
Algorithms for Network-Aware Application
Component Placement for Cloud Resource

Allocation
Maryam Barshan1, Hendrik Moens1, Steven Latré2, Bruno Volckaert1 and Filip De Turck1

1Department of Information Technology, Ghent University – iMinds
Gaston Crommenlaan 8/201, B-9050 Gent, Belgium

2Department of Mathematics and Computer Science, University of Antwerp – iMinds
Middelheimlaan 1, 2020 Antwerpen, Belgium

Email: maryam.barshan@intec.ugent.be

Abstract—Due to the soaring popularity of cloud-based services
over the last years, the size and the complexity of cloud
environments has been growing quickly. In the context of
cloud systems, mapping a number of application components
to a set of physical servers and assigning cloud resources to
those components is challenging. Traditional resource allocation
systems which rely on a centralized management paradigm suffer
from scalability issues, making them inappropriate for large-scale
cloud environments. Therefore, there is a need for providing
new management solutions that scale well to large size cloud
systems. In this article, we present optimal and heuristic solutions
for network-aware placement of multi-component applications
with differing component characteristics. The optimal ILP-based
solution minimizes the application rejection rate and the cost of
mapping while respecting application component requirements
and physical network limitations. As the execution time of the op-
timal model scales exponentially, we also offer scalable heuristic
solutions for centralized and hierarchical application placement,
which are thoroughly explained and evaluated and compared
to the optimal solution. Our evaluations show that while the
proposed centralized heuristic is near-optimal, the hierarchical
approach is much faster and offers higher scalability compared
to a centralized approach, e.g. mapping 2.7 million application
components onto 512k servers. Moreover, the percentage of
servers used and fully placed applications remain close to that
of the centralized and optimal solutions.

Index Terms—cloud management, application placement, op-
timization, hierarchical management system, scalability.

I. INTRODUCTION

Cloud computing has emerged as a powerful paradigm
which has revolutionized the way in which computing in-
frastructures are used. Elasticity and on demand services are
the main characteristics which make these computing infras-
tructures appealing. Nowadays many companies make use of
cloud technologies to reduce costs, increase flexibility and to
respond faster to customer needs. Although the benefits of
cloud systems are considerable, numerous challenges remain,
among them, effective supervision of resource usage, scala-
bility and in particular resource allocation to the applications.
The application placement refers to the act of deciding where
on the clusters of servers, applications are placed [1].

The initial placement policy used to map applications onto

physical servers has important effects in terms of application
performance and resource efficiency, and making a suitable
initial decision is essential to reduce the future need for
migrations. In literature, most efforts have been directed
towards optimizing the usage of CPU, memory and disk
resources, and reducing the energy consumption of physical
servers. According to [2], however, there has been a drastic
increase in the amount of data generated and consumed by
each application. Thus, resource allocation methods have to
expand and take into account this growing focus on data.
Inappropriate placement of application components with heavy
communication requirements could lead to the saturation of
certain network links, with subsequent negative impact on
applications, e.g. slow response or execution times.

Cloud-based applications often consist of multiple interact-
ing components with differing requirements. While some com-
ponents may consist of high CPU intensive tasks, requiring
powerful computational servers, others may deal with large
volumes of data, making servers tailored to data-throughput
more appropriate for such components. In order to offer an
efficient placement service, different requirements of applica-
tion components should be taken into account in deciding on
where to deploy application components.

In order to address this problem of network-aware ap-
plication placement in cloud environments, in this article,
we first introduce a centralized ILP-based optimal model.
The main objective is maximizing the percentage of mapped
applications while taking the cost of application mapping
into account. In our proposed approach, we deal with multi-
component applications with multiple component types. The
interdependence among application components implies that
either the entire application or none of the application com-
ponents are mapped. This is known as the full deployment
placement constraint [3]. Therefore, a mapped application is
an application for which all components are successfully allo-
cated. Moreover, due to the characteristics of our applications,
in order to have deterministic performance and for security
reasons we have made a distinction between different types of
application components. Each pair of application components

A1 A1(R)

A2 A2(R)

B1 B1 (R)

B2 B2 (R)

A1

A2

B3 B3 (R)

A1 (R)

A2 (R)

B1(R) B1

B2 (R) B2

B3 B3 (R)

…

…

…

…

App. A App. B

Xi Component i of application X

Xi (R) Redundant version of Xi

Fig. 1: The process of application component placement with
the anti-collection placement requirement. Redundant compo-
nents are not allowed to be allocated on the same host as
non-redundant components.

may either be allowed to share a hardware resource or not.
This isolation of component types can be modeled as an
anti-collocation placement constraint [3]. In our approach, the
anti-collocation constraint implies that different component
types are not allowed to be placed onto the same servers.
We achieve this by ensuring that each server is only allowed
to place one type of application component. It should be
noted that these constraints can be applied to a wider range
of generic problems, such as multi-tenant applications with a
strong focus on data security (banking, insurance, etc.) or anti-
collocation of redundant components for increased reliability
and fault tolerance purposes. Figure 1 shows an example of a
reliable application component placement onto a small cluster
of cloud servers. As illustrated in this figure, each application
component and its redundant version must be mapped onto
two different physical servers.

Due to the NP-hardness of the problem [4], [5], [6] and
limited scalability of the optimal model, we also propose
an approximate centralized heuristic as well as a hierarchi-
cal approach for large-scale cloud environments with the
following design goals: scalability and performance. While
centralized approaches are omniscient in nature and can make
better placement decisions, our hierarchical solution has been
designed in such a way that component placement optimality
is nearing that of the centralized heuristic approach. Also,
the proposed hierarchical algorithm executes faster as each
management cluster maintains a partial view of the network.
In this article, we will prove that the resource allocation
process is scalable both in number of cloud servers (e.g.
512k servers) and the number of application components (2.7
million application components) needing to be placed onto the
cloud servers. Furthermore, as part of our presented approach
an application placement policy, prioritizing local deployment
is taken into account for each administrative domain. This
partial solution also tries to minimize the number of servers
used within each administrative domain. This feature, known
as server consolidation, is mostly effective in reducing the
power consumption of large-scale datacenters [7].

In the context of modern cloud platforms, the application
placement process consists of placing the application’s compo-
nents in a set of VMs (Virtual Machines) and deploying these
to the physical infrastructure [8], [9], [10], [11]. In this article,
we assume that the components are already encapsulated
in VMs or (micro-service) containers, and the application
component placement decides on where to place these VMs
on the available physical servers, taking network demands
between the VMs into account.

The rest of the article is organized as follows. In Sec-
tion II, the related work is discussed. Section III describes
the architecture for our distributed approach to network-
aware application placement for large-scale cloud datacenters.
In Section IV, the formulation of the ILP-based model is
presented in detail. In Section V the proposed algorithms
are extensively discussed, followed by an evaluation of the
proposed algorithms in Section VI. Finally in Section VII, we
sum up our contribution and conclude the article.

II. RELATED WORK

Recently many different approaches for application place-
ment and cloud resource allocation have been proposed [12],
each focusing on different aspects of the problem. While many
approaches such as [10], [13], [14], [15] and [16] rely on
centralized approaches which suffer in term of scalability, [17]
offers a distributed protocol in order to design a resource
management middleware. However, their solution is different
as interaction between application components is ignored
and there is no global overview of system states for the
network administrators. Authors in [18] also focus on resource
allocation in IaaS clouds. Nevertheless, the main contribution
of this paper is maximizing resource utilization and request
acceptance rate. Another work, [19], clarifies the definition of
distributed cloud and the challenges of resource allocation on
distributed clouds.

The authors in [20] have made a discussion and categorized
the VM placement schemes into resource-aware, power-aware,
cost-aware and network-aware. Network-aware approaches,
such as [21], [22], [23], [24], [25], try to reduce traffic related
issues or avoid congestion and in general, VMs make use of
network either to communicate with each other or to access
the required data from storage components. However, none of
these approaches take into consideration the anti-collocation
requirement of VMs. On the other hand, deployment of VMs
under placement constraints have been investigated in [3], [26]
and [27]. Shi et. al. [3], [26] focus on different VM placement
constraints, e.g. full deployment, anti-collocation, security, etc.
and Breitgand et. al. [27] study SLA compliant placement of
multi-VM elastic services under the anti-collocation placement
constraints. However, these approaches do not take network
demands between the VMs into account.

