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Abstract

In recent years, using a network of autonomous and cooperative unmanned aerial vehicles (UAVs)
without command and communication from the ground station has become more imperative, in particular
in search-and-rescue operations, disaster management, and other applications where human intervention
is limited. In such scenarios, UAVs can make more efficient decisions if they acquire more information
about the mobility, sensing and actuation capabilities of their neighbor nodes. In this paper, we develop
an unsupervised online learning algorithm for joint mobility prediction and object profiling of UAVs
to facilitate control and communication protocols. The proposed method not only predicts the future
locations of the surrounding flying objects, but also classifies them into different groups with similar
levels of maneuverability (e.g. rotatory, and fixed-wing UAVs) without prior knowledge about these
classes. This method is flexible in admitting new object types with unknown mobility profiles, thereby
applicable to emerging flying Ad-hoc networks with heterogeneous nodes.

Index Terms

Unmanned aerial vehicles, online learning, target tracking, mobility prediction, Kalman filtering.

I. INTRODUCTION

Recently, the use of unmanned aerial vehicles (UAVs) has increased rapidly for many appli-

cations including transportation [1], traffic control [2], remote sensing [3], wild-life monitoring

[4], smart agriculture [5], surveillance [6], broadband satellite communication enhancement [7]

and reconnaissance and border patrolling [8]. According to the federal aviation administration

(FAA), more than 1 million drones are registered with the federal government in 2018 [9]. In

some applications, completing intricate tasks is not feasible with a single UAV due to drones’

limited flight time, payload and communication range [10]. In these situation, often deploying

a network of drones is unavoidable. Also in a more time-sensitive applications such as search

and rescue, using networked UAVs significantly raises the chance of mission success [11].

An important property of UAV networks is their extremely dynamic network topologies due

to freely flying drones [10]. This becomes even a more challenging issue for the futuristic

autonomous UAV networks [12], [13]. The dynamic topology of UAV networks, especially
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when they are composed of heterogeneous nodes with different levels of maneuverability, relia-

bility, sensing, actuation and communication capabilities calls for a new generation of control,

communication, and navigation mechanisms that meet the requirements of these networks [14],

[15]. In particular, it paves the road for providing connectivity and seamless communication

through proactive and predictive routing algorithms in order to improve the network operational

performance [16], [17], [18], [19].

Characterizing network topology changes can significantly improve the operational perfor-

mance of these networks in terms of control and communications, as demonstrated with the

following scenarios. For instance, when the network is composed of nodes with limited commu-

nication ranges, predicting network topology and the future positions of nodes can be used to

enhance network connectivity by excluding the links that are more prone to failure in predictive

routing algorithms, as depicted in Fig. 1. This approach is in a clear contrast with conventional

link selection algorithms, where end-to-end routes are set up solely based on the current network

topology and link failures are dealt with only after their occurrence. Therefore, the network can

suffer from frequent link interruptions and re-establishments [20], [21]. Recently, efforts have

been made to develop algorithms for predictive communication, with the main idea of making

decisions at different layers of communication protocols by taking into account the anticipated

future network topology [22]. This new approach of communication requires network topology

prediction through member nodes’ motion trajectory prediction.

Another example is search-and-rescue operation by autonomous UAV nodes. Predicting the

local sub-network topology changes can help each individual UAV to take more efficient deci-

sions. For instance, an autonomous UAV in a search operation may decide to cover areas that

are not already covered and are less likely to be covered by other UAVs based on their predicted

motion trajectories. Therefore prediction of node mobility patterns facilitates a more efficient

and timely service by autonomous UAVs as depicted in Fig. 2.

II. RELATED WORK

Network topology prediction can be realized by predicting motion trajectories of individual

nodes. Here, we assume that UAVs are autonomous with no prior path planning. Also, the UAVs

are not allowed to convene and share their current locations and future motion trajectories with

one another due to security considerations or limited communication resources. Therefore, each

UAV intends to predict the motion trajectories of its neighbor nodes based on its own observation.
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Figure 1: Illustration of UAV networks at two time points T1 and T2. The communication range of UAV A is shown by
a circle. At time t = T2, A flies away of its neighbors accessible ranges and loses network connectivity. Predicted network
topology can be used to prolong network connectivity by selecting routes that are less likely for upcoming failures (e.g. by
excluding A).

