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Abstract—Mobile cellular networks are becoming increasingly
complex to manage while classical deployment/optimization tech-
niques and current solutions (i.e., cell densification, acquiring
more spectrum, etc.) are cost-ineffective and thus seen as
stopgaps. This calls for development of novel approaches that
leverage recent advances in storage/memory, context-awareness,
edge/cloud computing, and falls into framework of big data.
However, the big data by itself is yet another complex phenomena
to handle and comes with its notorious 4V: velocity, voracity,
volume and variety. In this work, we address these issues in
optimization of 5G wireless networks via the notion of proactive
caching at the base stations. In particular, we investigate the
gains of proactive caching in terms of backhaul offloadings and
request satisfactions, while tackling the large-amount of available
data for content popularity estimation. In order to estimate the
content popularity, we first collect users’ mobile traffic data from
a Turkish telecom operator from several base stations in hours
of time interval. Then, an analysis is carried out locally on a
big data platform and the gains of proactive caching at the base
stations are investigated via numerical simulations. It turns out
that several gains are possible depending on the level of available
information and storage size. For instance, with 10% of content
ratings and 15.4 Gbyte of storage size (87% of total catalog
size), proactive caching achieves 100% of request satisfaction and
offloads 98% of the backhaul when considering 16 base stations.

Index Terms—proactive caching, content popularity estima-
tion, big data, machine learning, 5G cellular networks

I. INTRODUCTION

The unprecedented increase in data traffic demand driven
by mobile video, online social media and over-the-top (OTT)
applications are compelling mobile operators to look for inno-
vative ways to manage their increasingly complex networks.
This explosion of traffic stemming from diverse domain (e.g.,
healthcare, machine-to-machine communication, connected
cars, user-generated content, smart metering, to mention a few)
have different characteristics (e.g., structured/non-structured)
and is commonly referred to as Big Data [1]. While big data
come with "big blessings" there are formidable challenges in
dealing with large-scale data sets due to the sheer volume

This research has been supported by the ERC Starting Grant 305123 MORE
(Advanced Mathematical Tools for Complex Network Engineering), the
SHARING project under the Finland grant 128010 and TUBITAK TEYDEB
1509 project grant (numbered 9120067) and the project BESTCOM.

and dimensionality of the data. A fundamental challenge of
big data analytics is to shift through large volumes of data
in order to discover hidden patterns for actionable decision
making. Indeed, the era of collecting and storing data in remote
standalone servers where decision making is done offline has
dawned. Rather, telecom operators are exploring decentralized
and flexible network architectures whereby predictive resource
management play a crucial role leveraging recent advances in
storage/memory, context-awareness and edge/cloud computing
[2]–[4]. In the realm of wireless, big data brings to network
planning a variety of new information sets that can be inter-
connected to achieve a better understanding of users and
networks (e.g., location, user velocity, social geodata, etc.).
Moreover, public data from social networks such as Twitter
and Facebook provides additional side information about the
life of the network, which can be further exploited. The
associated benefits are a higher accuracy of user location
information or the ability to easily identify and predict user
clustering, for example for special events. Undoubtedly, the
huge potential associated with big data has sparked a flurry
of research interest from industry, government and academics
(see [5] for a recent survey), and will continue to do so in the
coming years.

At the same time, mobile cellular networks are evolving
towards the next generation of 5G wireless communication, in
which ultra-dense networks, millimetre wave communications,
massive multiple-input multiple-output (massive-MIMO), edge
caching, device-to-device communications play a pivotal role
(see [6] and references therein). Unlike the base station-centric
architecture paradigm assuming dumb terminals and in which
network optimization is carried out in a reactive way, 5G
networks will be truly disruptive in terms of being user-centric,
context-aware and proactive/anticipatory in nature. While con-
tinued evolution in spectral efficiency is expected, the maturity
of air interfaces of current systems (LTE-Advanced) mean
that no major improvements of spectral efficiency can be
anticipated. Additional measures like the brute force expansion
of wireless infrastructure (number of cells) and the licensing
of more spectrum are prohibitively expensive. Thus, innovative
solutions are called upon.

