
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020 1

Joint Resource Allocation and Computation
Offloading in Mobile Edge Computing for SDN

based Wireless Networks
Nahida Kiran, Chunyu Pan, Sihua Wang, and Changchuan Yin

Abstract: The rapid growth of the internet usage and the dis-
tributed computing resources of edge devices create a necessity to
have a reasonable controller to ensure efficient utilization of dis-
tributed computing resources in mobile edge computing (MEC).
We envision the future MEC services, where quality of experi-
ence (QoE) of the services is further enhanced by software de-
fined networks (SDNs) capabilities to reduce the application-level
response time without service disruptions. SDN, which is not pro-
posed specifically for edge computing, can in fact serve as an en-
abler to lower the complexity barriers involved and let the real
potential of edge computing be achieved. In this paper, we investi-
gate the task offloading and resource allocation problem in wireless
MEC aiming to minimize the delay while saving the battery power
of user device simultaneously. However, it is challenging to obtain
an optimal policy in such a dynamic task offloading system. Learn-
ing from experience plays a vital role in time variant dynamic sys-
tems where reinforcement learning (RL) takes a long term goal into
consideration besides immediate reward, which is very important
for a dynamic environment. A novel software defined edge cloudlet
(SDEC) based RL optimization framework is proposed to tackle
the task offloading and resource allocation in wireless MEC. Specif-
ically, Q-learning and cooperative Q-learning based reinforcement
learning schemes are proposed for the intractable problem. Simu-
lation results show that the proposed scheme achieves 31.39% and
62.10% reduction on the sum delay compared to other benchmark
methods such as traditional Q-learning with a random algorithm
and Q-learning with epsilon greedy.

Index Terms: Mobile edge computing, resource allocation, software
defined cellular networks, task offloading, wireless networks.

I. INTRODUCTION

OVER the last decade, mobile data traffic of cellular net-
works has experienced exponential growth due to the ex-

plosive development of smart mobile devices (MDs). Accord-

Manuscript received July 19, 2019; approved for publication by Abbas Ja-
malipour, Division II Editor, July 29, 2019.

This work was supported in part by Beijing Natural Science Founda-
tion and Municipal Education Committee Joint Funding Project under Grant
KZ201911232046, in part by the National Natural Science Foundation of China
under Grants 61671086, 61629101, and 61871041, and in part by the 111 Project
under Grant B17007.

N. Kiran, C. Pan, S. Wang, and C. Yin are with the Beijing Laboratory of Ad-
vanced Information Network and the Beijing Key Laboratory of Network Sys-
tem Architecture and Convergence, Beijing University of Posts and Telecommu-
nications, Beijing 100876, China, email: kiranbupt@yahoo.com, {kiran, cypan,
sihuawang, ccyin}@bupt.edu.cn

N. Kiran is the corresponding author.
Digital Object Identifier: 10.1109/JCN.2019.000046

ing to Cisco’s report [1], mobile data traffic will grow at a
compound annual growth rate (CAGR) of 46 percent between
2017 to 2022, reaching 77.5 exabytes per month by 2022, and
will increase sevenfold between 2017 and 2022. This increas-
ing demand offers new business opportunities but also poses an
enormous challenge from a technical and economic perspective.
Definitely, those various devices will produce exabyte level of
data every day and the matter of fact is that the existing commu-
nication infrastructure will not be able to tackle the upcoming
challenges. On a single mobile phone, there are numerous ap-
plications running from calling, web browsing to speech recog-
nition and navigation [2]. To satisfy the growing demand of in-
telligent applications, the wireless communication technologies
have experienced a massive development, such as virtual real-
ity, augmented reality, advanced social networking and diverse
intelligent terminal access. All these applications have emerged
with the demand of higher computing efficiency, instantaneous
communication and ubiquitous network connectivity. Hence,
energy-efficient data processing is obviously vital for battery-
empowered MDs.

