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Performance Evaluation of Multi-hop Relaying over
Non-Gaussian PLC Channels

Khaled M. Rabie, Member, IEEE, Bamidele Adebisi, Senior Member, IEEE, Haris Gacanin, Senior Member,
IEEE, Galymzhan Nauryzbayev, Member, IEEE, and Augustine Ikpehai, Student Member

Abstract—Relaying over power line communication (PLC)
channels can considerably enhance the performance and reli-
ability of PLC systems. This paper is dedicated to study and
analyze the energy efficiency of multi-hop cooperative relaying
PLC systems. Incremental decode-and-forward (IDF) relying
is exploited to reduce the transmit power consumption. The
PLC channel is assumed to experience log-normal fading with
impulsive noise. The performances of single-hop and conventional
DF relaying systems are also analyzed in terms of outage
probability and energy efficiency for which analytical expressions
are derived. Results show that using more relays can improve
the outage probability performance; however, this is achieved
at the expense of increased power consumption due to the
increased static power of the relays, especially when the total
source-to-destination distance is relatively small. Results also
demonstrate that the IDF PLC system has better energy efficiency
performance compared to the other schemes.

Index Terms—Decode-and-forward (DF), energy efficiency,
impulsive noise, incremental DF, log-normal fading, multi-hop
relaying, outage probability, power line communication (PLC).

I. INTRODUCTION

THE rising demand for communication services has fueled
the rapid development of power line communication

(PLC) technology witnessed in recent times. However, the
power line channel is naturally unfavourable to communica-
tion signals given its intrinsic properties such as frequency-
selectivity, high incidence of noise and unpredictable line
impedance [1]–[3]. Collectively, these factors may result
in low signal-to-noise ratio (SNR) values at the receiver.
Notwithstanding, this harsh environment, PLC has continued
to gain acceptance in different applications such as smart grid,
smart home and other cyber-physical systems [4]–[6]; thanks
to advanced signal processing and multi-carrier techniques
available today. By using the existing electrical wiring for
transmitting data signals, PLC eliminates the need for new
physical medium which drastically reduces the cost of deploy-
ment. Another key benefit of PLC is that it readily provides
an alternative in environments where wireless technologies
either fail or are unacceptably poor, e.g., in cellars. According
to existing standards (such as IEEE 1901 for HomePlug),
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the communication between PLC nodes is based on carrier
sense multiple access with collision avoidance (CSMA/CA)
over time division multiple access (TDMA) technique [7],
[8]. While CSMA/CA allows the nodes to contend for access
to the power line channel without collision, TDMA ensures
contention-free slots to serve applications and services that
require deterministic allocation of network resources. This
combination improves the power line’s suitability for multi-
hop topologies [7]. Therefore, by allowing the network nodes
to act as potential repeaters, relaying neighbour’s messages,
nodes mutually benefit from one another and the presence of
multiple nodes can be exploited to improve network perfor-
mance; this is broadly referred to as cooperative relaying1.
Different forms of cooperative relay techniques have been
considered in PLC with varying degrees of performance and
constraints. This mainly includes amplify-and-forward (AF)
and decode-and-forward (DF) relaying [8], [10], [11]. For
example, it was shown in [11] that a dual-hop AF PLC system
can remarkably improve the system capacity compared to
direct-link (DL) transmission. In addition, the authors of [12]
and [13] analyzed the performance of multi-hop AF and DF
relaying PLC systems in terms of the end-to-end average bit
error rate and ergodic capacity where they showed that PLC
systems can be made more reliable by increasing the number
of relays. However, increasing the number of PLC modems
contributes more to the total power consumption due to the
aggregate static power of the modems.