In this work, based on the motivations and issues above,
we are intent to propose a proactive caching architecture for
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optimization of 5G wireless networks where we exploit large
amount of available data with the help of big data analytics
and machine learning tools. In other words, we investigate
the gains of proactive caching both in terms of backhaul
offloadings and request satisfactions, where machine learning
tools are used to model and predict the spatio-temporal user
behaviour for proactive cache decision. By caching strategic
contents at the edge of network, namely at the base stations,
network resources are utilized more efficiently and users’
experience is further improved. However, the estimation of
content popularity tied with spatio-temporal behaviour of users
is a very complex problem due to the high dimensional
aspects of data, data sparsity and lack of measurements. In this
regard, we present a platform to parallelize the computation
and execution of the content prediction algorithms for cache
decision at the base stations. As a real-world case study,
a large amount of data collected from a Turkish telecom
operator, one of the largest mobile operator in Turkey with
16.2 million of active subscribers, is examined for various
caching scenarios. Particularly, the traces of mobile users’
activities are collected from several base stations in hours of
time interval and are analysed inside the network under the
privacy concerns and regulations. The analysis is carried out
on a big data platform and caching at the base stations has been
investigated for further improvements of users’ experience and
backhaul offloadings.

A. Prior Work and Our Contribution

The use of big data in mobile computing research has been
investigated recently such as in [7]. The idea of caching at
the edge of wireless network has also been studied in various
works [8]–[14], including proactive caching for 5G wireless
networks [2]. In detail, a proactive caching procedure using
perfect knowledge of content popularity is studied in [8]. A
caching architecture (namely FemtoCaching) relying on cache-
enabled user devices and small base stations is introduced in
[9]. The caching problem as a many-to-many matching game
is formulated in [11] and caching gains are characterized nu-
merically. Deployment aspects of cache-enabled base stations
via stochastic geometry tools is investigated in [10] where
the outage probability is derived as a function of signal-to-
interference-plus-noise ratio (SINR), base station density and
storage size. For optimal cache allocations, an approximation
framework based on a well-known facility location problem
is given in [12]. The impact of unknown content popularity
on cache decision is characterized in [14]. The advantage of
multicast transmission together with caching at the base station
is investigated in [13]. We refer our readers to [15] for a recent
survey and more comprehensive details.

Compared to the works mentioned above, our main con-
tribution in this work is to make tighter connections of big
data phenomena with caching in 5G wireless networks, by
proposing a proactive caching architecture where statistical
machine learning tools are exploited for content popularity
estimation. Combined with a large-scale real-world case study,
this is perhaps the first attempt on this direction and highlights
a huge potential of big data for 5G wireless networks.

The rest of paper is organized as follows. Our network
model for proactive caching is detailed in Section II. A
practical case study of content popularity estimation on a big
data platform is presented in Section III, including a char-
acterization of users’ traffic pattern. Subsequently, numerical
results for cache-enabled base stations and relevant discussions
are carried out in Section IV. We finally conclude in Section
V and draw our future directions in the same section.

II. NETWORK MODEL

Suppose a network deployment of M small base stations
(SBSs) from the set M = {1, . . . ,M} and N user terminals
(UTs) from the set N = {1, . . . , N}. Each SBS m has access
to the broadband Internet connection via a wired backhaul
link with capacity Cm Mbyte/s, and is able to provide this
broadband service to its users via a wireless link with total
capacity of C ′m Mbyte/s. Due to the motivation that the
backhaul capacity is generally limited in densely deployed
SBSs scenarios [6], we further consider that Cm < C ′m. Also,
assume that each user n ∈ N is connected to only one SBS
and is served via unicast sessions1. In particular, we assume
that UTs request contents (i.e., videos, files, news, etc.) from a
library F = {1, . . . , F}, where each content f in this library
has a size of L(f) Mbyte and bitrate requirement of B(f)
Mbyte/s, with

Lmin = min
f∈F
{L(f)} > 0 (1)

Lmax = max
f∈F
{L(f)} <∞ (2)

and

Bmin = min
f∈F
{B(f)} > 0 (3)

Bmax = max
f∈F
{B(f)} <∞. (4)

The users’ content requests in fact follow a Zipf-like distribu-
tion PF (f),∀f ∈ F given as [17]:

PF (f) =
Ω

fα
(5)

where

Ω =
( F∑
i=1

1

iα

)−1
.