Several mobility prediction methods have been proposed in the past decade. These methods

can be divided into two main categories of data-driven and model-based methods. Data-driven

methods require large datasets to extract the most frequent patterns [23]. These methods indirectly

capture the influence of natural and man-made textures, users’ behavioral habits, and spatial

and temporal variations on the nodes’ mobility [24]. On the other hand, model-based mobility

models try to predict the motion trajectory of an object based on its motion history and typically

rely on the smoothness of motion trajectories [25]. These methods include piece-wise segment

methods [26], hidden Markov models (HMM) [27], levy flight process [28], Bayesian methods

[29], manifold learning [30], and mixture Gaussian models [29]. These methods are typically

customized for specific object types such as human [31], self-propellers [32], and articulated

rovers [33].

The main objective of this work is to develop a unified framework suitable to predict motion

trajectories of mobile entities of different types. The core of our method is based on Kalman

filtering with intermittent observation [34]. However, we use the object’s type-specific motion

properties to improve the prediction accuracy through deploying a novel generative model for

the system input. Thereby, the utilized state transition model provides model flexibility and

generality, while class-specific input enables further prediction accuracy.
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Figure 2: A network of autonomous UAVs perform a search and rescue operations after a natural disaster. A new UAV shown
by green color joins the mission. This UAV processes other UAVs motion trajectories to identify and cover the regions that are
less likely to be covered by other nodes.

The second and more important feature of the proposed method is motion-based object

profiling. We note that the predicated node locations in a fully autonomous network are only valid

for a near future (a few seconds). Therefore, we need more general and perpetual information

about the nodes’ mobility in the majority of applications. Here, we visit the network topology

prediction problem from a different viewpoint. Note the fact that flying Adhoc networks (FANET)

typically include a wide range of object types including ground vehicles, fixed-wing drones,

multi-rotor drones, helicopters, and piloted aircrafts, where each type has a different mobility

profile. Here, we intend to exploit the main properties of their mobility and classify the objects

based on these properties. This approach is inspired by a human perception in recognizing

different object types by observing their motion patterns. This approach can be used to gain

long-term information about the future network topology. For instance, it can be used to predict

the coverage area of a UAV in a search and rescue operation as shown in Fig. 2.

To summarize, the objective of this project is to develop a unified framework which jointly

performs the two tasks of predicting the near future locations of target nodes as well as classifying

them into disjoint types with different maneuverability levels based on their motion profiles. We

call this algorithm as joint mobility prediction and profiling (JMPP). The proposed system is
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equipped with a self-tuning module which learns new mobility classes over time without any

prior information. This feature provides the flexibility of accepting new object types with new

mobility profiles.

It is noteworthy that there are a few recent works focused on clustering motion trajectories

using different methods including distance-based clustering [35], waypoint clustering [36], tree-

based methods [37], grid-based methods [38], and kernel methods [39]. Some of these methods

focus specifically on airspace monitoring [36]. However, a majority of these methods aim at

exploiting the most frequently used geographical paths by mobile objects based on distance

metrics, rather than the finding different motion classes. See [40] for a more complete review

of distance-based methods. Recently, more elegant methods are developed to cluster trajectories

based on their shape parameters and not only based on their Euclidean distances. These methods

include mixture of multivariate Von Mises distributions [41], sparse nonnegative matrix factor-

ization [42], and circular statistics [41]. However, these methods try to find explicit similarities

between motion patterns of similar objects which might be absent for most cases. In this work,

we approach this problem from a deep learning perspective through exploiting the underlying

parameters governing the motion dynamics of an object and use it for object profiling.