The model defined in this article has similarity with [4] that
describes a linear application placement model and [28] which
offers a cost-aware algorithm. Nevertheless, these approaches
work at the application level, contrary to our component-
level application modeling policy where we make a distinction

between different component types. In addition, based on the
definition of “the best-fit placement” in [4], our centralized
heuristic solution follows the same rule, which is finding
a feasible server whose residual capacity is minimal. Nev-
ertheless, it differs from our approach as it is centralized
and not network-aware. Many other application placement
approaches [29], [13], [30], [31] also focus on placing a set
of independent applications, and do not take the underlying
network into account. These approaches do not provide a
guaranteed quality of communication between individual in-
teracting components due to potential contention of network
resources [12]. In order to mitigate the effect of this risk,
network-aware solutions have recently been proposed. Authors
in [32] pay special attention to time varying nature of traffic
demand and dynamic routing capabilities for medium size
data centers. Jiang et al. [33] focus on a multi-path routing
scheme and live migration. Incorporation of various network
functions has been studied in [34]. While these network-aware
approaches only focus on network congestion or minimizing
network traffic, we explicitly take both network capacity and
delay requirements of applications into account in our for-
mulation as QoS constraints. Among the other network-aware
approaches which also take both requirements into account, we
refer to [10], [35], [36], [37], [38] that are centralized and [39]
which specifically focus on geo-distributed clouds.

According to [12], while most of the existing application
mapping solutions focus on centralized systems, only 11.5%
of approaches, including [40], [41], [42], [43] and [44], use
hierarchical control schemes and one of those approaches [45]
takes network constraints into account. However, their hierar-
chical approach is not related to their management system but
instead it is related to their placement process.

This article is related to our previous work on hierarchical
cloud resource management [46], [47]. In [46] the underlying
network was however not taken into account, while this work
specifically focuses on network-aware management of multi-
tier interactive applications. [47] does take the underlying
network into account, but does not make a distinction between
different component types. In this article we however make
a distinction between multiple component types, taking their
requirements and characteristics into account during the place-
ment decision. In addition, this article presents much larger
scale evaluations.

This work is the extension of our previous work [48]
and [49]. In [48], we presented an optimal ILP-based solution
which offers limited scalability, making it only suitable for
small datacenters. This optimal solution is also useful for
benchmarking real-time heuristic algorithms. In [49], a de-
centralized algorithm was designed and evaluated which can
be applied to large-scale cloud environments. In this article,
we have updated the ILP-based model in 3 ways. First, the
model has been generalized to support arbitrary numbers of
component types as it was previously limited to two different
component types. Secondly, in the previous version, a feasible
solution was reached only when all the applications have been
mapped. The model has now been extended to incorporate

an application mapping failure rate, which penalizes failures
of mapping applications, but allows finding solutions when
otherwise no feasible solution would be possible. Finally, the
main objective has been altered to minimize the application
mapping failure rate in addition to the cost of application
mapping. Our evaluations have also been extended to be more
comprehensive.

Generally, what distinguishes our method from other
approaches is the combination of the following: 1) our solution
is network-aware, decentralized and scalable; 2) application
modeling is component-based with different types, and
interaction between those components affects the placement
process; 3) SLA agreements and the properties of underlying
network, bandwidth and delay, are respected; 4) anti-
collocation placement constraints are defined, based on which
multiple but same-type components can be placed onto a
single physical node; and 5) our method minimizes the number
of servers used while respecting application requirements.

III. MODELING OF A LARGE-SCALE CLOUD ENVIRONMENT

The model for the proposed large-scale algorithm can be
divided into three parts: the physical cloud system, the man-
agement plane model and the application model.

Physical cloud system model: In literature, several new
topologies have been proposed for future cloud-based envi-
ronments, such as Jellyfish [50], Dcell [51], etc. Nevertheless,
tree-based topologies are still dominant in the existing oper-
ational cloud datacenters [52], [53]. Although our proposed
approach is not limited to the type of network topologies, in
this work the physical cloud system is considered a hierarchi-
cal tree topology, which is common in modern data centers. As
application components of different types can not be mapped
onto the same server in our proposed approach, each server
has different responsibility and provides specific functionality.

Management plane model: The management plane relies
on multi-layered hierarchical architecture in which three types
of managers are defined: LLM (Low Level Manager), MLM
(Mid Level Manager) and RLM (Root Level Manager). The
LLMs are located in the lowest level of the management
hierarchy, the RLM in the top level and MLMs in middle ones.
LLMs directly deal with physical servers and are responsible
for mapping application components onto physical servers.
MLMs manage several LLMs and have the authority to chose
the current active LLM, which has to take the responsibility of
mapping new application components. RLMs have the general
overview of the cloud management systems. In multi-domain
cloud environments, RLMs can communicate with other do-
mains if the need arises. The management plane specifications
are shown in Table I. The number of management levels (|ML|)
and the number of supported servers (|SS|) for each LLM
are taken and the branch factor of each tier (µ) is calculated
for each management domain. In addition, the number of
supported servers and the number of levels determine the
number of LLMs. By calculating the level branch factor the
number of MLMs can be achieved as follows.

TABLE I: The Management plane parameters.

Parameter Description

|LLM | ∈ N+ Number of LLMs.
|MLM | ∈ N0 Number of MLMs.
|RLM | ∈ N0 Number of RLMs.
|SS| ∈ N+ Number of supported servers for each LLM.
|ML| ∈ N+ Number of management levels.
µ ∈ N+ Management level branch factor.

µ = |ML|−1
√
|LLM | (1)

|LLM | = d|S|/|SS|e (2)

|MLM | =
|ML|−2∑
level=1

µ((|ML|−1)−level) (3)

An example of a physical cloud system and how this maps
to its management plane is illustrated in Figure 2. In each
administrative domain different servers are chosen as default
servers for different component types.

…

…

MLM

MLM

RLM

…

…

…

A Cloud domain infrastructure The Management Plane

LLM

LLM

LLM

LLM Managed by

Managed by

…

Managed by

…

Managed by

Fig. 2: The architecture of physical infrastructure and the
management plane (LLM: Low Level Manager, MLM: Mid
Level Manager, RLM: Root Level Manager).

Application model: In this article, the architecture of the
applications is service oriented, meaning applications can be
represented as a service graph and the application topology
is a graph. Although an arbitrary number of application
component types can be supported by our approach, we focus
on two component types in our evaluations: database (e.g.
data sources, data stores) and computational (e.g. application
business logic or user interfaces) components. Database com-
ponents store and manage data and are more storage intensive,
whereas computational components are more CPU intensive.
The application database and computational components are
the nodes and connections between these components form

the directed links of the application graph. Each application
component requires a specific number of data sources, CPU
power, memory and storage, etc. and the storage demand of
database components is much higher than their CPU/memory
demand, whereas for logic components, power of CPU is of
the highest demand. In our model,maximum allowed delay
and bandwidth requirements are defined for application links,
which need to be satisfied as well.

IV. FORMAL ILP-BASED PROBLEM FORMULATION

A. Introduction to the model

We first present a formal model for application component
placement for cloud resource allocation. In this model the
substrate network is considered as an undirected graph and
the application network as a directed graph due to inter-
dependencies between different components. The parameters
of the physical network graph and application network and
their descriptions are listed in Table II. Both infrastructures
consist of nodes (N) and links (L). In this context, application
links refer to the connections between application components
with certain demands that need to be met. Nodes in substrate
graph (u ∈ Nph) have specific properties such as data storage
capacity (Su), CPU power capacity (Cu) and memory capacity
(Mu). Physical links (euv ∈ Lph) can be either LAN or
WAN link and this is determined by a binary variable, typeeuv

in which 0 refers to the LAN and 1 refers to the WAN
links. We made this distinction because WAN links cost more
than LAN links. Each link has delay (Deuv

) and bandwidth
capacity (BWeuv

) properties. It has to be noted that the
physical network resource capacities are residual capacities,
considering the previous mappings. As we aim to minimize
the cost of mapping applications onto cloud resources, the
general cost of physical nodes and links as well as cost of
using each unit of CPU, memory, storage and link capacity
has been taken into account.

Similarly, each application has been considered as a work-
flow, consisting of multiple components and links between
those components form a directed weighted graph. In the
application network, ai refers to the component i of appli-
cation a with specific computational (cai), storage (sai) and
memory (mai) requirements and eaij refers to the link between
component i and j of application a with specified bandwidth
(bweaij

) and maximum allowed delay (deaij
) demands. Differ-

ent component types are collected in Stype and γtai is a binary
input variable which indicates whether or not ai is of type t.

B. Decision variables

Seven decision variables have been defined in this ILP
model and all variables are binary. First, xaiu shows the
accomplished mapping between component i of application
a and physical node u, regardless of the type of component.
It has to be noted that this variable is equal to 0 in two states,
either when due to limitations there is no possibility to have
a mapping between nodes or when physical node x is not
chosen for the mapping although it was possible. Next, feaij

euv

TABLE II: Symbols and notations used in the formal model.