Energy efficiency, similar to wireless communication [14],
has recently become a trending topic in PLCs. For instance,
the authors of [15] and [16] investigated the power consump-
tion in opportunistic DF relaying PLC systems. In [17], the
authors evaluated the energy efficiency performance of a half-
duplex DF PLC relaying network and later they extended
this to MIMO PLC with DF relaying [18]. In addition, it
was shown in [19] that adaptively adjusting the transmission
parameters based on intelligent signal detection and resource
allocation algorithms can considerably enhance the energy
efficiency of PLC systems. Very recently, however, instead of
only minimizing the transmit power as in the aforementioned
studies, the authors in [20]–[22] have proposed harvesting
the impulsive noise energy over PLC channels with various
relaying and energy-harvesting protocols where it was shown
that considerable gains can be attained over conventional
systems. It is worth mentioning that impulsive noise is always

1The concept of relaying was originally proposed in wireless systems, see
e.g., [9].



detected and then eliminated in PLC systems which can
be energy inefficient, see e.g., [23]–[25] and the references
therein.

To the best of our knowledge, all the existing pieces of
work are limited to single-hop or dual-hop relaying and none
has evaluated the energy efficiency of multi-hop PLC systems.
Unlike previous work, the focus of this paper is to provide
detailed mathematical analysis of the outage probability of
multi-hop PLC systems with a view to improving their energy
efficiency. We also analyze the performance of incremental
DF (IDF) relaying in PLC in the presence of impulsive noise.
Throughout this paper, the performance of the single-hop PLC
system is included to quantify the achievable gains.

The contributions of this paper are as follows. First, closed-
form analytical expressions are derived for the outage prob-
ability and energy efficiency of a single-hop PLC system.
Note that the outage probability indicates decoding failure
due to PLC channel fading and noise effects. After that,
accurate analytical expressions are formulated for the outage
probability and energy efficiency of a multi-hop DF PLC
system. The final contribution is that we measure the impact of
various parameters on the system performance; that includes
the number of relays, impulsive noise probability, distance,
static power and various outage probability requirements. The
results reveal that, for a given source-to-destination distance,
increasing the number of relays can remarkably reduce the out-
age probability at the expense of increased power consumption
due to the increased static power of the relays. It is also shown
that the IDF PLC relaying system can considerably improve
the energy efficiency of multi-hop PLC systems and this
improvement becomes more pronounced at relatively small
distances. In addition, it is found that as the impulsive noise
probability or the relay static power increases, the energy
efficiency of multi-hop PLC systems degrades.

The rest of this paper is organized as follows. In Section II,
the system model is described. Section III provides detailed
analysis of the outage probability and energy efficiency of
the single-hop, multi-hop and IDF relaying schemes over the
log-normal fading PLC channel contaminated with impulsive
noise. Numerical examples and simulation results are pre-
sented and discussed in Section IV, illustrating the impact
of various system parameters on the outage probability and
energy efficiency. Finally, the main conclusions are presented
in Section V.

II. SYSTEM MODEL

The multi-hop relaying system investigated in this study is
shown in Fig. 1a. This system consists of a source modem
(S) and a destination modem (D), between which there are M
intermediate relays. The mth relay is denoted as Rm where
m ∈ [1,M ] and the end-to-end communication is accom-
plished via the M relays. The PLC channel is assumed to have
log-normal distribution, [26], and the noise is modeled using
the well-known two-term Gaussian-Bernoulli model consisting
of both the background and impulsive noise components [27].
As mentioned in the introduction, the DL approach, i.e. direct
source-to-destination transmission without relaying, is also
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A(f, ) d2
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(a) Multi-hop DF relaying PLC system.

S D
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(b) Single-hop PLC system.

Figure 1: Basic diagrams of the systems studied in this work.

studied here, a block diagram of which is illustrated in Fig.
1b.

