and GPU implementation of the Hamming decoder are
presented in Section III, and experimental results and analysis
are discussed in Section IV.
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II. REVIEW OF THE HAMMING DECODER

Hamming decoding is performed at the destination end of the
packet, and involves the exact reverse process of encoding per-
formed at the transmitter end. Figure 1 shows a Hamming code
decoder that consists of three components: splitter, decoder,
and merger. The splitter receives the Hamming encoded packet,
H={b; b=0 | b=1}, and splits the message into t segments,H1,
H2,..., Ht, wheret is the error tolerance. The main decoder con-
sists of three fundamental units: error detection (ED), error cor-
rection (EC), and redundancy remover (RR). We use the terms
packet andmessage interchangeably throughout this paper.

Fig. 1. Components in a Hamming code decoder.

In the encoding process, some redundancy or checksum bits
are incorporated along with the original message for the purpose
of error detection, and these should be removed once they have
served their purpose. Subsequently, the decoder retrievesmes-
sage segmentsM1, M2,..., M t, and the merger unifies them to
produce the decoded packet,M , which is similar to the original
packet sent by the sender or transmitter.

III. GPU-BASED IMPLEMENTATION OF THE HAMMING
DECODER

This section presents a computationally efficient implementa-
tion of the Hamming code algorithm on a GPU. Encoded pack-
ets, namelyP1, P2,...,Pn, are primarily received in the receiver
buffer and the entire task can be divided into three steps, as
shown in Figure 2: (i) pre-processing in the CPU, (ii) packet
transfer between the CPU and GPU, and (iii) device kernel exe-
cution (DKE). All of these steps are performed in an optimized
manner from a GPU computing viewpoint.

Figure 3 depicts an execution flow of the entire decoding pro-
cess in the destination end of a network data packet, where reg-
ular blocks represent the steps executed on the CPU and the dot-
ted blocks represent the tasks in the GPU. The CPU and GPU
are also called the Host and Device, respectively. At the outset,
the encoded packet,H, undergoes pre-processing in the CPU,
which is explained in Section 3.1, before being transferredto the
GPU. A parallel algorithm executed on the GPU is called a ker-
nel, and the proposed approach configures two kernels, namely
checksum anderror, as indicated in Figure 3. Thechecksum ker-
nel computes the redundancy information, and theerror kernel
performs error detection, correction, redundancy removal, and
finally retrieves the original packet. This packet, now referred
to as the decoded packet, is transferred from the GPU back to
the CPU.

Fig. 2. Task partitioning for the proposed Hamming decoder.

Fig. 3. Execution flow of the Hamming decoding procedure on a CPU and

GPU.

A. Packet pre-processing

Instead of transferring the encoded packet,H= H1+H2+...+Ht,
to the GPU immediately, packet pre-processing is first per-
formed, because the first step in a GPU is to calculate check-
sums on each ofH1,H2,...,Ht ; this process accesses sparsely
located elements in global memory. Considering anyHi, the in-
dex setsI0, I1,...,I |R|−1, shown in Figure 4, access indices ofHi

that are not completely adjacent. For instance, (7, 4) Hamming
code has |Hi|=7+4=11 bits and |R|=4. Thus,I 0={1,3,5,7,9,11},
I1={2,3,6,7,10,11}, I2={4,5,6,7}, and I3={8,9,10,11}. Con-
sequently, data items accessed byI 0 and I 1are clearly non-
adjacent. Even though elements ofI2 andI 3 apparently seem to
be adjacent for a small code length, they include non-adjacent
indices for larger values of |Hi|.

If the packet segment is transferred to the GPU without pre-
processing, there are two major performance bottlenecks: (a)
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Fig. 4. Encoded packet re-construction for achieving coalesced global memory

access in GPU.

non-adjacent memory transactions from GPU global memory
result in long latency for memory READ, and (b) a number
of conditional statements are required to access those locations,
leading to thread divergence. These issues are addressed bypre-
processing, which achieves coalesced global memory access. To
this end, we re-organize the data items of the message segment,
Hi, by arranging those sparse items together and forming clus-
ters such ash1, h2, h3, h4 for each group. The clusters are
placed side-by-side to shape the newHi as shown in Figure 4
Finally, the reformed encoded packet,H, is created by concate-
nation ofHi

′

s such thati=1,2,...,t, and this reformed encoded
packet is transferred to the GPU.

B. Packet transfer between CPU and GPU

Data transfer between host and device is a vital issue in GPU
computing. We utilize an optimized data transfer approach to
achieve high performance. A GPU facilitates two modes of data
transfer: synchronous data transfer (SDT) and asynchronous
data transfer (ADT). Referring to Figure 2, three independent
tasks, namely encoded packet transfer to the GPU [PS], DKE,
and decoded packet receive from the GPU [PR], are accom-
plished in the GPU. As shown in Figure 5, these tasks are per-
formed concurrently in ADT, where most of the transfer time
is hidden by kernel execution. In contrast, SDT takes a long
time and completes tasks in a sequential manner. As a result,
ADT outperforms SDT by due to its pipelined execution pat-
tern; therefore, we utilize ADT.