Physical cloud-based infrastructure parameters

Variable Description

Gph Physical Graph, Gph =
(
Nph, Lph

)
Nph Physical nodes set in Gph

Lph Physical links set in Gph

Su ∈ N+ Available storage capacity of physical node u.
Mu ∈ N+ Available memory capacity of physical node u.
Cu ∈ N+ Available CPU capacity of physical node u
Deuv ∈ N+ Delay of physical link euv.
BWeuv ∈ N+ Bandwidth capacity of physical link euv.
typeeuv ∈ {0, 1} whether Phy. link euv is a LAN or WAN link
Ccostu ∈ N+ Cost of each CPU unit of physical node u.
Mcostu ∈ N+ Cost of each memory unit of physical node u.
Scostu ∈ N+ Cost of each storage unit of physical node u.
BWcosteuv ∈ N+ Cost of each BW unit of physical link euv.
fcostu ∈ N+ The fixed cost of using physical node u.
fcosteuv ∈ N+ The fixed cost of using physical link euv.

Component-based application parameters

Variable Description

Gapp Application graph, Gapp = {a|a = (Na, La)}
AppNo Number of applications.
CompNoa Number of components of application a.
Stype Set of types of application components.
ai ∈ Na Component i of application a.
γtai ∈ [0, 1] has value 1 if ai is of type t.
cai ∈ N+ Computation demand of application a, comp. i.
sai ∈ N+ Storage demand of application a, comp. i.
mai ∈ N+ Memory demand of application a, comp. i.
eaij ∈ La Link between comp. i and j of application a.
bweaij ∈ N+ Bandwidth demand of link eaij .
deaij ∈ N+ Max. allowed delay of link eaij .

indicates success of mapping between physical link euv and
the link between components i and j of application a (eaij).

As we assume that each physical node is exclusively used
for components of the same type, variable T tu is defined for
the purpose of determining whether node u is used to host
components of type t. Multiple components of the same type
can be mapped onto the same physical server.

Furthermore, two other variables are defined: Bu is a binary
variable to show whether physical node u is used, either as a
routing node or a used server in the entire mapping. Beuv is
another binary variable to indicate whether physical link euv
is used in the mapping scheme or not. Finally, Ma has been
defined to indicate whether the application a is fully mapped
or not.

xa,iu ∈ [0, 1] ∀u ∈ Nph,∀a ∈ Gapp,∀i ∈ Na
feaij
euv
∈ [0, 1] ∀euv ∈ Lph,∀a ∈ Gapp,∀eaij ∈ La

T tu ∈ [0, 1] ∀u ∈ Nph,∀t ∈ Stype
Bu ∈ [0, 1] ∀u ∈ Nph
Beuv

∈ [0, 1] ∀euv ∈ Lph
Ma ∈ [0, 1] ∀a ∈ Gapp

C. Objective function

Guaranteeing the quality of service and taking physical
constraints into account, application placement services have

to be performed with minimum rejection of application place-
ment requests. To achieve this, the sum of Ma variables
should be maximized. Minimizing cost of mapping should
always be considered the second optimization objective. The
cost of physical servers can be determined by combining the
individual costs of using each unit of CPU, memory and
storage and the fixed cost of using each server. Moreover,
since in multi-domain cloud networks the cost of LAN links
are almost zero, for estimating the link cost, only the WAN
links are taken into account.

The optimization objective function minimizes both the
application rejection rate and the cost of mapping with
lower and higher priorities respectively. Given α and β
as higher (e.g. 106) and lower (e.g. 1) priority parameters
respectively, FailureRate as application mapping failure
rate and NodeMapCost as cost of physical node usage and
LinkMapCost as cost of physical links usage, the objective
function is defined as follows:

Minimize:

α× FailureRate+ β × (NodeMapCost+ LinkMapCost)

where:

FailureRate =

AppNo− ∑
∀a∈Gapp

Ma

 /AppNo

NodeMapCost =
∑
∀u∈Nph

fcostu ×Bu + ∑
∀a∈Gapp

∑
∀i∈Na

(cai × Ccostu +mai ×Mcostu + sai × Scostu)× xaiu

)

LinkMapCost =
∑

∀euv∈Lph

(
fcosteuv

×Beuv
× typeeuv

+

∑
∀a∈Gapp

∑
∀eaij∈La

(
bweaij ×BWcosteuv × typeeuv

)
× feaij

euv

)
As a result of minimizing the cost of mapping, the objective

of the presented model also minimizes the number of nodes
on which the applications can be hosted while satisfying the
following constraints and requirements.

D. Constraints

The defined constraints for application component mapping
in cloud system have been organized into 7 sub-Sections as
follows:

1) Physical node limitations: Constraints (1), (2) and (3)
are considered for physical network nodes and are related to
computational, memory and storage limitations respectively.
For all physical nodes, the common idea is that sum of all
mapped requests’ demand must not exceed their maximum
available capacities.

∑
∀a∈Gapp

∑
∀i∈Na

cai × xaiu ≤ Cu ∀u ∈ Nph (1)

∑
∀a∈Gapp

∑
∀i∈Na

mai × xaiu ≤Mu ∀u ∈ Nph (2)

∑
∀a∈Gapp

∑
∀i∈Na

sai × xaiu ≤ Su ∀u ∈ Nph (3)

2) Physical link limitations: A bandwidth constraint has
to be considered for each physical link, regardless of being
either WAN or LAN link. Constraint (4) represents that for
each physical link, the sum of bandwidth demands of all
applications must not exceed maximum available bandwidth.

∑
∀a∈Gapp

∑
∀eaij∈La

bweaij
× feaij

euv
≤ BWeuv

∀euv ∈ Lph

(4)

3) Quality of service requirements: For delay and band-
width, Constraints (5) and (6) are defined for each application
link eaij . It has to be noted that the bandwidth constraint
can be ignored as it will be satisfied with the physical link
Constraint (4).

∑
∀euv∈Lph

Deuv
× feaij

euv
≤ deaij

∀a ∈ Gapp,∀eaij ∈ La (5)

BWeuv
× feaij

euv
≥ bweaij

∀euv ∈ Lph,∀a ∈ Gapp,∀eaij ∈ La
(6)

4) Well-connected mapping Constraints: Constraint (7)
makes sure that when 2 adjacent application components
cannot be physically mapped next to each other, a chain of
continuous physical links is used to map each application
link. This assures that a closed path is considered to map
an application link. As can be observed from this equation,
for each physical node u, the subtraction of the sum of
all incoming and outgoing f values should be equal to the
subtracts of X values between target and source of each
application link eaij .

∑
∀u∈Nph

feaij
euv
−

∑
∀u∈Nph

feaij
euv

= xaju − xaiu (7)

∀a ∈ Gapp,∀eaij ∈ La,∀euv ∈ Lph,∀u ∈ Nph

5) Full deployment constraints: The statements below,
Constraints (8) and (9), ensure that if an application is mapped
each individual component of application a has to reside in
exactly one server in order to have a successful mapping.
Constraint (10) indicates that either all or none of application
components have to be mapped.

∑
∀u∈Nph

xaiu =Ma ∀a ∈ Gapp,∀i ∈ Na (8)

∑
∀u∈Nph

xaiu ≤ 1 ∀a ∈ Gapp,∀i ∈ Na (9)

∑
∀i∈Na

∑
∀u∈Nph

xaiu = CompNoa ×Ma ∀a ∈ Gapp (10)

6) Anti-collocation constraints: We also need other con-
straints between X and T values to ensure that each
physical node is only used for components of the same
type.Constraint (11) and (12) are defined to ensure that the
type of the application component and the physical node on
which this component is mapped are identical. Since mapping
of components of different types is not feasible in the proposed
approach, Constraint (13) ensures that for each physical node
sum of all T tu values for all component types should be less
than or equal to 1.

γtai × xaiu ≤ T tu ∀u ∈ Nph,∀a ∈ Gapp,∀i ∈ Na,∀t ∈ Stype

(11)

xaiu ≤
∑

∀t∈Stype

T tu ∀u ∈ Nph,∀a ∈ Gapp,∀i ∈ Na (12)

∑
∀t∈Stype

T tu ≤ 1 ∀u ∈ Nph (13)

7) Additional constraints: Constraints (14) and (15) are
needed to make logical correlations between physical re-
sources and their usage. K in both constraints is a large
number. In Constraint (14) its value has to be larger than the
sum of all possible X values and in a same way larger than
all possible f values in Constraint (15). In Constraint (16), Bu
for each physical node shows that whether node u is used to
host any type of component or not.

∑
∀a∈Gapp

∑
∀i∈Na

xaiu ≤ K ×Bu ∀u ∈ Nph (14)

∑
∀a∈Gapp

∑
∀eaij∈la

feaij
euv
≤ K ×Beuv

∀euv ∈ Lph (15)

Bu =
∑

∀t∈Stype

T tu ∀u ∈ Nph (16)

V. ALGORITHM DESCRIPTIONS

A. ILP-based algorithm
This algorithm implements the optimal ILP-based model

which was extensively explained in Section III. This ILP-based
algorithm is solved using IBM ILOG CPLEX Optimization
Studio [54] which is a tool to build efficient optimization
models. The objective function minimizes both the application
mapping failure rate and the cost of mapping, taking the
constraints into account.