Next generation devices are of small size with lower power,
while the computation tasks are generally intensive and latency
critical. Due to the limitation of physical size, computation ca-
pacity and low battery power, some computation applications
can not be performed smoothly by the MDs [3]. So, enhanc-
ing the computing capability and prolonging the battery life of a
mobile device is a key design challenge. mobile cloud comput-
ing (MCC) has been considered to be a potential solution and
an effective technique to provide MDs with sufficient computa-
tion resources at (remote) centralized cloud servers [4]. Since
the cloud servers have much higher computation and storage
resources than MDs, migrating computation-intensive tasks to
cloud servers can significantly reduce the burden of computing,
storage, and computation energy on the MDs. In order to ex-
ecute computation on cloud servers, the MDs are required to
offload their tasks to remote clouds. However, cloud servers
are usually logically and spatially far from MDs and the num-
ber of MDs increase dramatically, which makes the burden of
the cloud heavier which leads to huge communications and pro-
cessing latency and more energy consumption. This becomes a
serious problem for the latency-sensitive applications.

To address these issues, mobile-edge computing (MEC) has
emerged as a promising technique, which offers computa-
tion capability within the radio access network in contrast to
conventional cloud computing systems that use remote public
clouds [5]. The idea of bringing both communication and com-
putational capacities close to users was firstly introduced as

1229-2370/19/$10.00 c© 2019 KICS

2 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

cloudlet in 2009 [6], where users can connect to nearby servers
through a wireless local area network (WLAN). By offloading
the computation intensive tasks from the MDs to the nearby
MEC servers, the quality of computation experience, including
the latency and device energy consumption, could be greatly im-
proved. Several years later, the term mobile edge computing was
used to describe the service executions at a mobile base station
by Nokia Siemens Network and IBM [7]. Since then, MEC has
attracted a lot of attention from academic areas [8]–[10].

The increasing demand of the mobile applications for high
computing and storage capacities with free user mobility made
MEC an insufficient solution for end user workload offloading.
This is due to the distributed and limited resource computing
capabilities of edge servers. Thus, how to manage limited com-
putational resources of edge clouds and how to control these
distributed computing resources is a challenging problem. MDs
have very little information about the wireless networks to be
accessed during computation tasks offloading, including com-
putation load of edge clouds and traffic load of accessed net-
work. So, how to conduct a task offloading and efficient re-
source allocation for particular task according to the residual
battery capacity of mobile device and network status is chal-
lenging. Thus, a reasonable controller is needed to ensure the
efficient utilization of computing resources and task placement
appropriately [11], [12].

Software defined network (SDN) is a recent proposed tech-
nology for using the limited network resources optimally and
enabling flexible network management by separating the con-
trol layer from the data layer [13]. The latest form of SDN
has the integral capability to mitigate the barriers that prevent
edge computing to reach its full potential. All task offload-
ing management and data flow capabilities are accomplished
by the central SDN controller that is transparent to the end-
user. Since SDN is still a developing technology, applying SDN
to edge or cloud computing has not been investigated in depth
yet. Moreover, many surveys on software defined wireless net-
works (SDWN) [14], SDN [15], [16] and network function vir-
tualization (NFV) [17] have been proposed as a complementary
technologies for improving the operations of edge servers.

However, tasks processed only on a single edge server could
not meet the requirement of low latency because of large num-
ber of tasks from different users. Thus, it is essential to carry out
the distributed computing under a centralized network to bal-
ance energy, load, and to decrease latency. By integrating SDN
and MEC, this paper proposes a novel software defined edge
cloudlet (SDEC) framework for task offloading and resource al-
location in MEC. The centralized logical controller senses the
network status from a global perspective, collects distributed
edge servers information (i.e., how much memory and CPU is
available on the server side and how much the server is loaded),
user equipment’s (UE’s) task information (i.e., task computation
amount), and advises UE to compute task locally or offload part
of it to edge or remote cloud for further processing. The motiva-
tion behind this proposed work is the urgent need to find a fast,
centralized, and scalable cloud based architecture solution with
a minimum cost.

The paper is organized as follows. Section II addresses the lit-
erature review. Section III describes the proposed system model.

Section IV addresses the problem formulation. In Section V, we
present details of low latency achieving schemes using machine
learning. In Sections VI and VII, we show our simulation results
and conclude the paper, respectively.