The parameter α in (5) describes the steepness of the distri-
bution. This kind of power laws is used to characterize many
real-world phenomena, such as the distribution of files in the
web-proxies [17] and the traffic dynamics of cellular devices
[18]. Higher values of α corresponds to a steeper distribution,
meaning that a small subset of contents are highly popular
than the rest of the catalog (namely users have very similar
interests). On the other hand, the lower values describe a more
uniform behaviour with almost equal popularity of contents
(namely users have more distinct interests). The parameter α
can take different values depending on users’ behaviour and
SBSs deployment strategies (i.e., home, enterprise, urban and

1The unicast service model can also be extended to the multicast case. See
[13], [16] for studies in this direction.
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Figure 1: An illustration of the network model. A big data platform is in charge of tracking/predicting users’ demand, whereas
cache-enabled base stations store the strategic contents predicted on the big data platform.

rural environments), and its practical value in our experimental
setup will be given in the subsequent sections.

Given such a global content popularity in the decreasing
ordered case, the content popularity matrix of the m-th SBS at
time t is specifically described by Pm(t) ∈ RN×F where each
entry Pmn,f (t) corresponds to the probability that the n-th user
requests the f -th content. In fact, the matrix Pm(t) is the local
content popularity distribution observed at the base station m
at time t, whereas the Zipf distribution PF (f),∀f ∈ F is used
to characterize the global content popularity distribution of all
contents in (decreasing) sorted order.

In this scenario, we consider that each SBS has a finite
storage capacity of Sm and proactively caches selected con-
tents from the library F during peak-off hours. By doing so,
the bottlenecks caused by the limited-backhaul are avoided
during the delivery of users’ content requests in peak hours.
The amount of satisfied requests and backhaul load are of
paramount importance and are defined as follows. Suppose
that D number of contents are requested during the duration
of T seconds, and are represented by the set D = {1, ..., D}.
Assume that the delivery of content is started immediately
when the request d ∈ D arrives to the SBS. Then, the request
d is called satisfied if the rate of content delivery is equal or
higher than the bitrate of the content in the end of service,
such as:

L(fd)

τ ′(fd)− τ(fd)
≥ B(fd) (6)

where fd describes the requested content, L(fd) and B(fd)
are the size and bitrate of the content, τ(fd) is the arrival
time of the content request and τ ′(fd) the end time delivery.2

Defining the condition in (6) stems from the fact that, if
the delivery rate is not equal nor higher than the bitrate of
the requested content, the interruption during the playback

2One can also consider/exploit future information (i.e., start time of
requests, end time of content delivery) in the context of proactive resource
allocation (see [19] for instance).

(or download) occurs thus users would have less quality-
of-experience (QoE)3. Therefore, the situations where this
condition holds are more desirable for better QoE. In (6), note
also that the end time of delivery for request d, denoted by
τ ′(d), highly depends on the load of the system, capacities
of the backhaul and wireless links as well as availability of
contents at the base stations. Given this definition of satisfied
requests and related explanations, the users’ average request
satisfaction ratio is then defined for the set of all requests,
that is:

η(D) =
1

D

∑
d∈D

1

{
L(fd)

τ ′(fd)− τ(fd)
≥ B(fd)

}
(7)

where 1 {...} is the indicator function which takes 1 if the
statement holds and 0 otherwise. Now, denoting Rd(t) Mbyte/s
as the instantaneous rate of backhaul for the request d at time
t, with Rd(t) ≤ Cm, ∀m ∈ M, the average backhaul load is
then expressed as:

ρ(D) =
1

D

∑
d∈D

1

L(fd)

τ ′(fd)∑
t=τ(fd)

Rd(t). (8)

Here, the outer sum is over the set of all requests whereas the
inner sum gives the total amount of information passed over
the backhul for request d which is at most equal to the length
of requested file L(fd). The instantaneous rate of backhul for
request d, denoted by Rd(t), heavily depends on the load of
the system, capacity of the backhaul link and cached contents
at the base stations.

In fact, by pre-fetching the contents at the SBSs, the access
delays to the contents are minimized especially during the peak
hours, thus yielding higher satisfaction ratio and less backhaul
load. To elaborate this, now consider the cache decision matrix
of SBSs as X(t) ∈ {0, 1}M×F , where the entry xm,f (t) takes
1 if the f -th content is cached at the m-th SBS at time t,

3In practice, a video content has typically a bitrate requirement ranging
from 1.5 to 68 Mbit/s [20].
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and 0 otherwise. Then, the backhaul offloading problem under
a specific request satisfaction constraint is formally given as
follows:

minimize
X(t),Pm(t)

ρ(D) (9)

subject to Lmin ≤ L(fd) ≤ Lmax, ∀d ∈ D,
(9a)