B. Heuristic algorithm

As has been shown in [4], [5] and [6], the problem of appli-
cation placement onto a network with bandwidth constrained
links is NP-hard. Based on computational complexity theory,
in large scale environments, an optimal solution for an NP-
hard problem is too expensive to be used in practice; instead
a near-optimal solution is desired.

In this section a centralized and a hierarchical approach is
discussed which we refer to as the Centralized Cloud Mapping
Algorithm (CCMA) and the Hierarchical Cloud Mapping Al-
gorithm (HCMA) respectively. These algorithms are executed
within the management plane.

The centralized CCMA algorithm is proposed as a near-
optimal alternative to the centralized ILP based approach.
This centralized approach can be deployed independently and
efficiently up to the scale of medium-size networks. We will
show that the centralized approach always outperforms the
hierarchical solution in terms of number of fully mapped
applications. Comparing the quality and complexity, the use
of the hierarchical approach is only recommended for large
scale environments, where the CCMA can not be practically
used due to high complexity. The HCMA has made use of the
CCMA algorithm, in combination to the GCMA. The GCMA
is introduced to have interactions between different managers
within the hierarchical management plane.

1) Centralized Cloud Mapping Algorithm (CCMA): This
algorithm first arbitrarily chooses different nodes as the default
servers for different component types. For each application
the algorithm, shown in Algorithm 1, goes through all the
components and tries to allocate resources to each component.
An illustrative example of this placement for two types of
components is shown in Figure 3. In order to have minimal
bandwidth overhead, the algorithm uses the Dijkstra shortest
path algorithm [55] for mapping the application links. How-
ever, there are two situations in which the application compo-
nent cannot be placed onto the default server, either because
of physical node limitations or due to physical link limitations.
Node limitation occurs when there is not enough residual
CPU, memory or storage capacity in one of default servers.
In the latter case, again, there are two situations in which
the link limitation leads to unsuccessful placement. First, the
application components cannot be connected because there are
no physical links to connect application components located
on different servers. Second, placement can be unsuccessful if
bandwidth or delay requirements cannot be resolved.

No matter what is causing unsuccessful application com-
ponent placements and what the type of component is, the
Next Server Selection (NSS) process should be followed to
choose another server as a default server. In the NSS process,
a Breadth First Search (BFS) algorithm [55] is run with the
current default server as the start vertex to initialize the next
server selection. We use the BFS because this algorithm finds
the nearest server with minimal path length which ensures
there is a minimal communication overhead between the
new and the previous servers. However, when link limitation

D

D

C D C
D

D

C D C
D

D

C D C
… …

DD DC DS CS

App (i) App (i+1) App (i+2)

E E E E E

Physical Servers

DD Initial Default Database Server

DC Initial Default Computational Server

DS Database Server

CS Computational Server

E Unused Servers (Empty)

Application Components

D Database Component

C Computational Component

Fig. 3: The process of application component placement onto a
cluster of cloud servers for two types of components (database
server and computational server).

occurs, first another server is chosen temporarily by the NSS
process and then the algorithm checks the path availability and
SLA fulfillment, and sets it as a default server provided that
choosing this server satisfies both conditions. Otherwise, the
placement is not successful. In this case the algorithm must
remove all placed components of the application and backtrack
to the state before the placement. This state is saved before
placement of each application in order to backtrack when the
need arises. After backtracking, the placement starts again with
new default servers. This process will be continued until the
NSS process is unable to find a new server. If this occurs,
placement of the application is not possible.

2) Hierarchical Cloud Mapping Algorithm (HCMA): The
HCMA algorithm is shown in Algorithm 2. Based on this
algorithm, all placement requests are sent to the current active
LLM, using the GCMA algorithm. The GCMA (Global Cloud
Mapping Algorithm) is designed in order to have interactions
between different managers within the management plane.
The GCMA is run on every manager. In the management
hierarchy, each LLM is in charge of its own administrative
domain and the current active LLM is the one which is active
in mapping the application components. The current active
LLM is determined arbitrarily when the algorithm starts. Each
manager has two states: “full” and “not full”. A manager is
“full” when all its managed servers get fully occupied. The
active LLM will be replaced when its state changes to “full”.
The next active LLM is chosen by the parent of the current
active LLM, i.e. an MLM or the RLM. For each newly arriving
application, the HCMA invokes the GCMA with the current
active LLM and a “new request” message. In the GCMA
three types of messages are defined: “new request”, “from the
parent node” and “full”. This is illustrated in Figure 4. Next,
the GCMA sends the application request to the current active
LLM by calling the CCMA, which was presented earlier. In
hierarchical approach the CCMA is run on every LLM. If this
default administrative domain is not able to place the entire
application components, the status of the current active LLM
changes to “full”. Afterward, this LLM calls the GCMA with

input: applications
for (c ∈ application components) do

while (Map (c, defaultServer) = false) do
if (Due to node limitations) then

New defaultServer ← NSS(default
Server);
if (New defaultServer = Null) then

Mappedapp ← false;
return false;

end
else if (Due to link limitations) then

Temp Server ← NSS (defaultServer);
if (CheckLinks (Temp Server)) then

New defaultServer ←Temp Server;
else

Mappedapp ← false;
end

end
if (one of default servers = null) then

Mappedapp ← false;
return false;

end
end

end
Algorithm 1: The Centralized Cloud Mapping Algorithm
(CCMA), run on the management plane in the centralized
approach and on each LLM in the hierarchical approach.

a “full” message to its parent, indicating that the application
cannot be placed onto this cluster. In this step, interaction
between different management entities starts.

Global Cloud Mapping Algorithm (GCMA): The GCMA
is a hierarchical algorithm, listed in Algorithm 3. Based on
this algorithm when a request is received, three cases can be
distinguished:

1) A request is received by the highest level manager
(RLM): The request will be forwarded to the next un-
visited domain with a “from the parent node” message.
If all domains are full and the request is rejected the
cloud system is not able to place this application.

2) A request is received by the mid-level manager (MLM):
The request will be forwarded by applying the same
policy to one dedicated lower-level manager with a
“from the parent node” message until the target LLM
located at the lowest level is reached. Provided that all
domains are full, the status of this manager turns to
“full” and the request with a “full” message will be
forwarded to the parent which can be either another
MLM or the RLM.

3) A request is received by the lowest level manager
(LLM): At this level all request messages will be either
“new request” or “from the parent node”. No matter who
is the request sender, the manager executes the CCMA
algorithm. In a saturation case when placement of new
applications is not possible, the LLM has to send the

MLM

LLM
LLM

1. GCMA(“new request” , app)

D
D

D
C

F F
D
D

D
C

E E

2. CCMA (app)

3. GCMA(“full” , app) 4. GCMA(“from parent” , app)

5. CCMA (app)

D

D
C D C

6. App is mapped

Physical Servers

DD Default Database Server

DC Default Computational Server

F Full Server

E Unused Server (Empty)

Application Components

D Database Component

C Computational Component

Fig. 4: Different messages for interacting between the man-
agers in GCMA (GCMA: Global Cloud Mapping Algorithm,
CCMA: Centralized Cloud Mapping Algorithm).

input: Applications,
Physical Infrastructure (Servers, Links),
Management Plane (|S|, |SS|, |ML|);

for (app ∈ applications) do
manager← Current active LLM ;
GCMA(app, manager, null, "new request");

end
Algorithm 2: The Hierarchical Cloud Mapping Algorithm
(HCMA), run on the hierarchical management planes.

newly arriving requests to its parent and introduce itself
as a “full” manager.

VI. EVALUATION DETAILS

The implemented physical cloud system is a tree-based
multi-tier infrastructure, similar to current datacenter topolo-
gies [11], [12], [56], consisting of server nodes and links
which we assume to be homogeneous. This means that all the
servers have similar configuration of CPU, memory, storage
and transmission medium (in terms of bandwidth and delay).
In our evaluations, we make use of two component types.
Each server can be either a database or a computational
server. No backup servers are assumed. Servers are located
in the lowest tier (level = 0) and the other levels consist
of intermediate devices such as switches. In order to design
the physical infrastructure, the number of server nodes (|S|)
and the number of levels (|L|) are taken as inputs. In order
to have the desired scale, these variables can be tuned. This
physical cloud environment is a complete N-ary tree in which
the N is the calculated branch factor (β). In addition, the
number of switch ports and the number of tiers determine the
number of network switches. The branch factor of each tier
and the number of intermediate switches (|IS|) are calculated
as follows. The variables defined to describe physical cloud
system are listed in Table III.