The closest work we have found in the literature is [41], where aircraft motion trajectories

are used to classify them into typical manned and expected unmanned aircrafts. They used a

trajectory re-sampling technique followed by a mixture of Von Mises distributions to model the

trajectories, which are finally clustered using k-medoids algorithm. This method is offline and

requires a relatively large dataset of labeled trajectories and is not capable of performing mobility

prediction and online clustering. Further, it is limited to two-classes and is not flexible enough to

admit new object types. Our proposed method solves these two important issues, following the

recent trend of utilizing advanced machine learning methods in optimizing wireless networking

[43], [44], [45], [46].

III. UNIVERSAL MOBILITY MODEL

In this paper, we view the nodes’ mobility from an observer’s perspective, which can be any

of the network nodes that is monitoring its surrounding partners. The kinematic equations of

the targets in 3D-space are expressed in terms of state transition equations with a noise term to

capture motion turbulence as follows:
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x(k + 1) = Ax(k) + Fa(k) + w(k),

z(k) = Hx(k) + ζ(k),
(1)

where x(k) = [x(k) y(k) z(k) vx(k) vy(k) vz(k)]T is the state vector (representing the location

and velocity of the object at time k) and z(k) = [zx(k) zy(k) zz(k)]T is the observation vector

obtained using an arbitrary tracking system. The matrices

A =

I3×3 dtI3×3

03×3 I3×3

 ,
F =

[
03×3 I3×3

]T
, H =

[
I3×3 03×3

]T
(2)

define the system, where dt is the time step of the discretized system. Also, w(k) ∼ N (0,R)

and ζ(k) ∼ N (0,Q) are used to model the system and measurement noise terms. The key role

player, here, is the input vector a(k) = [ax(k) ay(k) az(k)]T , which represents the acceleration

(or equivalently the mechanical forces that drive the whole system dynamics). Therefore, it can

be used to define an object’s motion profile.

Inspired by the fact that the kinematics of most man-made objects are controlled by acceler-

ation/braking and steering mechanisms, it is desirable to divide the velocity vectors into speed

and direction terms as follows:

vxy(k) =
√
vx(k)2 + vy(k)2, v(k) =

√
vxy(k)2 + vz(k)2,

wθ(k) = θ(k + 1)− θ(k) = tan−1 vy(k + 1)

vx(k + 1)
− tan−1 vy(k)

vx(k)
, (3)

where θ(k) is the direction of the motion trajectory, and wθ(k) is the angular velocity; both

in xy-plane. Similarly, we can find the linear acceleration in direct path a(k) and the angular

acceleration aθ(k). The motion in the 3rd dimension (z-axis) can be considered independent of

the motion in xy-plane [47]. When the drones hovering in a fixed altitude, we have vz(k) =

0, az(k) = 0⇒ v(k) = vxy(k), a(k) = axy(k), and the simplified 2D equations can be used [48],

[49], [50]. Noting the fact that a(k) and aθ(k) are time series typically composed of sporadic
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positive and negative pulses with random amplitudes, we define the following generative model

for the system input:

axyi (k) ∼ (1− λxyi )δ(0) + λxyi N (µxyi , σ
2xy
i ),

azi (k) ∼ (1− λzi )δ(0) + λiN (µzi , σ
2z
i ),

aθi (k) ∼ (1− λθi )δ(0) + λθiN (µθi , σ
2θ
i ), (4)

where λxyi , λzi and λθi are Bernoulli distributed random variables (RVs) representing the proba-

bility of change, respectively in the velocity in xy plan, the velocity in z direction and the angular

velocity in xy-plane. Likewise, the amount of change in the speed in xy-plane and z-axis and

the angular velocity in xy-plane are modeled with three Gaussian distributions with means µxyi ,

µzi and µθi , and variances σ2xy
i , σ2z

i and σ2θ
i . The subscript i is the object identification (i.d.).

This model can be viewed as a special case of spike and slab distribution, where the variance

of one component approaches zero. Note that this model yields an exponential distribution with

a desired memory-less property for the silent intervals between consecutive pulses. The model

parameters, denoted by Θi = {(λxyi , µ
xy
i , σ

2xy
i ), (λzi , µ

z
i , σ

2z
i ), (λθi , µ

θ
i , σ

θ
i

2
)} fully determine the

statistical properties of the motion dynamics in (1). These parameters differ from one object to

another, but share similarities among objects within a class.