As a measure of performance, energy efficiency can be
approached in a variety of ways. While in the traditional sense
it refers to the number of transmitted bits per unit energy,
it can also be measured as the transmit energy per bit [28],
[29]. Hence, they represent two approaches for solving the
same problem. While the goal of the former is to maximize
the number of transmitted bit per unit energy, the latter aims
to minimize transmit energy per bit; the latter is adopted in
this paper. Because our power consumption profile takes into
account not only the dynamic power but also the static power
of the PLC modems consumed by the circuitry [17], [30], the
energy per bit can be determined as

Eb =
Pt + PTxstc + PRxstc

Rb
, (1)

where Eb is the energy/bit, Pt is the source transmit power for
a given outage probability, Rb = ξB is the data rate in bits/s,
ξ is the spectral efficiency and B is the system bandwidth, in
Hz, which is assumed to be 30 MHz in all our evaluations,
PTxstc and PRxstc are the static powers of the transmitting and
receiving PLC modems, respectively2. It should be highlighted
that in order to minimize the energy consumption, the transmit
power must be minimized since the static powers are circuitry-
specific. Below, we briefly discuss the channel and noise
models deployed in this work.

A. Channel Model

The channel coefficients and the corresponding distances
of the multi-hop system are denoted respectively as hn and
dn as illustrated in Fig. 1a, where n ∈ {0, 1, .., N} and N
represents the number of hops, i.e. N = M + 1. For the DL
system, the channel coefficient and the source-to-destination
distance are denoted as h0 and d0 = ΣNn=1dn, respectively.
The channels are assumed to be independent and identically
distributed following log-normal distribution with a probability
density function (PDF)

fZ (zn) =
ζ√

2πσnzn
exp

(
− (10log10 (zn)− µn)

2

2σ2
n

)
, (2)

2It is assumed that all the PLC modems have identical power consumption
features and therefore PTx

stc and PRx
stc are equal for all modems.



where zn = h2n, n ∈ {0, 1, .., N}, ζ = 10/ln (10) is a scaling
constant, µn and σn (both in decibels) are the mean and the
standard deviation of 10log10 (hn), respectively. In addition,
the PLC channel suffers from high distance- and frequency-
dependent attenuation and losses. This effect is also considered
in our analysis and is referred to as A (f, d) , where d is the
distance and f is the operating frequency.

B. Noise Model

To accurately characterize the PLC channel impairments,
the noise at all modems is assumed to consist of both
background noise and impulsive noise. These noise types are
modeled using the Gaussian-Bernoulli noise model, [27], in
which the background component, nw, is considered complex
Gaussian with zero mean and variance σ2

w, whereas the
impulsive part, ni, is modeled as a Bernoulli-Gaussian random
process. Hence, n = nw + ni, where n is the total noise,
ni = b g, g is complex white Gaussian noise with mean zero
and b is the Bernoulli process with Pr (b = 1) = p with p
representing the probability occurrence of impulsive noise.
Therefore, the PDF of the total noise can be simply expressed
as

fn (n) =

1∑
j=0

pj CN
(
n, 0, σ2

j

)
, (3)

where p0 = 1 − p, p1 = p, CN (·) denotes the Gaussian
PDF, σ2

0 = σ2
w, σ2

1 = σ2
w + σ2

i and σ2
i is the impulsive noise

variance. The variances σ2
w and σ2

i define the input signal-
to-background noise ratio (SBNR) and the signal-to-impulsive
noise ratio (SINR) as follows: SBNR = 10 log10

(
1/σ2

w

)
and

SINR = 10 log10
(
1/σ2

i

)
, respectively. Without loss of gener-

ality, we assumed throughout our investigations that the noise
statistical characteristics are identical at all PLC modems. It is
worthwhile pointing out at this stage that narrow-band noise
due to wireless interference is not explicitly considered in this
work; for more details on this topic, the reader may refer to
[19].

III. PERFORMANCE ANALYSIS

This section analyzes the outage probability and energy
efficiency performance. For better understanding, we first
investigate the performance of a single-hop PLC system.