Bmin ≤ B(fd) ≤ Bmax, ∀d ∈ D,
(9b)

Rd(t) ≤ Cm, ∀t, ∀d ∈ D,∀m ∈M,
(9c)

R′d(t) ≤ C ′m, ∀t, ∀d ∈ D,∀m ∈M,
(9d)∑

f∈F

L(f)xm,f (t) ≤ Sm, ∀t,∀m ∈M, (9e)∑
n∈N

∑
f∈F

Pmn,f (t) = 1, ∀t,∀m ∈M, (9f)

xm,f (t) ∈ {0, 1}, ∀t, ∀f ∈ F ,∀m ∈M, (9g)
ηmin ≤ η(D), (9h)

where R′d(t) Mbyte/s describes the instantaneous rate of
wireless link for request d and ηmin represents the minimum
target satisfaction ratio. In particular, the constraints (9a) and
(9b) are to bound the length and bitrate of contents in the
catalog for feasible solution, the constraints (9c) and (9d) are
the backhaul and wireless link capacity constraints, (9e) holds
for storage capacity for caching, (9f) is to ensure the content
popularity matrix as a probability measure, (9g) denotes the
binary decision variables of caching, and finally the expression
in (9h) is the satisfaction ratio constraint for QoE.

In order to tackle this problem, the cache decision matrix
X(t) and the content popularity matrix estimation Pm(t) have
to be optimized jointly. However, solving the problem (9) is
very challenging as:

i) the storage capacity of SBSs, the backhaul and wireless
link capacities are limited.

ii) the catalog size and number of users with unknown
ratings4 are very large in practice.

iii) the optimal uncoded5 cache decision for a given demand
is non-tractable [8], [9], [12].

iv) the SBSs have to track, learn and estimate the sparse con-
tent popularity/rating matrix SBSs Pm(t) while making
the cache decision.

In order to overcome these issues, we restrict ourselves to the
fact that cache decision is made during peak-off hours, thus
X(t) remains static during the content delivery in peak hours
and is represented by X. Additionally, the content popularity
matrix is stationary during T time slots and identical among
the base stations, thus Pm(t) is represented by P.

After these considerations, we now suppose that the problem
can be decomposed into two parts in which the content
popularity matrix P is first estimated, then is used in the

4The term "rating" refers to the empirical value of content popularity/prob-
ability and is interchangeable throughout the paper.

5In the information theoretical sense, the caching decision can be catego-
rized into "coding" and "uncoded" groups (see [21] for example).

caching decision X accordingly. In fact, if sufficient amount
of users’ ratings are available at the SBSs, we can construct a
k-rank approximate popularity matrix P ≈ NTF, by jointly
learning the factor matrices N ∈ Rk×N and F ∈ Rk×F that
minimizes the following cost function:

minimize
P

∑
Pij∈P

(
nTi fj − Pij

)2
+ µ

(
||N||2F + ||F||2F

)
(10)

where the summation is done over the corresponding user/-
content rating pairs Pij in the training set P . The vectors
ni and fj here describe the i-th and j-th columns of N and
F matrices respectively, and ||.||2F represents the Frobenius
norm. The parameter µ is used to provide a balance between
the regularization and fitting the training data. Therein, high
correspondence between the user factor matrix N and content
factor matrix F leads to a better estimate of P. In fact, the
problem (10) is a regularized least square problem where the
matrix factorization is embedded in the formulation. Despite
various approaches, the matrix factorization methods are com-
monly used to solve this kind of problems and has many
applications such as in recommendation systems (i.e., Netflix
video recommendation). In our case detailed in the follow-
ing sections, we have used regularized sparse singular value
decomposition (SVD) to solve the problem algorithmically
which exploits the least square nature of the problem. The
overview of these approaches, sometimes called collaborative
filtering (CF) tools, can be found in [22], [23]. When the
estimation of content popularity matrix P is obtained, the
caching decision X can be made in this scenario accordingly.

In practice, the estimation of P in (10) can be done by
collecting/analysing large amount of available data on a big-
data platform of the network operator, and strategic/popular
contents from this estimation can be stored at the cache-
enabled base stations whose cache decisions are represented
by X. By doing this, the backhaul offloading problem in (9) is
minimized and higher satisfactions are achieved. Our network
model including such an infrastructure is illustrated in Fig.
1. In the following, as a case study, we detail our big data
platform and present users’ traffic characteristics by analysing
large amount of data on this platform. The processed data will
be used to estimate the content popularity matrix P which
is essentially required for the cache decision X and will be
detailed in the upcoming sections.