To embrace this fact, we model Θi as a random vector whose elements are controlled by a set of

hyper-parameters Ψci = {(axyci , b
xy
ci
, αxyci , β

xy
ci
, µxyci , n

xy
ci

), (azci , b
z
ci
, αzci , β

z
ci
, µzci , n

z
ci

), (aθci , b
θ
ci
, αθci , β

θ
ci
, µθci , n

θ
ci

)}

shared among objects of class ci ∈ {1, 2, . . . , C}. We omit subscript ci for notation convenience,

when it is clear from the text. This approach captures within-class similarities, while providing

sufficient flexibility for per-object variability. Fig. 3 provides graphical representation of this

generative model for driving forces.

An appropriate choice for model parameters are conjugate distributions, which provide the

convenience of closed-from posterior distributions, when applying Bayes’ rule. More specifi-

cally, the posterior distribution of the model parameters, after observing the acceleration vector

P (Θi|{axyi (k), azi (k), aθi (k)}k=0,1,2...), belongs to the same family of prior distribution P (Θi). The

Gaussian family is conjugate to itself (or self-conjugate) with respect to a Gaussian likelihood

function; thereby its mean can be represented with a Gaussian distribution. The variance also is

represented with an Inverse Gamma distribution. The Bernoulli distribution has Beta distribution

as its conjugate [51]. Therefore, we choose the following prior distributions for the model
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Figure 3: The proposed mobility model, which includes a universal kinematics model with a
probabilistic input represented by a hierarchical graphical model.

parameters: 
λζi ∼ Beta(aζci , b

ζ
ci

),

τ ζi = 1/σ2ζ
i ∼ Gamma(αζci , β

ζ
ci

),

µζi ∼ N(µζci , σ
2ζ
ci
/nζci) for ζ = xy, z, θ,

(5)

where τi is the precision and nci is an arbitrary shrinkage parameter. Here, we assume that each

object i belongs to one class ci ∈ {1, 2, . . . , C}. Each class c includes nodes with shared hyper

parameter Ψc. The details of the proposed mobility modeling with probabilistic hierarchical input

are presented in Fig. 3.

Finding the most likely object class based on its observed motion trajectory involves the

following steps as depicted in Fig. 4. Firstly, we estimate the object’s current and upcoming

locations by solving the state transition equations in (1). This stage also provides an estimate

of the system acceleration process {âi(k)} = {
(
âi(k), âθi (k)

)
}k=1,2,... for a 2D motion and

equivalently {âi(k)} = {
(
âxyi (k), âzi (k), âθi (k)

)
}k=1,2,... for a 3D motion. Hereafter, we assume

az(k) = 0 ⇒ ai(k) = axyi (k), vi(k) = vxyi (k) for notation convenience. Secondly, we use the

expectation maximization (EM) algorithm to obtain the most likely model parameters Θ̂i which

fully define the distribution of the input vector ai(k). This information is regarded as a noisy

observation of the model parameters Θi and is fed into the Bayesian inference module in order to

find the posterior probability of each class c using prior distributions P (c), and class conditional
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distributions P (Θ|c) = P (Θ|Ψc) for all potential classes c ∈ {1, 2, . . . , C}. The ultimate goal of

this stage is to determine the most likely object class c based on the observation Θ̂i as follows:

c?i = argmax
c=1,2,...,C

Pc(c|Θ̂i) (6)

In short, the most likely object class c?i is obtained by observing the object’s motion trajectory

xi(k), k = 0, 1, 2 . . . ,∞. In practice, a relatively short observation period (e.g. k = 0 : 1 : 100)

is sufficient for a reliable object motion profiling. Further, we use the statistical properties of

the motion profiles of the observed objects (i.e. Θi ∈ Cci) to refine the hyper parameters of

each class, Pc(Ψ) to further improve the prediction accuracy. In other words, we learn and refine

class-specific mobility parameters using online observations, as detailed in the following section.