A. Single-Hop PLC System

In this system, only two modems are engaged in the
end-to-end communication, namely, source and destination.
Therefore, using (1), the energy consumed per bit in the single-
hop system can be expressed as

Eb,SH =
Pt,SH + PTxstc + PRxstc

Rb
, (4)

where Pt,SH is the source transmit power. To determine Pt,SH
for a given outage probability, we first need to derive the
outage probability for this system as follows. The received
signal at the destination, yD, can be written as

yD = Pt,SH A (f, d0)h20 + nw + ni. (5)

Hence, the SBNR at the destination can be given by

γ =
Pt,SH A (f, d0)h20

σ2
w

. (6)

With this in mind, the outage probability in the presence of
impulsive noise can be calculated as [12], [13], [31]

OSH = Pr


1∑
j=0

pj log2 (1 + γj) < ξ

 , (7)

where γ0 = γ, γ1 = γ/β and β = 1 + σ2
i /σ

2
w.

To simplify the analysis, we assume here high SNR approx-
imation. Hence, equation (7) can be approximated as

OSH w Pr

{
log2 (γ)

1−p
+ log2

(
γ

β

)p
< ξ

}
w Pr

{
γ < βp 2ξ

}
, (8)

which is equivalent to

OSH w Fγ
(
βp2ξ

)
, (9)

where Fγ (·) is the cumulative distribution function (CDF) of
γ.

It is known that the CDF of a log-normally distributed
random variable

(
X2
)

can be given by

FX (x) w
1

2
+

1

2
erf
(
ζln (x)− 2µ√

8σ

)
(10)

w 1− Q
(
ζln (x)− 2µ

2σ

)
, (11)

where µ is the mean, σ is the standard deviation, erf (·) and
Q (·) denote the error function and the Q-function, respec-
tively.

Based on this definition, and since h20 is log-normally
distributed (hence, γ also has log-normal distribution), the
outage probability in (9) can be written as

OSH w
1

2
+

1

2
erf

(
ζln
(
βp2ξ

)
− 2µh0

− ζln (Λ)
√

8σh0

)
, (12)

where

Λ =
Pt,SH A (f, d0)

σ2
w

. (13)

Now, for a given outage probability requirement (O∗), we
can show that the optimal transmit power is given by

P ∗
t,SH =

βp2ξσ2
w

A (f, d0)
exp

(
−
√

8σh0
erf−1 (2O∗ − 1) + 2µh0

ζ

)
(14)

Finally, the energy per bit for the single-hop system can be
obtained by substituting (14) into (4).



B. Multi-Hop PLC System

In this section, we analyze the outage probability and energy
efficiency of various multi-hop relaying scenarios. It should
be pointed out that relays are assumed to be spaced equally
between the source and destination modems; that is dn = d/N
where n ∈ {1, 2, .., N}.

1) Outage Probability and Energy Efficiency when N = 2:
For the case when there are two hops in the system, the outage
probability is expressed as

OMH2 = OSR1 +OcSR1
OR1D, (15)

where Ocij is the complement of Oij , i.e. Ocij = 1−Oij and
OSR1 , and OR1D are the outage probabilities of the source-
to-relay and relay-to-destination links. Following the same
procedure as in the previous section, it is easy to show that

OSR1
w 1− Q

(
ζln
(
βp2ξ

)
− 2µh1

− ζln (Υ1)

2σh1

)
, (16)

OR1D w 1− Q

(
ζln
(
βp2ξ

)
− 2µh2

− ζln (Υ2)

2σh2

)
, (17)

where
Υi =

PMH-2 A (f, di)

σ2
w

, (18)

with i ∈ {1, 2} and PMH-2 being the transmit power of the
two-hop relaying system.

Now, replacing OMH2 in (15) with O∗, we can numerically
find the optimal value of PMH-2 (P ∗

MH-2). Substituting P ∗
MH-2

into (19)−with N = 2−and then into (20) yields the energy
consumed per bit for this system.

ΓMH-N =
P ∗
MH-N + PTxstc + PRxstc

Rb
, (19)

Eb,MH-2 = OSR1
ΓMH-2 +OcSR1

2ΓMH-2. (20)

It is worth noting that the first term in (20) indicates
the energy consumption when the decoding at the relay is
unsuccessful, i.e. lost packets and this energy is wasted. On
the other hand, the second term represents the energy usage
for successful detection at the relay, i.e. packets are forwarded
successfully to the destination.