β = |L|−1
√
|S| (1)

|IS| =
|L|−1∑
level=1

β((|L|−1)−level) (2)

In our evaluations, three types of applications, shown in
Table VI, are implemented. Type 1 refers to the 5-component
applications with 3 database and 2 computational components,
Type 2 refers to the 10-component applications with 7 database

input: application a, manager m, requestSender
r, message s

Impossibilitya ← false;
Currentstate ← Save the current system state;
while (Mappeda = false & Impossibilitya = false)
do

Set current system state to CurrentState;
if (mtype = LLM & s=("new request" OR
"from the parent node")) then

if (one of the default servers=null) then
fullm ← true;
GCMA(a, parentm, m, "full");

else
CCMA(m,a);

end
end
if (mtype 6= LLM & s = ("full" OR "from the
parent node")) then

for (ch ∈ childrenm) do
if (fullch =false & ch6=r) then

GCMA(a, ch, m, "from the parent
node");
return;

end
end
fullm ← true;
if (mtype = MLM) then

GCMA (a,parentm, m, "full") ;
else

Impossibilitya ←true;
end

end
if (Impossibilitya =true) then

Set current system state to CurrentState;
end

end
Algorithm 3: The Global Cloud Mapping Algorithm
(GCMA), run on every manager in the hierarchical ap-
proach.

TABLE III: The physical network parameters.

Variable Description

|S| ∈ N+ Number of physical servers.
|IS| ∈ N+ Number of intermediate switches.
|L| ∈ N+ Number of physical switching levels.
β ∈ N+ physical level branch factor.

and 3 computational components and Type 3 refers to 20-
component applications that consisting of 14 database and 6
computational components. These types of applications have
been provided by our industrial partners based on realistic ap-
plications with deterministic characteristics, which implies that
the structure of the applications is always known beforehand.
To illustrate the used applications, a 20-component application
is shown as a sample in Figure 5. Throughout this section, the

TABLE IV: The Physical Infrastructure Specifications.

Physical Infrastructure Specifications

Case study |S| |IS| |L| |SP|
1 1000 111 4 10
2 4096 273 4 16

Physical Server Specifications Physical Link Specifications

CPU Storage Memory bandwidth Delay
3GHZ 200GB 16GB 400Mbps 3ms

TABLE V: Management plane infrastructure.

Case study type |ML| |SS| |LLM| |MLM| |RLM| µ

1 CCMA 1 1000 1 0 0 -
HCMA 3 10 100 10 1 10
HCMA 3 40 25 5 1 5
HCMA 2 100 10 0 1 10

2 CCMA 1 4096 1 0 0 -
HCMA 3 16 256 10 1 16
HCMA 3 64 64 5 1 8
HCMA 2 256 16 0 1 16

TABLE VI: Application specifications.

Type # component # link # database # computational

1 5 4 3 2
2 10 9 7 3
3 20 19 14 6

Type Component demands(Random) Link demands(Random)

CPU Storage Memory Delay BW
1 (1-1000)MHZ (1-20000)MB (1-2000)MB 1s (1-50)Mbps
2 (100-500)MHZ (100-20000)MB (100-1000)MB 1s (1-50)Mbps
3 (1-200)MHZ (1-10000)MB (1-300)MB 1s (1-20)Mbps

number of X-component applications refer to the number of
applications, submitted for a possible placement to the cloud
network management system. We assume that the application
are either rejected or placed in full with all X components.

This section is divided into four parts. Our proposed CCMA
approach combines a set of requirements including network
awareness, anti-collocation and full deployment placement
constraints, which are not supported by the state-of-the-art
solutions presented in literature. This makes it difficult to
accurately compare our results to existing methods as the
alternative network-aware solutions focus on different aspects,
such as migration [25], investigation of traffic pattern [38],
energy efficiency [57], SLA-awareness [58], etc. Therefore,
we compare the performance of CCMA to a generic network-

Database Component

Logic Component

Fig. 5: An illustrative 20−component application (Type 3).

40

50

60

70

80

90

100

50 60 70 80 90 100 110 120 130 140 150

P
e

rc
e

n
ta

ge
 o

f
se

rv
e

rs
 u

se
d

Number of 5-component applications

ACUNA

CCMA

Fig. 6: Comparing the percentage of servers used in the
CCMA and the ACUNA algorithm as a function of number
of application placement requests (20 iterations).

aware method, in which anti-collocation characteristics of
applications is ignored. In the evaluation cases, we refer to
this solution as ACUNA (Anti-Collocation Unaware, Network-
Aware). Then, to provide an accurate validation, an evaluation
of the CCMA is provided by comparing to the ILP-based op-
timal solution which takes all these requirements into account.
Next, we evaluate the HCMA by comparing its performance
with the CCMA. Finally, we will end the section with a large-
scale evaluation of the HCMA.

The simulations are performed using the Stevin Supercom-
puter Infrastructure at Ghent University, containing quad core
Intel Xeon L5420 servers with 16 GB RAM.

A. Comparing CCMA to the state-of-the-art solutions

1) Evaluation Set up: For this evaluation, we consider small
5-component applications and a 3-tier network architecture
consisting of 100 servers and 10 intermediate nodes. The
number of applications varies from 50 up to 150. The experi-
ments are iterated 20 times and the percentages of serves used,
mapped application and anti-collocation constraint fulfillment
are captured.

2) Evaluation Results: Our evaluation in Figures 6, 7 and 8
shows that although generic network-aware approach is able
to map up to 5.75% more applications and up to 4.35%
lower number of servers, at least in 66.8% of evaluation cases
the anti-collocation requirement of mapped applications are
violated.

B. Comparing the CCMA to the ILP-based algorithm

1) Evaluation Set up: The optimal model and the CCMA
are evaluated with a configuration of 6 servers arranged in a
star topology. The specification of servers and links can be
seen in Table IV.

Type 1 and Type 2 applications are used to compare the
performance of the proposed algorithms under light and heavy
network load conditions. The number of scenarios varies from

40

50

60

70

80

90

100

50 60 70 80 90 100 110 120 130 140 150

P
e

rc
e

n
ta

ge
 o

f
fu

lly
 m

ap
p

e
d

 a
p

p
lic

at
io

n
s

Number of 5-component applications

ACUNA

CCMA

Fig. 7: Comparing the percentage of fully mapped applications
in the CCMA and the ACUNA algorithm (20 iterations).

0

20

40

60

80

100

50 60 70 80 90 100 110 120 130 140 150

P
e

rc
e

n
ta

ge
 o

f
an

ti
-c

o
llo

ca
ti

o
n

co

n
st

ra
in

t
fu

lf
ill

m
e

n
t

Number of 5-component applications

ACUNA

CCMA

Fig. 8: Comparing the percentage of anti-collocation appli-
cation placement fulfillment in the CCMA and the ACUNA
algorithm (20 iterations).

1 up to 11. The average percentage of used servers and per-
centage of algorithm success in mapping all the applications
are evaluated.

2) Evaluation Results: In Figure 9 and 10 the CCMA is
compared to the ILP-based optimal approach. The percentage
of servers used are depicted in bars and the percentage of
algorithm success in mapping all the application components
are shown in lines.

As can be seen in both figures, when it comes to the physical
resources usage, the CCMA provides a near-optimal solution
compared to the ILP-based algorithm in this scenario. This
can be clearly observed from Figure 9 as the network is not
saturated. This figure show that in 5 out of 11 experiments
the number of used servers are equal in the CCMA and the
ILP-based approach and the CCMA uses at most 8.33 more
number of servers when the number of applications is 9. In
Figure 10, the percentage of algorithm success in mapping all
the applications is more interesting. This figure reveals that
when the network is saturated the capability of the CCMA
in mapping application components stays within 10.7% of
the optimal approach. This figure also shows that when both

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

A
ve

ra
ge

 p
e

rc
e

n
ta

ge
 o

f
u

se
d

 s
e

rv
e

rs

Number of 5-component applications

ILP

CCMA

ILP succeess in mapping

CCMA success in mapping

Fig. 9: Comparing the number of servers used (as bar charts)
and the application mapping success rate (as line charts)
in the CCMA to the ILP-based algorithm for 5-component
applications (20 iterations).

200000

300000

400000

500000

600000

700000

800000

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

A
ve

ra
ge

 p
e

rc
e

n
ta

ge
 o

f
u

se
d

 s
e

rv
e

rs

Number of 10-component applications

ILP

CCMA

ILP success in mapping

CCMA success in mapping

Fig. 10: Comparing the number of servers used (as bar charts)
and the application mapping success rate (as line charts) in
the CCMA to the ILP-based algorithm for 10-component
applications (20 iterations).

algorithms succeed in mapping all the application components
(from 1 up to 4 number of applications), the CCMA uses
almost the same number of servers as the optimal ILP-based
approach. These results show the performance of the CCMA
is close to that of the optimal algorithm.