Finally, we note that with our proposed flexible model, the system can admit new object types

and the number of classes, C in (6), can change over time to show the number of currently

identified object classes.

IV. JOINT MOBILITY PREDICTION AND PROFILING

In this section, we elaborate on the details of the proposed method, which includes the

following three steps.

Step 1- Denoising: An accurate estimate of the state vector xk can be obtained by solving the

state transition equations in (1) using Kalman filtering, which includes two set of time update and

measurement update equations. Time update equations are used to predict the next state vector

(the location of the flying object in our modeling) based on the previous state. Measurement

equations are used to refine the obtained prediction based on the noisy observation vector. The

observation vector zk represents the location information using an arbitrary tracking system. In

Figure 4: Block diagram of the proposed joint mobility prediction and profiling (JMPP) method.
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the case of intermittent observation, the prediction is performed solely based on the time update

equations, if no measurement is available. This system can be solved for an unknown input via

optimal state estimation of singular systems [52], as shown in Fig. 5. We use this approach to

predict the future locations of a flying object by mitigating the system and measurement noise

terms. Another commonly used approach is the prediction of the next location by linearizing the

motion trajectory, which deems inefficient for highly non-linear motions.

Figure 5: Kalman filtering with unknown input. In the absence of reliable measurement readings,
prediction is performed solely based on time update equations and measurement update equations
are skipped. Equations are from [53].

Step 2- Mobility parameter extraction: The result of the previous stage provides an estimate

of the object motion trajectory. The estimate of the instantaneous direct and angular accelerations

can be readily obtained using kinematics equations, âi(k) =
(
v̂i(k+ 1)− v̂i(k)

)
/dt and âθi (k) =(

θ̂i(k+ 1)− θ̂i(k)
)
/dt, where v̂i(k) and θ̂i(k) are obtained from the estimated state vector ẑi(k)

using (3). The acceleration parameters are modeled as a sequence of independent RVs with

the defined distributions in (4). If we model the estimation errors, ei(k) = âi(k) − ai(k) and

eθi (k) = âθi (k) − aθi (k), respectively with zero-mean Gaussian distributions of variance σ2
n and

σθn
2, then âi(k) and âθi (k) for object i follow Gaussian mixture model (GMM):

âi(k) ∼ (1− λi)N (0, σ2
n) + λiN (µi, σ

2
i + σ2

n),

âθi (k) ∼ (1− λθi )N (0, σθn
2
) + λθiN (µθi , σ

θ
i

2
+ σθn

2
), (7)

where the model parameters Θi = (λi, µi, σ
2
i , λ

θ
i , µ

θ
i , σ

θ
i

2
) depend on the object class ci (rep-

resented by the vector of hyper-parameters Ψci). An optimal method to tune the parameters

of a GMM based on its observations is the expectation maximization (EM) algorithm, which

iterates between calculating the expected value of the likelihood function and maximizing the
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likelihood by updating membership probabilities. Here, we use EM to find the point estimates

of Θi, denoted by Θ̂i based on the observations âi(k) and âθi (k), i.e.

Θ̂i = argmax
Θ

P (Θ|{âi(k), âθi (k)}k=0,1,2,...). (8)

Step 3- Object profiling: Note that the prior distribution of the model parameters Θi, before

observing the object’s motion trajectory is P (Θi) =
∑C

c=1 P (c)P (Θi|c) =
∑C

c=1 P (c)P (Θi|Ψc).

The output of EM algorithm for each segment of the motion trajectory is Θ̂i, which can be

considered as an observation of the actual Θ. Therefore, we can use Bayes’ rule to find the

posterior probability of the objects class c using

P (c|Θ̂i) =
P (Θ̂i|Ψc)P (c)∑C
c=1 P (Θ̂i|Ψc)P (c)

(9)

Here, we assign an equal probability for each class (P (c) = 1/C for c = 1, 2, . . . , C). Finally,

the most likely class is determined using (6).

Step 4- Online class recognition module: In the proposed algorithm as mentioned above, we

considered a fixed number of motion classes with equal selection probabilities (P (c) = 1/C).