2) Outage Probability and Energy Efficiency when N = 3:
In this configuration, the overall outage probability can be
calculated as follows

OMH3 = OSR1
+OcSR1

(
OR1R2

+OcR1R2
OR2D

)
, (21)

where OSR1
, OR1R2

and OR2D represent the outage prob-
abilities of the source-to-relay1, relay1-to-relay2 and relay2-
to-destination links, respectively. For the sake of brevity, the
derivation of those probabilities are omitted in this paper.
These probabilities are given by

OSR1
w 1− Q

(
ζln
(
βp2ξ

)
− 2µh1 − ζln (Ξ1)

2σh1

)
, (22)

OR1R2
w 1− Q

(
ζln
(
βp2ξ

)
− 2µh2 − ζln (Ξ2)

2σh2

)
, (23)

OR2D w 1− Q

(
ζln
(
βp2ξ

)
− 2µh3

− ζln (Ξ3)

2σh3

)
, (24)

where

Ξi =
PMH-3 A (f, di)

σ2
w

, (25)

and i ∈ {1, 2, 3}. Replacing OMH3 in (21) with O∗, and
using (22)-(25), the optimal value of PMH-3 (P ∗

MH-3) can
be numerically calculated. Then, substituting P ∗

MH-3 into
(19)−with N = 3−and then into (26), we can find the energy
consumed per bit of this system.

Eb,MH-3 = OSR1
ΓMH-3 +OcSR1

OR1R2
2ΓMH-3

+OcSR1
OcR1R2

3ΓMH-3. (26)

where ΓMH-3 is given by (19) when N = 3.
3) Generic Outage Probability and Energy Efficiency with

N -hops: The end-to-end outage probability for a network with
N hops can be calculated as

OMH = OSR1
+

[M−1∑
m=1

(
ORmRm+1

×
m−1∏
i=1

OcRiRi+1

)

+ORMD×
M−1∏
m=1

OcRmRm+1

]
×OcSR1

, (27)

where

OSR1
w 1− Q

(
ζln
(
βp2ξ

)
− 2µh1

− ζln (Φ1)

2σh1

)
(28)

ORmRm+1 w 1− Q

(
ζln
(
βp2ξ

)
− 2µhm+1

− ζln (Φm+1)

2σhm+1

)
(29)

ORMD w 1− Q

(
ζln
(
βp2ξ

)
− 2µhM+1

− ζln (ΦM+1)

2σhM+1

)
(30)

with

Φi =
PMH-4 A (f, di)

σ2
w

, (31)

and i ∈ {1, 2, .., N}.
Now, to find the optimal transmit power for a given out-

age probability (P ∗
MH), we replace OMH in (27) with O∗

and solve the equation numerically. Substituting the resultant
values of P ∗

MH into (19), and then into (32)gives the energy
consumed per bit, where ΓMH is given by (19).



Eb,MH =OSR1
× ΓMH +OcSR1

M−1∑
m=1

(
(m+ 1)ORmRm+1ΓMH

m−1∏
i=1

OcRiRi+1

)

+OcSR1

M−1∏
m=1

OcRmRm+1
(M + 1) ΓMH. (32)

C. IDF Relaying PLC System

In this system, the relays are only in cooperative mode if
the DL does not meet the link quality requirement [32], [33].
To simplify the analysis, we assume that one relay Rm is
selected as a cooperative node. Therefore, the overall outage
probability of the IDF system is a function of three outage
probabilities, given as

OIDF = OSD (OSRm
+ (1−OSRm

)ORmD) , (33)

where OSD is the outage probability of the source-to-
destination link and is given by (12), OSRm and ORmD are the
source-to-relay and relay-to-destination outage probabilities.
The relay is assumed to be at the mid-point between the
end modems since this usually offers the best performance.
Therefore, OSRm

and ORmD can have the follow form

Ox w
1

2
+

1

2
erf

(
ζln
(
βp2ξ

)
− 2µhx

− ζln (Ψ)
√

8σhx

)
, (34)

where x ∈ {SRm, RmD} and

Ψ =
PIDF A (f, d/2)