II. RELATED WORK

The centralized form of remote computing resources is not
well suited with massive traffic originated from geographically
distributed edge devices. Therefore, pushing the servers to the
edge of the network is becoming an essential trend. Propaga-
tion of the edge devices creates a necessity for the applications
to process at least some of the data at the edge rather than car-
rying them to the remote data centers for minimizing not only
the energy consumption but also service delay. Recently, there
have been many proposals for the operation and architectural de-
sign of the edge computing systems. The terms like edge com-
puting [18], mobile cloud computing [19], fog computing [20],
cloudlet [6], mobile edge computing [21], all these proposals
define various practical implementations for the edge comput-
ing named as multi-access edge computing [22]. They all have
mutual grounds but their target use cases are different.

Several research efforts have been dedicated for the research
of computation offloading and resource allocation. Most of them
focused on the process of computational tasks offloading from
UEs to the MEC or cloud server [23], [24]. An adaptive offload-
ing scheme is proposed in [25] by Xian et al. to improve the en-
ergy saving of MDs. In order to minimize the energy consump-
tion of MDs in [26] Li et al. proposed a partitioning scheme
that statistically divides a program into two different tasks (i.e.,
server task and client task). Ra et al. proposed a dynamic of-
floading strategy in [27] to minimize the completion time of ap-
plications by using a greedy algorithm. In [28] MEC systems
have been proposed to address the computational capability is-
sue and to enable MDs to utilize the powerful computing capa-
bility at the edge of the networks. A centralized computation
offloading scheme is proposed in [29] which emphasizes on col-
lecting global offloading information to meet highly delay re-
quirements of MDs.

To the best of our knowledge, the first study of task offload-
ing for mobile edge computing in a software defined ultra dense
network (SD-UDN) was defined recently in [12] to offload task
on edge cloud or process locally in order to minimize the task
duration. A recent research survey provided use cases and fu-
ture directions of the constituent technologies of the edge com-
puting paradigm, namely cloudlets, fog computing and MEC.
With this effort, a clear big picture and available technical ap-
proaches have been highlighted for edge computing domain to
show how MEC benefits from SDN. This also emphasizes on
the control and management challenges that exist in traditional
platforms. In today’s computing systems the management and
administration operation costs are very high compared to other
system operations. Thus, adopting the SDN approach to cut the
management and administration cost has become very appeal-
ing.

There is a lot of effort both in academia and industry focus-
ing on the MEC in particular due to its wide potential. Despite
this fact, these studies remain incapable to discuss the common

KIRAN et al.: JOINT RESOURCE ALLOCATION AND COMPUTATION OFFLOADING ... 3

FBS

Edge
cloudlet

Edge computing layer

UE

Infrastructure layer

Task monitoring
module

Edge cloudlet
module

SDN control layer

Fig. 1. System model in MEC for SDN based wireless communications.

edge computing proposals together by focusing on their actual
requirements and differences among them, and depict the gen-
eral view over edge computing concept. The prior works only
focus either on centralized or distributed approaches, and have
not taken advantage of both cloud and edge computing using
SDN. The computational complexity and energy consumption
increases significantly with the number of UEs, and the peak
solution needs to be delivered from the distributed edge servers
to UEs within the channel coherence time. Better performance
can be grasped with the assistance of centralized SDN controller
and distributed virtual cloudlets deployed in each femto base
stations. Most of previous works focus on accessing the tradi-
tional cloud services over MDs and have not covered this area
from a broad perspective and hence, managing the novel ser-
vices and orchestrating the dynamic environment are not well
addressed so far. There is not much literature focusing primar-
ily on the MEC and SDN integration. Therefore, many ideas are
studied, abstracted, integrated and extended inside our proposed
model and the missing points that are not referenced so far for
the integration of SDN and edge computing are extracted in this
research for designating the future direction. Such integration
guarantees provisioning an entirely software based framework
for any system.

III. SYSTEM MODEL

As shown in Fig. 1, the proposed network framework con-
sists of three layers: SDN control layer, edge computing layer
and infrastructure layer. SDN control layer is composed of cen-
tralized SDN controller. Edge computing layer contains femto
base stations (FBSs) and virtual edge cloudlets (ECs). Infras-
tructure layer includes all physical network entities having the
tasks to compute like user equipments (UEs).