This may limit the applicability of the proposed method in practice due to the need for prior

knowledge about the motion profile of each class represented by Ψc. Further, the system fails in

addressing objects of new types with undefined motion profiles. In order to address this issue, we

develop an online self tuning module. This module works based on segment wise processing of

motion trajectories. Segment s includes the observed locations during time interval [(s−1)T, sT ],

namely zi(k) for time steps {k = 1, 2, . . . |(s − 1)T ≤ k dt ≤ sT and targets i = 1, 2, . . . , N .

Each segment includes l = T/dt time points. At each segment s, we perform steps 1 and 2 to

estimate the motion profile of each target node i and we show it with θ̂(s)
i . Then, we obtain the

current motion profile of object i, Θ̂
(s)
i using:

Θ̂
(s)
i =

[
(s− 1)Θ̂

(s−1)
i + θ̂

(s)
i

]
/s (10)

Note that we have Θ̂
(s)
i =

∑s
t=1 θ̂

(s)
i

s
. With this online method, we use the previous estimate of the

motion profiles Θ̂
(s−1)
i and only process the last segment of the received trajectory to obtain Θ̂

(s)
i ,

which is more efficient than processing the entire history of the trajectory. Then, we proceed

with step 3 and find the most likely class of each target based on Θ̂
(s)
i , and the most recent

estimate of the hyper-parameters Ψ̂
(s)
c for c = 1, 2, . . . , C(s). The main distinction here is that

the number of classes and their representative hyper-parameters Ψ̂
(s)
c are not fixed anymore and

they rather are learned from the observed trajectories as depicted in figure 6.
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Figure 6: Online self class recognition module: motion profile of objects θ̂(s)
1 . . . θ̂

(s)
N are found

for all objects based on their observed trajectories zi((s − 1)L + 1) . . . zi(sL) at segment s as
well as their previous updates.

Once we complete steps 1-3 for all objects i = 1, 2, . . . , N during interval [(s− 1)T, sT ], we

cluster the collected motion profiles, represented by vectors Θ̂
(s)
i . We use parametric clustering,

and try the number of clusters nC within the [C(s−1) −∆C,C(s−1) + ∆C] range, where C(s−1)

is the number of previously recognized clusters, and ±∆C enables genesis of new clusters as

well as death of fake clusters. Therefore, the number of valid motion classes can change over

time if a reasonable evidence is provided by the accumulated motion trajectories. In order to

identify the optimal number of clusters, we consider within-cluster variance penalized by the

number of clusters using f(AnC
) = αΣw + (1− α)βnC . Here, AnC

is the clustering algorithm

with nC clusters, and Σw is the resulting averaged within-variance defined as

Σw =
1

nC(|C1|+ · · ·+ |CnC
|)

nC∑
c=1

∑
Θ̂i∈Cc

(Θ̂i − µc)2,

µc =
1

|Cc|
∑

Θ̂i∈Cc

Θ̂i, (11)

where |C| is the number of elements in set C. In the simulation results in section V, we use

K-means clustering and set C(1) = 4,∆C = 3, α = 0.2 and β = 10 using cross-validation. The

number of clusters is obtained as

C(s) = argmin
nC∈[C(s−1)−∆C,...,C(s−1)+∆C]

f(Cn) (12)

Each cluster represents a mobility class c = 1, 2, . . . , nC . Therefore, the collected motion

profiles of each cluster ({Θ̂i : i ∈ cluster c}) is used to refine the relevant clusters hyper

parameters Ψc by applying maximum likelihood estimation (MLE) to (5).



13

V. SIMULATION RESULTS

In this section, simulation results are provided to assess the performance of the proposed

method in comparison with the state of the art. Here, we assume that each drone is equipped

with a tracking system and hence can monitor and estimate the location of surrounding objects.

For instance, Lidar systems, ultrasound systems, or visual cameras can be used to accurately

measure the surrounding objects [54]. However, most off-the shelf commercial drones (e.g. DJI

phantom and Matrice series) do not include pricey tracking systems. For such scenarios, ADS-B

technology [55] can be used where drones locate themselves using embedded GPS positioning

modules and periodically propagate their positions to other nodes according, to be used for

trajectory prediction. For drones in an adversary network, a ground-based tracking system (e.g.

a conventional Radar) can be used to locate the flying objects and perform the object classification

task.