σ2
w

, (35)

Using (33), it is easy to show that the optimal transmit
power of the IDF system (P ∗

IDF ) can be found as the solution
of the following equation

X + Y + 3Z +XZ + Y Z −XY −XY Z = 8O∗ − 3, (36)

where

X = erf

(
ζln
(
βp2ξ

)
− 2µh1 − ζln (Ψ)

2σh1

)
, (37)

Y = erf

(
ζln
(
βp2ξ

)
− 2µh2

− ζln (Ψ)

2σh2

)
, (38)

and

Z = erf

(
ζln
(
βp2ξ

)
− 2µh0

− ζln (Λ)

2σh0

)
. (39)

Although it is difficult to express (P ∗
IDF ) in (36) in closed-

form, it is straightforward to find the solution numerically
using software tools. Now, to determine the energy consumed
per bit, we substitute the optimal transmit power (P ∗

IDF ) found
from (36) into
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Figure 2: Average outage probability performance of the single-hop and
multi-hop relaying PLC systems with various numbers of relays. Relays
are spread evenly between the source and destination modems.

Eb,IDF =OcSD ×
P ∗
IDF + PTxstc + 2PRxstc

Rb

+OSDOcSRm
× 2P ∗

IDF + 2PTxstc + 3PRxstc
Rb

+OSDOSRm
× P ∗

IDF + PTxstc + 2PRxstc
Rb

. (40)

IV. NUMERICAL RESULTS

This section demonstrates some numerical examples of the
analytical expressions derived above along with some Monte
Carlo simulations. To characterize the distance and frequency-
dependent attenuation and losses of the PLC channel, we
deploy a common model in which attenuation increases expo-
nentially with distance, given by A (f, d) = exp (−αd), where
α = ao+a1 f

k is the attenuation factor, f is the frequency, k is
the exponent of the attenuation factor, ao and a1 are constants
determined from measurements and d is the distance. More
specifically, we use a0 = 9.4 × 10−3, a1 = 4.2 × 10−7,
f = 30 MHz and k = 0.7. In addition, the other system
parameters used in this section, unless stated otherwise, are
SINR = −15 dB, p = 0.01, SBNR = 25 dB and O∗ = 10−2.
We also assume that all links have equal variances and means
such that σ2

n = 2 dB and µn = 3 dB where n ∈ {0, 1, .., N}.
These values are widely used by many researchers within the
PLC community, see e.g., [1], [23], [34] and the references
therein.

A. Average Outage Probability Performance

First, we illustrate in Fig. 2 the analytical and simulated
outage probability performance for the multi-hop system with
different numbers of relays as a function of the source-to-
destination distance; results for a single-hop system are also
included. The analytical results for the single-hop approach
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Figure 3: Average outage probability performance of the dual-hop DF
and IDF relaying PLC systems with various impulsive noise probabilities.

are obtained from (12) whereas for the multi-hop scheme,
the results are obtained using (15), (21) and (27). It should
be highlighted that the total source-to-destination distance
is kept constant in all scenarios for fair comparison. It is
clear from the results in Fig. 2 that the analytical and sim-
ulated results of both systems are in perfect match which
verifies the correctness of our analysis. It is also obvious
that increasing the source-to-destination distance will always
degrade performance for all the systems under study and that
as we increase the number of relays, for a given distance,
the outage probability is enhanced. In addition, it can be seen
that this enhancement becomes more obvious as the source
and destination modems become more distant and that when
the distance is too large, the performance is severely affected
irrespective of the number of relays deployed.

Furthermore, to show the impact of the IDF system on
the outage probability in comparison to the conventional DF
approach, we plot in Fig. 3 the outage probability of the two
systems versus the source-to-destination distance for various
impulsive noise probabilities. Again, it is noticeable that the
analytical results of the IDF system, obtained from (33),
closely match the simulated ones. The other observation one
can see from these results is that the IDF system always out-
performs the conventional DF scheme for a given pulse prob-
ability. More specifically, it is evident that the improvement
is more pronounced when the source-to-destination distance is
small and as this distance becomes larger, both systems show
similar performance. In addition, clearly increasing the noise
probability will always worsen the outage performance for the
two systems under test.