The execution times of the CCMA and the ILP-based
approaches are compared in Figure 11 for Type 1 applications.
As can be seen, the execution time of the ILP-based model is
exponentially increasing by adding more applications, which
makes it inappropriate for larger evaluations. As such, the
reminder of this section is devoted to the comparison of the
CCMA and the HCMA algorithms. Throughout the next sub-
sections, the HCMA(XX,YY) refers to a three-tier management
plane of XX LLMs and YY MLMs and the HCMA(XX) refers
to a two-tier management plane of XX LLMs. In a two-tier
management plane no MLM is involved and one RLM is taken
into account in all experiments.

C. Comparing the hierarchical algorithm to the centralized
approach

We study three case studies. In the first case, 5-component
applications are placed on a cloud system with 1000 servers
and the second case considers a larger scenario with 4096
servers and 20-component applications. In the experiments,
we measure the percentage of servers used, the percentage of
mapped applications and the execution times per application.
Afterward, the impact of different physical infrastructures on
the average number of fully mapped applications and the
execution time for 1000 up to 4096 servers are analyzed. Due
to negligible standard errors for the reminder of evaluations,
standard error bars are left out.

1) Evaluation Set up: The configuration of the simulated
network, the management plane and the application structure
are as follows. For the evaluation, the configuration of physical
infrastructure is considered to be a 4-tier hierarchical tree
topology. For the first scenario, the physical cloud system
consists of 1000 servers (respectively 4096 for case study 2)
in the lowest tier. The number of ports in each intermediate
device is 10 (resp. 16) which results in 1+10+100 (resp.
1+16+256) switches in the first three tiers. Consequently,
the number of physical nodes is 1111 (resp. 4369) in the
entire cloud system. The specifications of the physical cloud
resources are shown in Table IV.

To make a better comparison apart from the central manage-
ment system, three different hierarchical management planes
are generated. The hierarchical management planes are defined
as follows and are listed in Table V.
• a 3-tier management plane with 100 (resp. 256) LLMs,

10 (resp. 16) MLMs and 1 RLM. Each LLM supports 10
(resp. 16) servers in this case.

• a 3-tier management plane with 25 (resp. 64) LLMs, 5
(resp. 8) MLMs and 1 RLM. In this scenario 40 (resp.
64) servers are supported by each LLM.

• a 2-tier management plane with 10 (resp. 16) LLMs, no

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11

Ex
e

cu
ti

o
n

 t
im

e
s

(s
)

Number of 5-component applications

ILP

CCMA

Fig. 11: Comparing the execution times of the CCMA to
the ILP-based algorithm for 5-component applications (20
iterations).

MLM and 1 RLM. Each administrative domain consists
of 100 (resp. 256) servers here.

The implemented applications are of Type 1 (resp. Type 3),
the number of which varies from 100 up to 1500 (resp. 400
up to 4000). Each application component has different CPU,
memory, storage and QoS demands which are randomly taken
within a predefined interval, provided in Table VI.

2) Evaluation Results: Figure 12 and Figure 13 show the
percentage of used servers for different management planes.
As can be observed from Figure 12, the number of used
servers grows linearly with the number of applications until
all the resources are completely occupied. Among all, the
CCMA uses the fewest and the HCMA with higher numbers
of LLMs, uses the highest percentage of servers. In the worst
case the hierarchical scenario with 100 LLMs uses 6.7% more
servers. Moreover, the average standard errors is 0.025% for
the CCMA and 0.031% on average for the HCMAs.

In Figure 14, the percentages of placed applications is
depicted. As the results show, the CCMA offers the best
performance and the HCMA with 100 LLMs the worst.
Additionally, application placement failures are expected due
to the fixed number of servers and resource saturation after
1000 applications. Nonetheless, in both figures even in the

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

ge
 o

f
Se

rv
e

rs
 U

se
d

Number of 5-component applications

CCMA
HCMA (100, 10)
HCMA (25, 5)
HCMA (10)

Fig. 12: The percentage of servers used (Case study 1 with
1000 servers and 20 iterations).

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

n
u

m
b

e
r

o
f

se
rv

e
rs

 u
se

d

(r
e

la
ti

ve
 t

o
 c

e
n

tr
al

iz
e

d
 a

lg
o

ri
th

m
)

Number of 5-component applications

CCMA

HCMA (100, 10)

HCMA (25, 5)

HCMA (10)

Fig. 13: The relative percentage of used servers, compared to
CCMA (Case study 1 with 1000 servers and 20 iterations).

worst case, the result is within 8% of the best result.
The execution time of the hierarchical approaches is promis-

ing. As can be clearly seen in Figure 15, the time in which
an application is placed in the CCMA is much higher than
the hierarchical approaches, especially in the hierarchical
management plane with more LLMs.

In Figure 16, Figure 17, Figure 18 and Figure 19 the
percentage of servers used, the percentage of mapped ap-
plications, the percentage of mapped applications relative to
the centralized approach and the average execution time per
application are depicted respectively for the second case study.
As can be observed from Figure 16, the percentage of used
servers increases by adding more applications up to when
the servers are fully occupied. Afterwards, the percentage
of mapped applications declines as the newly arriving appli-
cations are immediately rejected due to saturated resources.
Although the CCMA shows better performance, the hierar-
chical management planes use at most 5.6% more resources.
Figure 17 and Figure 18 compare the percentage of mapped
applications in the hierarchical approaches to the centralized
solution. As can be seen, in the worst case the result of the
hierarchical management planes is within 7% of the best result.
Also, Figure 19 indicates that the execution time of the CCMA

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

ge
 o

f
fu

lly
 m

ap
p

e
d

 a
p

p
lic

at
io

n
s

Number of 5-component applications

CCMA
HCMA (100, 10)
HCMA (25, 5)
HCMA (10)

Fig. 14: The percentage of fully placed applications (Case
study 1 with 1000 servers and 20 iterations).

0.01

0.1

1

10

Ex
e

cu
ti

o
n

 t
im

e
 /

 a
p

p
lic

at
io

n
 (

m
s)

Number of 5-component applications

CCMA

HCMA (100, 10)

HCMA (25, 5)

HCMA (10)

Fig. 15: Comparing the execution times per application (Case
study 1 with 1000 servers and 20 iterations).

0

10

20

30

40

50

60

70

80

90

100

400 800 1200 1600 2000 2400 2800 3200 3600 4000

P
e

rc
e

n
ta

ge
 o

f
Se

rv
e

rs
 U

se
d

Number of 20-component applications

CCMA
HCMA (256, 16)
HCMA (64, 64)
HCMA (16)

Fig. 16: The percentage of servers used (Case study 2 with
4096 servers and 20 iterations.)

0

10

20

30

40

50

60

70

80

90

100

400 800 1200 1600 2000 2400 2800 3200 3600 4000 P
e

rc
e

n
ta

ge
 o

f
fu

lly
 m

ap
p

e
d

 a
p

p
lic

at
io

n
s

Number of 20-component applications

CCMA
HCMA (256, 16)
HCMA (64, 64)
HCMA (16)

Fig. 17: The percentage of fully placed applications (Case
study 2 with 4096 servers and 20 iterations).

is high compared to the hierarchical scenarios.
We also evaluated the execution time and the number of

fully mapped applications in different physical cloud systems
with different numbers of servers and different numbers of
switch ports. The applications are of Type 1 based on Ta-
ble VI. The number of servers and the number of intermediate
switches are provided in Table VII and the implemented
management planes are presented in Table VIII.

In Figure 20 the number of fully mapped applications is
depicted. As the branch factor (β) and consequently the num-

TABLE VII: The number of physical devices based on differ-
ent β values.

β 10 11 12 13 14 ... 25

|S| 1000 1331 1728 2197 2744 ... 15625
|IS| 101 122 145 170 197 ... 626

β 20 30 40 50 60 70 80

|S| 8K 27K 64K 125k 216K 343K 512K
|IS| 401 901 1601 2501 3601 4901 6401

0.88

0.9

0.92

0.94

0.96

0.98

1

400 800 1200 1600 2000 2400 2800 3200 3600 4000

P
e

rc
e

n
tg

e
 o

f
fu

lly
 m

ap
p

e
d

 a
p

p
lic

at
io

n
s

(r

e
la

ti
ve

 t
o

 t
h

e
 c

e
n

tr
al

iz
e

d
 a

lg
o

ri
th

m
)

Number of 20-component applications

CCMA
HCMA (256, 16)
HCMA (64, 64)
HCMA (16)

Fig. 18: The relative percentage of fully placed applications,
compared to CCMA (Case study 2 with 4096 servers).