Figure 5 depicts the key differences between SDT and ADT in
terms of execution time line.TPS, TDKE, andTPR indicate the
time required for the PS, DKE, and PR, respectively. The SDT
based approach takes 3×TPS + 3×TDKE+3×TPR time units to
process three packets, whereas ADT requiresTPS + 3×TDKE

+ TPR. Consequently, ADT saves 2(TPS + TPR) time units. In
general, the speedup of ADT over SDT for the processing of N
packets can be expressed by

ADT Speedup =
SDT Execution T ime

ADT Execution T ime
(1)

=
N × (TPS + TDKE + TPR)

TPS +N × TDKE + TPR

≈ (N, ..., 2);when(TPS+TPR ≤ TDKE , ..., TPS+TPR = TDKE)

Therefore, the minimum expected gain is two times; in our
implementation,TPS + TPR ≥ TDKE, which accelerates the
process toward N.

Fig. 5. Packet transfer using ADT and SDT.

C. Device Kernel Execution (DKE)

Algorithms that are executed in parallel on a GPU are called
kernels. Algorithm 1 and Figure 6 show achecksum kernel that
accesses the pre-processed encoded packet in the GPU global
memory. The main task of this kernel is to calculate a check-
sum vector,Ci, on Hi, which is the major computation of the
Hamming decoder.

Algorithm 1:Kernel− Checksum(H1,C1)
Input : Packet segment,H1, from the pre-processed
encoded packet,H
Output : Checksum vector,C1

Step 1: READ H1 from global memory
Step 2: For each block of GPU in parallel, do segmentation
onH1 by index setI 0, I1, ..., I r(H1)

Step 3: WRITE segments to the shared memory
of each block
Step 4: Perform module 2 (XOR) operation on the shared
memory packet segment
Step 5: WRITE the result of Step 4, the checksum vector
C1[1],C1[2], ...,C1[r(H1)], in global memory

The notationr(Hi) corresponds to the number of redundant
or checksum bits required for error detection in theith mes-
sage segment,Hi. The kernel declaresr(Hi) blocks, where
each block is responsible for calculating one checksum bit.The
checksum calculation is done by a modulo 2 operation on the bit
strings stored in each block’s shared memory by applying equa-
tions, as shown in Figure 6. The proposed approach removes
bank conflicts by accessing items from a different shared mem-
ory bank. This kernel is accelerated by three optimizations: (i)
coalesced global memory access, (ii) bank conflict avoidance
by a reduction tree, and (iii) most computations based on shared
memory.
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Fig. 6. Kernelchecksum to calculate checksum on packet segmentH1.

IV. Experimental Results and Analysis

To execute the CPU code, we use a machine running on Win-
dows 7 (32 bit) with a 4-core 3.40GHz Intel processor that uti-
lizes 8GB main memory. We evaluate the performance of the
proposed GPU implementation on a 1.62GHz NVIDIA GeForce
GTX 560 GPU with seven streaming multiprocessors (SM) and
1GB of main memory, where the GPU employed 336 processing
elements and utilized 49,152 bytes of shared memory per SM.
Furthermore, the maximum threads per block are 1,024 and the
warp size is 32 threads. In this section, the execution timesof the
GPU-based and CPU-based Hamming decoders are compared.

A. Execution Time

Figures 7 and 8 show the consolidated execution time accord-
ing to packet size,M , and error tolerance,t, for sequential and
parallel Hamming decoding on the CPU and GPU, respectively.
The packet length ranges from 400 bytes to 2000 bytes (x-axis)
and the error tolerance is tested from 2 bits up to 6 bits (y-axis);
the decoding time in milliseconds (ms) is shown on the z-axis.

Execution time generally increases with packet size for the
following two reasons. First, longer messages have a greater
number of checksum bits attached to the message. Second, the
code used to calculate redundant information is also lengthened,
increasing the number of XOR operations required. In addition,
the computational time of CPU implementation is proportion-
ally influenced by the Hamming code length of the packet. In
contrast, the time for the GPU to decode packages remains rela-
tively constant regardless of packet size.

There is a gradual increase in execution time as error toler-
ance increases for the CPU, while execution time of the GPU
decreases as error tolerance,t, increases. The increase int im-
plies that a large number of bits in the packet are corrupted,be-
cause the transmission medium is erroneous. In these situations,
the decoder splits away the packet into a higher number of seg-
ments, as shown in Figure 1. The CPU-based approach finishes
these segments in a sequential manner, leading to an increase in
decoding time. In contrast, the GPU deals with the segments in
parallel and thus mitigates the increase int with error tolerance.

Fig. 7. Execution time of the CPU-based decoder.

In addition, greater partitioning of a packet results in a smaller

segment size, which enables the GPU to achieve a faster execu-
tion time than the CPU.

Overall, the GPU outperforms the CPU in terms of time re-
quired to decode various packet sizes and error tolerance, yield-
ing a tremendous improvement in execution time. We attribute
this to the massively parallel design of SP, DE, and ME of the
GPU. Detailed speedup information is summarized in Table 1;
the maximum speedup gained by the GPU over the CPU is 99×.

Table 1. Speedup of GPU over CPU.

Packet size t=2 t=3 t=4 t=5 t=6
M=400 13× 14× 16× 18× 21×
M=800 26× 27× 30× 35× 40×
M=1200 38× 40× 45× 51× 60×
M=1600 52× 54× 61× 70× 81×
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Fig. 8. Execution time of the GPU-based decoder.

V. Conclusions

In this paper, we proposed a computationally efficient GPU
implementation of a Hamming code decoder for faster error
recovery in data communication networks. We compared the
performance of the proposed GPU approach with an equivalent
sequential approach on a traditional CPU. The GPU-based im-
plementation strongly outperformed the CPU-based sequential
approach in terms of execution time, yielding a 99× speedup.
These results indicate that the proposed GPU approach is suit-
able for application in time-sensitive and high-speed wired and
wireless communication systems.
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