Important Entities in the System:

A. SDN Control Layer

SDN control layer is composed of centralized SDN controller.
The SDN controller provides open unified interfaces to support
task management, resource management and users access con-
trol by software programming. The centalized controller has a

full view of the whole network topology and is aware of ev-
ery flow in the network. This global view helps to store net-
work traffic information and energy characteristics of the edge
servers and dynamically control the data from a global perspec-
tive. Since SDN controllers have the global view of the SDEC,
including all the load information, the energy saving and the
load balancing can be optimized in a global way.

SDN Controller Modules:
Task Monitoring Module: responsible to collect all UEs task
information (i.e., task computation amount) and is advised to
compute task locally or offload part of them to edge or remote
cloud for further processing.
Edge Cloudlet Module: responsible to collect distributed edge
server’s information (i.e., how much memory and CPU is avail-
able on the server side and how much the server is loaded).

B. Edge computing layer

Edge computing layer contains FBSs and virtual ECs with
the capability of computing and storage. FBSs and ECs are col-
lectively referred to as edge nodes (ENs). An EN get required
data and service from the SDN controller. Then, the ENs give
the traffic condition information of its associated users and sur-
rounding ENs to the SDN controller, such as number of asso-
ciated users, energy consumption of each node, and energy de-
mand of each user. Moreover, the dynamic information of UE
and working conditions which are stored by ENs in virtual ECs
can be uploaded to the remote cloud for global information shar-
ing.

ENs:
ENs are the intermediate nodes between UE and edge cloudlets.
To reduce the burden of the controllers, we propose to deploy
the wireless side of SDN in the concept of ENs where the ENs
have part of control functions and all data forwarding function-
ality. The EN has a network-wide view of both wireless network
and core network. Embedding ENs into the SDN is a promising
way to reduce the burden of controllers, and integrate the wired
and wireless sides of SDN seamlessly.

ECs:
It can be a virtualized server near to the FBSs available for users
to carry out computing functionalities. It is proposed to over-
come the problems caused by accessing the cloud data centers
such as energy consumption, latency and cost. UE’s task can be
offloaded to the EC instead of a remote cloud server. It is a com-
putational resource accessible by mobile users in their vicinity
for making use of the services provided. ECs are controlled by
SDN controller via OpenFlow (OF)-enabled switches by send-
ing OF messages. With the help of cloud resources, ECs involve
all the computing and storage functionalities, which enables new
smart traffic, such as offload traffic and cache traffic.

C. Infrastructure Layer

Infrastructure layer includes all physical network entities hav-
ing the tasks to compute like UEs.

4 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

Now let’s consider a scenario with N deployed FBSs, N =
{1, 2, · · ·, N} and each FBS is equipped with an EC, to serve M
number of users, withM = {1, 2, · · ·,M}.

An EC is assumed to have a finite computation capability and
is located at the edge of the radio access network to provide
computing services and execute UEs requests. The size of re-
quired computing task for each UE i is yi. A remote cloud (RC)
is also considered in the system to offload the overloaded re-
quests of EC for further execution.

The whole network is under control of an SDN controller and
the controller interacts with ENs and RC by sending OF mes-
sages to them to control the edge network centrally and globally.
Since SDN controller could collect the global information of the
whole system including load, energy consumption, processing
speed and latency, it can formulate optimal energy saving and
reduce latency strategies for the network. We assume that in a
single time slot SDN controller will choose the UEs who want to
offload their tasks for computation. We consider each UE gen-
erates a series of same task requests that can be offloaded to an
EC through a wireless channel or locally processed by the UE. If
the total request rate is not greater than a maximum acceptance
rate of EC, then all the requests will be processed by the EC.
Otherwise, overloaded task requests will be offloaded to RC for
further execution.

We consider widely used task model [30] to describe task
(qi, yi) in this paper with qi be the required CPU cycles per bit
to complete the task and yi be the size of computation task. The
UE selects the nearest FBS for task offloading. We assume that
the size of the data that each UE i needs to compute is yi and
each UE i can transmit part of the data to its associated FBS for
data processing. FBS transmits the corresponding task request
information to SDN controller. SDN controller compares the
task computation amount with the computing capability of EC
and then gives the task offloading and resource allocation policy
based on the delay and energy consumption of UE’s task. The
task is decided to compute locally by UE, offloaded to EC or
further offloaded to RC for computation.