0.01

0.1

1

10

100

1000

400 800 1200 1600 2000 2400 2800 3200 3600 4000

Ex
e

cu
ti

o
n

 t
im

e
 /

ap
p

lic
at

io
n

 (
m

s)

Number of 20-component applications

CCMA
HCMA (256, 16)
HCMA (64, 64)
HCMA (16)

Fig. 19: Comparing the execution times per application (Case
study 2 with 4096 servers and 20 iterations).

ber of servers increases, the number of mapped applications
grows. This evaluation shows that the HCMA with β LLMs
is able to achieve the same performance of the CCMA, in
terms of the number of fully mapped applications (with only
9 fewer applications on average). However, comparing to
the HCMA with β2 LLMs, the CCMA is able to map on
average 6.2% more applications. In Figure 21, the execution
time of the different approaches are shown. As can be seen
the execution time of the CCMA dramatically grows when
the number of servers increases which makes the centralized
algorithms inefficient in large scale cloud systems. Due to the
increasing execution duration, we stop executing the CCMA

TABLE VIII: The management plane parameters based on
different β values.

Type |ML| |SS| |LLM| |MLM| |RLM|

CCMA 1 β3 1 0 0
HCMA (β) 3 β2 β 0 1
HCMA (β ∗ β, β) 3 β β2 β 1

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N
u

m
b

e
r

o
f

fu
lly

 M
ap

p
e

d
 a

p
p

lic
at

io
n

s

Physical Level Branch Factor (β)

CCMA
HCMA (β*β, β)
HCMA (β)

Fig. 20: The percentage of fully placed applications (20
iterations). Number of physical servers = β3.

0.01

0.1

1

10

100

1000

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ex
e

cu
ti

o
n

 t
im

e
/a

p
p

lic
at

io
n

 (
m

s)

Physical Level Branch Factor (β)

CCMA
HCMA (β*β, β)
HCMA (β)

Fig. 21: The execution time per application (20 iterations).
Number of physical servers = β3.

once β = 20, indicating that the CCMA approach is not
appropriate for a network larger than 8000 servers. Instead
in this evaluation, the HCMA with β number of low level
managers has made a desired trade-off between the quality of
application mapping and the execution time.

D. Large scale scenarios

In this phase, we focus on the scalability of the presented al-
gorithms. We extend the scale of the experiments up to 512000
servers and more than 540000 5-component applications. In
these experiments, the number of fully mapped applications is
evaluated and the execution time per application is captured.
The results are the average value of 10 experiments.

1) Evaluation Set up: The experiments are conducted for an
increasing number of servers from 1000 up to 512000 servers.
The assumptions of the applications, of the physical networks
and of the management planes are provided in Table VI,
Table VII and Table VIII respectively.

2) Evaluation Results: Figure 22 compares the number
of fully mapped applications for two different hierarchical
management plane architectures. The numbers of successfully
mapped applications are close, but the management plane

10 20 30 40 50 60 70 80

HCMA (β*β, β) 983.4 8204.59 28057 66913.8 131080 227201 361429 540286

HCMA (β) 1057.6 8509.6 28750.5 68164.8 133048

0

100000

200000

300000

400000

500000

600000

N
u

m
b

e
r

o
f

fu
lly

 m
ap

p
e

d
 a

p
p

lic
at

io
n

s

Physical Level Branch Factor (β)

Fig. 22: The number of fully placed applications (10 itera-
tions). Number of physical servers = β3.

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80

Ex
e

cu
ti

o
n

 t
im

e
 /

 a
p

p
lic

at
io

n
 (

m
s)

Physical Level Branch Factor (β)

HCMA (β)

HCMA (β*β, β)

Fig. 23: The execution time per application (10 iterations).
Number of physical servers = β3.

with a larger number of supported servers in each adminis-
trative domain allocates on average 3.4% more applications.
Nonetheless, while the execution time of this approach grows
exponentially, the HCMA with more LLMs shows better
performance, as can be clearly seen in Figure 23. As a result,
for experiments larger than 125000 servers, only the second
hierarchical architecture is evaluated.

E. Evaluation discussion

We have extensively assessed the CCMA and HCMA
approaches. Our evaluation studies show that the best per-
formance is constantly achieved by the centralized CCMA
approach, compared to the hierarchical management planes,
in terms of percentage of application placement and network
resource usage. However, the execution time of CCMA dra-
matically grows when the number of servers increases. This
makes the centralized algorithms inefficient in large scale
cloud systems. While the CCMA approach is not appropriate
for a network larger than 8k servers (enough capacity to fully
map 8512 small applications), HCMA with β number of LLMs
has made a desired trade-off between the quality of application
mapping and the execution time. Moreover, a larger scale

evaluation reveals that although the HCMA with β LLMs is
able to achieve the same performance of the CCMA, in terms
of the number of fully mapped applications, this hierarchical
architecture shows limited scalability up to 125k servers with
133k fully mapped applications. Our large-scale evaluation
case studies indicate that the management architecture with
β2 LLMs is the most appropriate management plane for very
large datacenters (512k servers and more than 2.7 million
application components).

VII. CONCLUSIONS

This article focused on the problem of component-level
application placement in large-scale cloud environments. Our
approach takes the characteristic of the underlying network
into account and works with multi-component applications,
taking into account the application workflow with a distinction
between application component types. To offer an optimal
solution, we first presented an ILP-based model and to have
a scalable solution, a near-optimal centralized approach was
proposed and compared to the optimal solution. Due to lim-
ited scalability of the centralized approaches, a hierarchical
heuristic was also designed to be deployed in large-scale cloud
management systems. The experimental results showed that
in large-scale clouds our proposed approach works efficiently
compared to a centralized and optimal management systems in
terms of resource usage and quality of application placement.
The percentage of nodes used and the percentage of mapped
applications remain close to that of the centralized algorithm,
in the worst case within 6.7% and 8% respectively.

ACKNOWLEDGMENT

The computational resources (Stevin Supercomputer Infras-
tructure) and services used in this work were provided by the
VSC (Flemish Supercomputer Center), funded by Ghent Uni-
versity, the Hercules Foundation and the Flemish Government
- department EWI. The work is also partly supported by the
iMinds DMS2 project and the FP7 NoE FLAMINGO project.

REFERENCES

[1] Y. Li, F.-H. Chen, X. Sun, M.-H. Zhou, W.-P. Jiao, D.-G. Cao, and
H. Mei, “Self-adaptive resource management for large-scale shared
clusters,” Journal of Computer Science and Technology, vol. 25, no. 5,
pp. 945–957, 2010.

[2] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Information Sci-
ences, vol. 275, pp. 314–347, 2014.

[3] L. Shi, B. Butler, R. Wang, D. Botvich, and B. Jennings, “Optimal
placement of virtual machines with different placement constraints in
iaas clouds,” in ICT and Energy Efficiency and Workshop on Information
Theory and Security (CIICT 2012), Symposium on, pp. 35–40, IET, 2012.

[4] B. Urgaonkar, A. L. Rosenberg, and P. Shenoy, “Application placement
on a cluster of servers,” International Journal of Foundations of Com-
puter Science, vol. 18, no. 05, pp. 1023–1041, 2007.

[5] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM Computer Com-
munication Review, vol. 41, pp. 242–253, ACM, 2011.

[6] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: incorporating time-varying network reservations in data
centers,” ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 199–210, 2012.

[7] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server
workload analysis for power minimization using consolidation,” in
Proceedings of the 2009 conference on USENIX Annual technical
conference, pp. 28–28, USENIX Association, 2009.

[8] Z. Usmani and S. Singh, “A survey of virtual machine placement
techniques in a cloud data center,” Procedia Computer Science, vol. 78,
pp. 491–498, 2016.

[9] C. Pham, N. H. Tran, M. N. Nguyen, J. H. Son, and C. S. Hong, “Hosting
virtual machines on distributed datacenters,” in Proceedings of the 10th
International Conference on Ubiquitous Information Management and
Communication, p. 85, ACM, 2016.

[10] R. P. Esteves, L. Z. Granville, H. Bannazadeh, and R. Boutabai,
“Paradigm-based adaptive provisioning in virtualized data centers,”
in 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), pp. 169–176, IEEE, 2013.

[11] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualization:
A survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2,
pp. 909–928, 2013.

[12] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
vol. 23, no. 3, pp. 567–619, 2015.

[13] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable appli-
cation placement controller for enterprise data centers,” in Proceedings
of the 16th international conference on World Wide Web, pp. 331–340,
ACM, 2007.

[14] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi, “Dynamic
application placement under service and memory constraints,” in Exper-
imental and Efficient Algorithms, pp. 391–402, Springer, 2005.

[15] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé, “Utility-
based placement of dynamic web applications with fairness goals,” in
IEEE Network Operations and Management Symposium (NOMS), pp. 9–
16, IEEE, 2008.

[16] Z. Zhou, Z. Hu, and K. Li, “Virtual machine placement algorithm
for both energy-awareness and SLA violation reduction in cloud data
centers,” Scientific Programming, vol. 2016, 2016.