We use the following simulation parameters unless otherwise specified. We define C = 3 clus-

ters with hyper-parameters Ψ1,Ψ2,Ψ3 shown in Table I. We use state transition and measurement

equations in (1) to develop random motion trajectories as well as their linear measurements for

N = 300 objects (100 per class). The system and measurement noise variances are set to

R = I6×6 and Q = I3×3.

Table I: Motion profiles for three classes (Ψ1,Ψ2,Ψ3).

class Speed hyper-parameters Direction hyper-parameters
(a1, b1) (α1, β1) n1 (a1, b1) (α1, β1) n2

1 (2,50) (10,10) 1 (2,50) (10,10) 1
2 (4,4) (2,0.5) 2 (4,4) (2,0.5) 2
3 (50,2) (2,0.1) 10 (50,2) (2,0.1) 10

The results of the first stage using Kalman filtering with unknown input are presented in Fig. 7

for two objects belonging to different mobility classes (C1 and C2). The results show a relatively

accurate estimation of locations provided by step-1 of the proposed method for further analysis.

The mean squared error ratio
∑

(xi − x̂i)
2/
∑

x2
i is less than 1% for both classes.

Fig. 8 investigates the impact of measurement update rate (r) on the mobility prediction for

the case of intermittent observations. This parameter determines the probability of successful

observation attempts, where the value of zi(k) is valid. This case is more important and shows

the utility of the proposed method in predicting future node positions, when the measurement

readings are not available. The prediction accuracy significantly declines if the measurement

update rate (r) goes below an acceptable level.
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Figure 7: Estimating motion trajectories of two objects of different types in 3D space with
unknown input (driving force) vector.

The second utility of the proposed method is object profiling based an motion trajectories. The

results of motion profiling accuracy are presented in Table II for N = 300 randomly generate

motions trajectories. The results are promising and exhibit an average classification success rate

(CSR) of (90 + 91 + 92)/(100 + 100 + 100) ≈ 91%. These results verify the success of three

sequential steps in jointly predicting the motion trajectories and profiling the objects into correct

mobility classes. As shown in Fig. 9, this accuracy depends on the quality of the trajectory

estimation, which in turn is influenced by the tracking system noise level.

There are very few prior works that consider profiling object classes based on their online

motion trajectories. The most closest work we found is [56], which proposes a method to classify

moving point objects (MPO) based on their motion patterns. This method, we call it MPO, is

based on extracting straightness and velocity indexes from the motion trajectories. Further, they

classified objects such as cards, pedestrians, bicycles, and motorcycles based on statistical features

(e.g. mean, median, min, max, skewness and standard deviation) of the mobility indexes. Here,

we compare our method against this method. We also applied common classification methods

such as fuzzy c-means (FCM), and K-means directly to the datapoints of the estimated driving
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Figure 8: The impact of measurement update rate (r) on the accuracy of motion trajectory
prediction.

Table II: Motion profiling accuracy of the proposed method in 3D space.

Actual Class C1 C2 C3Predicted Class
C1 90 6 4
C2 5 91 4
C3 6 2 92

forces (ai(k), aθi (k)) for each trajectory for the sake of completeness. Finally, inspired by other

time-series analysis (e..g ECG signal processing), we trained a Gaussian process (GP) for the

observed trajectories to exploit the fundamental property of each trajectory and then classified

the objects based on the obtained GP parameters. The results of this comparison are provided

in Table III for 300 objects whose trajectories are simulated using three different classes. The

comparison shows that our method (JMPP) overcomes all methods by a significant margin, since

the proposed method tries to directly recover motion profiles in a reverse-engineering fashion.

The proposed method achieves a CSR of 91% compared to 80.33% obtained using GP.