1. Local Computing : Consider the local computing with
computing capability of lUE

i at UE i, qi is the required CPU cy-
cles per bit and αi is the ratio of task computed locally. Thus,
the local computation time of task can be expressed as

tUE
i = αiyi

qi
lUE
i

, (1)

where yi is the size of computation task. The total requested
tasks of UEs is represented as

T =

M∑
i=1

yi. (2)

Here T is the total task requests of all the users.
The consumed energy at UE i for local computation of tasks

can be expressed as [31]

eUE
i = (fiqi)αiyi, (3)

where fi is the power coefficient of energy consumed per CPU
cycle for local computation.

2. The Transmission Time and Energy Consumption for
Task Offloaded to Edge Cloudlet: UE i will offload its task to
EC. We can compute the uplink data rate ri,j as in [12] for of-
floading by considering the background interference and mutual
interference caused by other UEs as

ri,j = B log2

(
1 +

pi · hi,j
σ2 + Ii,j

)
, (4)

where pi is the transmit power of UE i for uploading data and
hi,j denotes the uplink channel power gain between UE i and
the FBS j. For uplink transmission, we assume that all users
occupy the same frequency channel of B bandwidth, σ2 denotes
the noise power level and Ii,j =

∑
k∈M,‖6=i

pkhk,j is the interfer-

ence power from other users, where pk is the transmit power of
UE k and hk,j denotes the uplink channel power gain between
UE k and the FBS j. Based on (4), transmission time of UE i for
data offloading between UE i and FBS j is defined as

toffl
i,j = (1− αi) yi

ri,j
. (5)

The offloading energy consumption for transmitting UE’s
task from UE i to FBS j is

eoffl
i,j = pi·(1−αi)yi

ri,j
. (6)

3. Execution Time in the Edge Cloudlet: After transmitting
UE’s requests to the edge cloudlet, the cloudlet will start exe-
cuting UE’s requests. As edge cloudlet is assumed to have finite
computing capability (CPU cycles per second), which is denoted
as lCij allocated to user i by the jth FBS. The transmission time
for UE i in the jth edge cloudlet can be defined as

tC.trans
i,j = toffl

i,j + tC.exec
i = (1− αi)

yi
ri,j

+ βiyi
qi
lCij
, (7)

where βi is the ratio of task computed in the EC j.
4. Sending Overloaded Requests to the Remote Cloud:

Further task requests must be overloaded to the RC because it
has infinite capacity to execute all the UE’s task. The transmis-
sion time to RC can be expressed as

tCC.trans
j = (1− αi − βi)

yi
rj
, (8)

where rj is the data rate from FBS j to the RC. The transmission
between FBSs to RCs normally occurs through a wired fronthaul
links and wired connections definitely are generally faster than
wireless connections and more reliable. The total execution time
for UE i is expressed as

ttotal
exec = tUE

i + tC.trans
i,j + tCC.trans

j . (9)

We can rewrite (9) as

ttotal
exec = αiyi

qi
lUE
i

+(1− αi)
yi
ri,j

+βiyi
qi
lCij

+(1− αi − βi)
yi
rj
.

(10)
The total energy consumption for UE i is expressed as

etotal
exec = eUE

i + eoffl
i,j = (fiqi)αiyi +

pi · (1− αi)yi
ri,j

. (11)

KIRAN et al.: JOINT RESOURCE ALLOCATION AND COMPUTATION OFFLOADING ... 5

IV. PROBLEM FORMULATION

Based on the above analytical results, we aim to minimize
the total execution time subjects to the energy constraint. The
problem can be mathematically written as

min
αi,βi,lCij

M∑
i=1

[
αiyi

qi
lUE
i

+ (1− αi)
yi
ri,j

+ βiyi
qi
lCij

+ (1− αi − βi)
yi
rj

]
, (12)

subject to

C1 :

M∑
i=1

lCij ≤ lC.max
j ∀j = 1, 2, · · ·, N. (12a)

C2 : eUE
i + eoffl

i ≤ EUE.max
i ∀i = 1, 2, · · ·,M. (12b)

C3 : 0 ≤ αi ≤ 1 ∀i = 1, 2, · · ·,M. (12c)

C4 : 0 ≤ βi ≤ 1− αi ∀i = 1, 2, · · ·,M. (12d)

C1 represents that the total edge computing resources as-
signed to all tasks should be less than the edge cloudlet’s maxi-
mum computing capability lC.maxj . C2 indicates the maximum
energy of UE EUE.maxi . C3 shows that the ratio of task com-
puted locally should be between 0 and 1. C4 makes sure that the
ratio of task computed in the edge cloudlet should be between
0 and one minus ratio of task computed locally. Furthermore,
in order to address the problem (12), we set αi (ratio of task
computed locally), βi (ratio of task computed in the EC), and lCij
(computing capability of EC) as the optimization variables.