III. BIG DATA PLATFORM

The big data platform used in this work runs in the op-
erator’s core network. As mentioned before, the purpose of
this platform is to store users’ traffic data and extract useful
information which are going to be used for content popularity
estimation. In a nutshell, the operator’s network consists of
several districts with more than 10 regional core areas through-
out Turkey. The average total traffic over all regional areas
consists of approximately over 15 billion packets in uplink
direction and over 20 billion packets in the downlink direction
daily. This corresponds to approximately over 80 TByte of
total data flowing in uplink and downlink daily in a mobile
operator’s core network. The data usage behaviour results in
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exponential increase in data traffic of a mobile operator. For
example, in 2012, the approximate total data traffic was over
7 TByte in both uplink and downlink daily traffic.

The streaming traces which will be detailed in the sequel,
are obtained from one of the operator’s core network region,
includes the mobile traffic from many base stations, and are
captured by a server on a high speed link of 200 Mbit/sec
at peak hours. In order to capture Internet traffic data by the
server in this platform, a procedure is initialized by mirroring
real-world Gn interface data.6 After mirroring stage of Gn
interface, network traffic is transferred into the server on
the platform. For our analysis, we have collected traffic of
approximately 7 hours starting from 12 pm to 7 pm on
Saturday 21’st of March 2015. This traffic is processed on
the big data platform which is essentially based on Hadoop.

A. Hadoop platform

Among the available platforms, Hadoop stands out as the
most notable one as it is an open source solution [24].
It is made up of a storage module, namely Hadoop Dis-
tributed File System (HDFS) and a computation module,
namely MapReduce. Whereas HDFS can have centralized
or distributed implementations, MapReduce inherently has a
distributed structure that enables it to execute jobs in parallel
on multiple nodes.

As stated in previous subsection, the accuracy and pre-
cision of the proposed mechanism was tested in operator’s
network. A data processing platform was implemented through
using Cloudera’s Distribution Including Apache Hadoop
(CDH4) [25] version on four nodes including one cluster name
node, with computations powers corresponding to each node
with INTEL Xeon CPU E5-2670 running @2.6 GHz, 32 Core
CPU, 132 GByte RAM, 20 TByte hard disk. This platform is
used to extract the useful information from raw data which is
described as follows.

B. Data extraction process

First, the raw data is parsed using Wireshark command
line utility tshark [26] in order to extract the relevant fields
of CELL-ID (or service area code (SAC) in our case, in
order to uniquely identify a service area within a location
area7), LAC, Hypertext Transfer Protocol (HTTP) request-
uniform resource identifier (URI), tunnel endpoint identifier
(TEID)8 and TEID-DATA for data and control plane packets
respectively, and FRAME TIME indicating arrival time of
packets. The HTTP Request-URI is a Uniform Resource
Identifier that identifies the resource upon which to apply the

6Gn is an interface between Serving GPRS Support Node (SGCN) and
Gateway GPRS Support Node (GGSN). Network packets sent from a user
terminal to the packet data network (PDN), e.g. internet, pass through SGCN
and GGSN where GPRS Tunneling Protocol (GTP) constitutes the main
protocol in network packets flowing through Gn interface.

7The service area identified by SAC is an area of one or more base stations,
and belongs to a location area which is uniquely identified by location area
code (LAC). Typically, tens or even hundreds of base stations operates in a
given location area.

8A TEID uniquely identifies a tunnel endpoint on the receiving end of the
GTP tunnel. A local TEID value is assigned at the receiving end of a GTP
tunnel in order to send messages through the tunnel.

request. The control packets contain the information elements
that carry the information required for future data packets. It
contains cell identification ID (CELL-ID), LAC and TEID-
DATA fields. The data packets contain HTTP-URI and TEID
fields.

In the next step, after obtaining those relevant fields from
both control and data packets, the extracted data is transferred
into HDFS for further analysis. In HDFS, there can be done
many data analytics performed over the collected data using
Hive Query language (QL) [27]. For example, in order to
calculate the HTTP Request-URIs at specific location, the
HTTP-URI can be joined with CELL-ID-LAC fields over
the same TEID and TEID-DATA fields for data and control
packets respectively. In our analysis, due to the limitations
on observable number of rows of HTTP-URI fields with a
corresponding CELL-ID-LAC fields after mapping, we have
proceeded with HTTP Request-URIs and TEID mappings.