Finally, we investigate the performance of the online class recognition method. This module

works based on clustering motion profile vectors with a penalized number of clusters. Two

key features of this method are online-learning of class-specific hyper-parameters as well as

recognizing new objects as they enter the system. These two properties are illustrated in Figs. 10

and 11, respectively. Fig. 10 investigates the accuracy of class-specific model hyper-parameters



16

Table III: Classification success rate of different object profiling methods based on 3D motion
trajectories.

Class # of Traj. Number of Correctly Classified Object
K-mean FCM MPO GP JMPP

C1 100 36 41 79 81 90
C2 100 44 46 84 85 91
C3 100 35 37 80 84 92
Total 300 115 124 243 250 273
CSR 100% 38.33% 41.33% 81.0% 80.33% 91%

Figure 9: Classification success rate for object profiling based on 2D motion patterns versus
signal to measurement noise level.

in comparison with the actual ones used to generate the motion trajectories. The accuracy is

represented in terms of mean squared errors (MSE) ratio. For instance if vectors Ψ and Ψ′,

represent the actual and estimate vector of hyper-parameters for all classes, the MSE is calculated

as |Ψ−Ψ′|22/|Ψ|22, where |.|2 is the second norm. The results show that the MSE error remains

within 20% after receiving a few trajectory segments. However, the performance also depends

on the length of each segment. The results show that longer trajectory segments provide more

accurate estimate of hyper-parameters. For instance, using segment length of 80 points, ensures

that the MSE error remains below 3% after receiving as few as 10 segments. Therefore, the

system does not need to have prior knowledge about the motion properties of different object

classes, which makes it more desirable for practical situations.

Fig. 11 illustrates the capability of the system to recognize and profile new objects with unseen

motion properties. For this part, we start with C = 4 clusters and generate N = 100 objects
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Figure 10: The performance of the online self tuning module in estimating class-specific hyper-
parameters from the observed motion trajectories in terms of mean squared errors (MSE).

for each class. The system processes the observed motion trajectories and correctly recognizes

C = 4 clusters. Now, we start adding objects of a new type with an unseen motion profile to

the system. The system, after collecting a few new objects, recognizes the existence of new

object class and changes the number of clusters to C = 4 + 1. We repeat this experiment 100

times and define the probability of correctly recognizing new classes after receiving n objects

as the ratio of the number of experiments that reports C = 5 (after observing n new objects)

to the total number of experiments. The results are shown in Fig. 11. For instance, the system

recognizes the arrival of new object type with probability 80% after receiving n = 44 objects of

this new type. The accuracy approaches 100% after receiving about 55 objects of the new type.

Therefore, this module enables the system to adaptively generate new object classes over time

in addition to tuning the hyper-parameters of existing classes.
VI. CONCLUSIONS

In this work, a novel framework is proposed for joint mobility prediction and profiling of

objects through analyzing their motion trajectories. The idea is to process the motion trajectories

in terms of state transition equations to predict the objects future locations and extract the

driving forces. Also, we develop a natural hierarchical generative model for the exerted direct

and rotational forces. This approach enables us to exploit the motion properties of mobile objects

and classify them based on their motion properties. Compared to other methods, our unified
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Figure 11: The performance of online self tuning module. The probability of successfully
determining the genesis of new classes represented versus the number of objects with new
motion profiles in 2D space (vz = 0) averaged over 100 runs.

framework neither requires a large training dataset (as opposed to data-driven methods) nor is

tailored to a specific object class (as opposed to model-based methods). The proposed method

yields a success rate of 90% in profiling mobile objects for a reasonable measurement noise

level which shows 7% improvement compared to the state of the art method.

Further, a novel online self-tuning algorithm is proposed which tunes the general motion

properties of each class (represented by the class-specific hyper-parameters) by processing the

accumulated trajectories over time. This approach adaptively generates new motion classes by

observing objects with unseen motion profiles. Therefore, no prior information is required about

the motion dynamics of different object types, which makes this system desirable for practical

applications. The proposed algorithm, if integrated with communication protocols (e.g. routing

algorithms in network layer), can facilitate information flow in UAV networks and IoT with

flying objects by predicting the future network topology.
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