[17] F. Wuhib, R. Stadler, and M. Spreitzer, “Gossip-based resource man-
agement for cloud environments (long version),” KTH Royal Institute of
Technology, Tech. Rep, 2010.

[18] A. Nathani, S. Chaudhary, and G. Somani, “Policy based resource
allocation in iaas cloud,” Future Generation Computer Systems, vol. 28,
no. 1, pp. 94–103, 2012.

[19] P. T. Endo, A. V. de Almeida Palhares, N. N. Pereira, G. E. Goncalves,
D. Sadok, J. Kelner, B. Melander, and J.-E. Mangs, “Resource allocation
for distributed cloud: concepts and research challenges,” Network, IEEE,
vol. 25, no. 4, pp. 42–46, 2011.

[20] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual
machine placement schemes in cloud computing,” Journal of Network
and Computer Applications, vol. 66, pp. 106–127, 2016.

[21] Q. Zhang, M. Li, and X. Hu, “Network traffic-aware virtual machine
placement with availability guarantees based on shadows,” in Cluster,
Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM Interna-
tional Symposium on, pp. 542–543, IEEE, 2014.

[22] Z. Zhuang and C. Guo, “Ocpa: An algorithm for fast and effective virtual
machine placement and assignment in large scale cloud environments,”
in Cloud Computing and Big Data (CloudCom-Asia), 2013 International
Conference on, pp. 254–259, IEEE, 2013.

[23] K.-y. Chen, Y. Xu, K. Xi, and H. J. Chao, “Intelligent virtual machine
placement for cost efficiency in geo-distributed cloud systems,” in Com-
munications (ICC), 2013 IEEE International Conference on, pp. 3498–
3503, IEEE, 2013.

[24] K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T. D. Nguyen,
“Reducing electricity cost through virtual machine placement in high
performance computing clouds,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, p. 22, ACM, 2011.

[25] J. T. Piao and J. Yan, “A network-aware virtual machine placement
and migration approach in cloud computing,” in Grid and Cooperative
Computing (GCC), 2010 9th International Conference on, pp. 87–92,
IEEE, 2010.

[26] L. Shi, B. Butler, D. Botvich, and B. Jennings, “Provisioning of requests
for virtual machine sets with placement constraints in iaas clouds,”
in 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), pp. 499–505, IEEE, 2013.

[27] D. Breitgand and A. Epstein, “Sla-aware placement of multi-virtual
machine elastic services in compute clouds,” in 12th IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM 2011) and
Workshops, pp. 161–168, IEEE, 2011.

[28] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” in Green Computing and
Communications (GreenCom), IEEE/ACM Int’l Conference on & Int’l
Conference on Cyber, Physical and Social Computing (CPSCom),
pp. 179–188, IEEE, 2010.

[29] C. Adam and R. Stadler, “Service middleware for self-managing large-
scale systems,” IEEE Transactions on Network and Service Manage-
ment, vol. 4, no. 3, pp. 50–64, 2007.

[30] M. Korupolu, A. Singh, and B. Bamba, “Coupled placement in modern
data centers,” in IEEE International Symposium on Parallel & Dis-
tributed Processing (IPDPS), pp. 1–12, IEEE, 2009.

[31] G. Foster, G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer, “The
right tool for the job: Switching data centre management strategies at
runtime,” in 2013 IFIP/IEEE International Symposium on Integrated
Network Management (IM 2013), pp. 151–159, IEEE, 2013.

[32] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera, “A stable network-aware vm placement for cloud systems,” in
Proceedings of the 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (ccgrid), pp. 498–506, IEEE Computer
Society, 2012.

[33] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm placement
and routing for data center traffic engineering,” in INFOCOM, 2012
Proceedings IEEE, pp. 2876–2880, IEEE, 2012.

[34] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “Cloudnaas: a cloud
networking platform for enterprise applications,” in Proceedings of the
2nd ACM Symposium on Cloud Computing, p. 8, ACM, 2011.

[35] L. Hu, K. D. Ryu, D. Da Silva, and K. Schwan, “v-bundle: Flexible
group resource offerings in clouds,” in Distributed Computing Systems
(ICDCS), 2012 IEEE 32nd International Conference on, pp. 406–415,
IEEE, 2012.

[36] G. Koslovski, S. Soudan, P. Gonçalves, and P. Vicat-Blanc, “Locating
virtual infrastructures: users and inp perspectives,” in 12th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2011)
and Workshops, pp. 153–160, IEEE, 2011.

[37] M. F. Zhani, Q. Zhang, G. Simona, and R. Boutaba, “Vdc planner:
Dynamic migration-aware virtual data center embedding for clouds,”
in 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), pp. 18–25, IEEE, 2013.

[38] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, pp. 1–9, IEEE, 2010.

[39] M. Alicherry and T. Lakshman, “Network aware resource allocation in
distributed clouds,” in Infocom, 2012 proceedings IEEE, pp. 963–971,
IEEE, 2012.

[40] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. Mckee,
C. Hyser, D. Gmach, R. Gardner, et al., “1000 islands: an integrated
approach to resource management for virtualized data centers,” Cluster
Computing, vol. 12, no. 1, pp. 45–57, 2009.

[41] L. Parolini, N. Tolia, B. Sinopoli, and B. H. Krogh, “A cyber-physical
systems approach to energy management in data centers,” in Proceedings
of the 1st ACM/IEEE International Conference on Cyber-Physical
Systems, pp. 168–177, ACM, 2010.

[42] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu, “Mis-
tral: Dynamically managing power, performance, and adaptation cost in
cloud infrastructures,” in Distributed Computing Systems (ICDCS), 2010
IEEE 30th International Conference on, pp. 62–73, IEEE, 2010.

[43] A. Beloglazov and R. Buyya, “Energy efficient resource management
in virtualized cloud data centers,” in Proceedings of the 2010 10th
IEEE/ACM international conference on cluster, cloud and grid com-
puting, pp. 826–831, IEEE Computer Society, 2010.

[44] B. Viswanathan, A. Verma, and S. Dutta, “Cloudmap: workload-aware
placement in private heterogeneous clouds,” in 2012 IEEE Network
Operations and Management Symposium, pp. 9–16, IEEE, 2012.

[45] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible,
“Improving performance and availability of services hosted on iaas
clouds with structural constraint-aware virtual machine placement,” in
Services Computing (SCC), 2011 IEEE International Conference on,
pp. 72–79, IEEE, 2011.

[46] H. Moens, J. Famaey, S. Latre, B. Dhoedt, and F. De Turck, “Design
and evaluation of a hierarchical application placement algorithm in large

scale clouds,” in Integrated Network Management (IM), 2011 IFIP/IEEE
International Symposium on, pp. 137–144, IEEE, 2011.

[47] H. Moens, B. Hanssens, B. Dhoedt, and F. De Turck, “Hierarchical
network-aware placement of service oriented applications in clouds,”
Proc. IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2014.

[48] M. Barshan, H. Moens, S. Latre, and F. De Turck, “Algorithms for
efficient data management of component-based applications in cloud en-
vironments,” in IEEE Network Operations and Management Symposium
(NOMS), pp. 1–8, IEEE, 2014.

[49] M. Barshan, H. Moens, and F. De Turck, “Design and evaluation of
a scalable hierarchical application component placement algorithm for
cloud resource allocation,” in 10th International Conference on Network
and Service Management (CNSM), pp. 175–180, IEEE, 2014.

[50] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12), pp. 225–238, 2012.

[51] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable
and fault-tolerant network structure for data centers,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 4, pp. 75–86, 2008.

[52] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and
P. Sharma, “Application-driven bandwidth guarantees in datacenters,” in
ACM SIGCOMM Computer Communication Review, vol. 44, pp. 467–
478, ACM, 2014.

[53] L. Yu and H. Shen, “Bandwidth guarantee under demand uncertainty
in multi-tenant clouds,” in IEEE 34th International Conference on
Distributed Computing Systems (ICDCS), pp. 258–267, IEEE, 2014.

[54] I. AMPL, “Cplex software,” ILOG website: www. ilog.
com/products/cplex.

[55] T. Cormen, Introduction to Algorithms. MIT Press, 2009.
[56] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya, “Network-

aware virtual machine placement and migration in cloud data centers,”
Emerging Research in Cloud Distributed Computing Systems, vol. 42,
2015.

[57] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allo-
cation heuristics for efficient management of data centers for cloud com-
puting,” Future generation computer systems, vol. 28, no. 5, pp. 755–
768, 2012.

[58] J. Zhang, Z. He, H. Huang, X. Wang, C. Gu, and L. Zhang, “Sla
aware cost efficient virtual machines placement in cloud computing,”
in Performance Computing and Communications Conference (IPCCC),
2014 IEEE International, pp. 1–8, IEEE, 2014.