From HDFS, a temporary table named traces-table-temp
is constructed using Hive QL. The traces-table-temp has
HTTP Request-URI, FRAME TIME and TEID fields. After
constructing this table, the sizes of each HTTP Request-URI
request is calculated using a separate URI-size calculator pro-
gram that uses HTTPClient API [28] in order to obtain the final
table called traces-table with fields of SIZE, HTTP Request-
URIs, FRAME TIME and TEID. This table has approximately
over 420.000 of 4 millions HTTP Request-URI’s with SIZE
field returned as not zero or null due to unavailability of HTTP
response for some requests. Note that in a given session with
a specific TEID, there can be multiple HTTP Request-URIs.
Each TEID belongs to specific user. Each user can also have
multiple TEIDs with multiple HTTP Request-URIs. The steps
of data extraction process on the platform is summarized in
Fig. 2. Note that the data extraction process is specific to our
scenario for proactive caching. However, similar studies in
terms of usage of big data platform and exploitation of big
data analytics for telecom operators can be found in [29]–[34].

database
cluster computing

tra�c
mirroring

high-speed

data �ow

Size
Calculator

(HTTPClient API)

HDFS & MapReduce

Location/Session Fields
CELL-ID, SAC, LAC, TEID

Content Request Field
HTTP URI

Request Time Field
FRAME TIME

SIZEControl Packets

Data Packets

...

...

1) Collect 
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5)  Store 
Processed Data

traces-table-temp

traces-table

3)  Match
Fields

HTTP URI   FRAME TIME  TEID 
...............   ...................   .......
...............   ...................   .......
...............   ...................   .......

HTTP URI   FRAME TIME  TEID  SIZE 
...............   ...................   .......  .......
...............   ...................   .......  .......
...............   ...................   .......  .......

Figure 2: An overview of the data extraction process on the
big data platform.
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Figure 3: Behaviour of content popularity distribution.

C. Traffic Characteristics

Based on information available in traces-table, the global
content popularity distribution (namely HTTP-URI popularity
distribution) in a decreasing ranked order is plotted in Fig.
3a. According to this available experimental data, we observe
that the popularity behaviour of contents follows a Zipf law
with steepness parameter α = 1.36.9 Therein, the Zipf curve is
calculated in the least square sense from the collected traces
and the parameter α is then found by evaluating the slope
of the curve. On the other hand, cumulative size of ranked
contents is given in Fig. 3b. The cumulative size up to 41-
th most-popular contents has 0.1 GByte of size, whereas a
dramatical increase appears afterwards. This basically shows
that most of the requested contents in our traces has low
content sizes and contents with larger sizes are relatively less
requested.

We would like to note that a detailed characterization
of the traffic for caching is left for future work. Indeed,
characterization of the traffic in web proxies which are placed
in the intermediate level of network [17], a specific video
content catalog in a campus network [37], mobile traffic of
users in Mexico [38] can be found in the literature. Compared
to these works, we focus on the characterization traffic of
mobile users collected from base stations in a large regional
area and exploit this information for proactive caching (i.e.,
content popularity distribution, cumulative size distribution).
Based on information available in traces-table, we in the
following simulate a scenario of cache-enabled base stations.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The list of parameters for numerical setup is given in Table
I. For ease of analysis, the storage, backhaul, and wireless link
capacities of small cells are assumed to be identical within
each other.

9The value of steepness parameter α can change depending on the scenario.
For instance, the steepness parameter of content popularities in YouTube
catalog varies from 1.5 to 2.5 [35], [36].

Table I: List of simulation parameters.

Parameter Description Value

T Time slots 6 hours 47 minutes

D Number of requests 422529

F Number of contents 16419

M Number of small cells 16

Lmin Min. size of a content 1 Byte

Lmax Max. size of a content 6.024 GByte

B(f) Bitrate of content f 4 Mbyte/s∑
m Cm Total backhaul link capacity 3.8 Mbyte/s∑

m

∑
n C

′
m Total wireless link capacity 120 Mbyte/s

In the simulations, all of D number of requests are taken
from the processed data (namely traces-table), spanning over a
time duration of 6 hours 47 minutes. The arrival times of each
request (FRAME TIME), requested content (HTTP-URI) and
content size (SIZE) are taken from the same table. Then, these
requests are associated to M base stations pseudo-randomly.
In order to solve the backhaul offloading problem in (9),
the content popularity matrix P and caching strategy X are
evaluated separately. In particular, the following two methods
are used for constructing the content popularity matrix P:

• Ground Truth: The content popularity matrix P is con-
structed from all available information in traces-table
instead of solving the problem in (10). Note that the rows
of P represent base stations and columns are contents.
The rating density of this matrix is 6.42%.