B. Energy Efficiency Performance

Although increasing the number of relays will improve the
outage probability as shown above, this is obtained at the
expense of more energy consumption. In this section, we
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Figure 4: Energy efficiency performance of the multi-hop relaying PLC
system with several numbers of relays along with that of IDF and SH
systems.

investigate the energy consumption of the different systems
under consideration as shown in Fig. 4. This figure illustrates
the energy consumption per bit for the single-hop system,
multi-hop system with different relays and the IDF system
with respect to the source-to-destination distance. These results
are obtained from (14), (20), (26), (32) and (40). A number of
important observations can be noticed in this figure. Firstly, it
is interesting to see that when the distance is relatively small,
in this specific configuration d0 = 400m, the more relays
we have the more energy-inefficient the system becomes.
In fact, in this region the single-hop approach has the best
energy efficiency compared to the other systems. This is
because the energy losses due to the static power of the relays
outweigh the gains obtained with relaying when the distance
is relatively small. On the other hand, however, as the distance
becomes larger, the advantage of using relays becomes more
pronounced. For instance, it is visible that at d0 = 1000m,
the multi-hop system with 3 relays has the best performance
whereas the single-hop scheme has the worst energy efficiency.
Furthermore, it is noticeable that the IDF has in general better
performance at low distance and outperforms all the multi-hop
scenarios when the distance is intermediate. However, when
the distance is very large, multi-hop systems with 2 and 3
relays outperform the IDF-based scheme.

We now investigate the impact of the static power on the
energy efficiency of three systems. Fig. 5 depicts the energy
efficiency performance of the single-hop, multi-hop and IDF
relaying systems as a function of the static power when
d0 = 100m. It is interesting to see the general trend that as the
static power of PLC modems increases, all systems become
less energy-efficient. In addition, it can be observed that IDF
relaying outperforms the multi-hop schemes regardless of the
number of relays deployed. However, compared to the single-
hop configuration, the IDF system is more energy efficient
when the static power is sufficiently low, i.e. lower than 0.9
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Figure 5: Energy efficiency performance of the single-hop, multi-hop and
IDF relaying PLC systems as a function of the relays static power.

Watt in this scenario; whereas when the static power becomes
greater than 0.9 Watt, the single-hop approach takes over
and becomes more efficient which is justified as discussed
previously.

The last set of results in this section is presented in Fig.
6 where the energy efficiency is plotted versus the outage
probability threshold for the three systems when d0 = 100m.
It is evident from these results that increasing the threshold
value leads to higher energy consumption for all the systems,
which is intuitive. It should also be pointed out that when
the probability threshold is sufficiently high, the change in
the energy consumed per bit becomes less significant. The
final remark on these results is that IDF relaying is almost
independent of the threshold values and that, at low threshold
values, the IDF system has best performance relative to other
schemes.

V. CONCLUSIONS

This paper studied the performance of multi-hop cooper-
ative relaying PLC systems in terms of the average outage
probability and energy efficiency. To improve the energy effi-
ciency in such systems, IDF technique was also analyzed. For
comparison’s sake, this work included also the performance of
single-hop PLC networks. Accurate numerical expressions for
the outage probability and energy efficiency for the single-hop,
multi-hop and IDF relaying PLC systems were formulated and
validated with simulations. Results showed that increasing the
number of relays will always improve the outage probability;
however, this is achieved at the expense of increased energy
consumption since the deployment of more relays implies
more static power consumption. It was also presented that
the IDF PLC system can provide better energy efficiency
compared to the single- and multi-hop systems when the total
source-to-destination distance is relatively small.
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Figure 6: Energy efficiency performance of the single-hop, multi-hop
and IDF relaying PLC systems with respect to the outage probability
threshold O∗.
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