• Collaborative Filtering: For the estimation of content
popularity matrix P, the problem in (10) is attempted by
first choosing 10% of ratings from traces-table uniformly
at random. Then, these ratings are used in the training
stage of the algorithm and missing entries/ratings of P
are estimated. Particularly, the regularized SVD from the
CF methods [23], [39] is used in the algorithmic part.
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After constructing the content popularity matrix P based
on these above methods, the cache decision (modelled by
the matrix X) is made by storing the most-popular contents
greedily at the SBSs until no storage space remains (see [8]
for the details). Having these contents cached proactively at
the SBSs at t = 0, the requests are then served until all of
the contents are delivered. The performance metrics request
satisfaction and backhaul load are calculated accordingly.

The evolution of users’ request satisfaction with respect to
the storage size is given Fig. 4a. The storage size is given in
terms of percentage where 100% of storage size represents the
sum of all size of contents in the catalog (17.7 GByte). From
zero storage (0%) to full storage (100%), we can seen that the
users’ request satisfaction increases monotonically and goes
up to 100%, both in ground truth and collaborative filtering
approaches. However, there is a performance gap between the
ground truth and CF until 87% of storage size, which is due to
the estimation errors. For instance, with 40% of storage size,
the ground truth achieves 92% of satisfaction whereas the CF
has value of 69%.

The evolution of backhaul load/usage with respect to the
storage size of SBSs is given in Fig. 4b. As the storage
size of SBSs increases, we see that both approaches reduces
backhaul usage (namely higher offloading gains). For example,
with 87% of storage size for caching, both approaches offload
98% of backhaul usage. The performance of ground truth is
evidently higher than the CF as all of the available information
is taken into consideration for caching. We also note that there
is a dramatical decrease of backhaul usage in both approaches
after a specific storage size. In fact, most of the previous
works on caching assume a content catalog with identical
content sizes. In our case, we are dealing with real traces in
the numerical setup where the size of contents differs from
content to content, as discussed in the previous section (see
Fig. 3b). According to this scenario, on the one hand, caching
a highly popular content with very small size might not reduce
the backhaul usage dramatically. On the other hand, caching
a popular content with very high size can dramatically reduce
the backhaul usage. Therefore, as the CF approach used here
is solely based on content popularity, it fails to capture these
content size aspects on the backhaul usage, which in turn
results in higher storage requirements to achieve the same
performance as in the ground truth. This shows the importance
of size distribution of popular contents.

We have so far compared the performance gains of these
approaches with 10% of rating density in CF. In fact, as the
rating density of CF for training increases, we expect to have
less estimation error, thus resulting closer satisfaction gains
to the ground truth. To show this, the change of root-mean-
square error (RMSE) with respect to the training rating density
is given in Fig. 5. Therein, we define the error as the root-
mean-square of difference between users’ content satisfaction
of the ground truth and CF approaches over all possible storage
sizes. Clearly, as observed in Fig. 5, the performance of CF
is improved by increasing the rating density, thus confirming
our intuitions.

0 20 40 60 80 100
5 · 10−2

0.1

0.15

Training Density (%)

R
M

SE

Figure 5: Evolution of RMSE with respect to the training
density.

V. CONCLUSIONS

In this work, we have studied a proactive caching ap-
proach for 5G wireless networks by exploiting large amount
of available data and employing machine learning tools. In
particular, an experimental setup for data collection/extraction
process has been demonstrated on a big data platform and
machine learning tools (CF in particular) have been applied to
predict the content popularity distribution. Depending on the
rating density and storage size, the numerical results showed
that several caching gains are possible in terms of users’
request satisfactions and backhaul offloadings. An interesting
future direction of this work is to conduct a more detailed
characterization of the traffic which captures different spatio-
temporal content access patterns. In order to estimate the
content access patterns for cache decision, the development of
novel machine learning algorithms is yet another interesting
direction. Finally, design of new deterministic/randomized
cache decision algorithms are required and should not be
purely based on content popularity and storing most popular
contents, so that higher backhaul offloading can be achieved
while satisfying users’ requests.
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