V. LOW LATENCY ACHIEVING SCHEMES USING
MACHINE LEARNING

Our optimization problem can be solved by finding opti-
mal value of computation resource allocation (i.e., optimal fre-
quency cycles in the EC) and computing task ratio. As the prob-
lem is non convex according to the reference [32]. If the num-
ber of users increases the size of problem could increase very
rapidly, so it’s a NP-hard problem. In this section we focus
on how machine learning helps in minimizing delays for the
proposed problem in (12)–(12d) in MEC based wireless net-
works. MEC delays are caused by multiple factors, including
node and link failures, unfavorable environment, delays caused
by servers, and suboptimal scheduling. With multiple computa-
tion tasks sharing the same links, one delayed task can delay all
the computation tasks scheduled after it. A failure in computing
task either in the edge server due to heavy load or the remote
cloud can lead to a complete halt of operations on a given route.
This causes long delays with the estimated time for restora-
tion contingent on various factors. The use of machine learn-
ing in wireless networks has already proven its effectiveness
in performing predictive maintenance, which can be applied to
MEC networks to eliminate delays. Machine learning can po-
tentially eliminate network faults by constantly monitoring data
points that can indicate any impending breakdowns. The mas-
sive amount of real-time data collected and analyzed through

machine learning can not only improve the current network op-
erations but also can assist in making long-term improvements
like selecting the best edge servers and planning new optimal
routes for offloading computation tasks. This can be achieved
using reinforcement learning, a type of machine learning that
can determine the optimal solution to problems by evaluating
the results of previous actions.

The optimization problem becomes more complex due to
large number of ECs participating in distributive computing.
We firmly focus on transmission delay between the UEs and
ECs because most of the applications are accessed from the
edge servers. Hence, to extract the optimal solution for (12),
we propose reinforcement learning (RL) algorithms such as Q-
learning based approach and Cooperative Q-learning based ap-
proach. Then, we compare these algorithms with a random al-
gorithm i.e., Q-learning based traditional approach.

A. Reinforcement Learning

In the following, we propose a RL method to solve this
problem instead of using conventional optimization techniques
because traditional learning methodologies such as training a
model-based on historic training data and evaluating the result-
ing model against incoming data is not feasible as the environ-
ment is in a constant change. Conventional optimization based
techniques are programmed to make particular decisions, for ex-
ample there may be a scenario based on predefined rules. These
rules are based on human experience of the frequently-occurring
scenarios. However, as the number of scenarios increases sig-
nificantly, it would demand massive investment to define rules
to address all scenarios accurately, and either accuracy or effi-
ciency is sacrificed. Furthermore, traditional approaches have
a more rigorous mathematical approach while machine learn-
ing based RL algorithms are more data-intensive. The RL [33]
problem consists of a single or multiple agents and an environ-
ment which is based on a chosen policy of taking actions to
interact with the environment. The agent receives a feedback
(reward) from the environment after each interaction, and up-
dates its state. Any intelligent member of the problem can be
the agent, for example in a cellular network it could be a small
BS. The goal of RL is to maximize the cumulative received re-
wards during an infinite number of interactions. Such machine
learning (ML) based RL system is truly a learning system if it is
not programmed to perform a task, but is programmed to learn
to perform the task.

B. Proposed Q-learning Method

In problem (12), our aim is to minimize the sum delay. Our
system comprises a radio environment where UEs having com-
puting tasks and a RL model using Q-learning [34] to perform
computing capability control (i.e., cycles/s) to achieve sum de-
lay. In RL method, three key elements are necessary to define
specifically to our system model. These elements are state, ac-
tion and reward. The radio environment can be in a normal state
or undergo some actions that generate errors and cause the net-
work delay. Such error generated actions can be tracked in a
special register rerror to avoid delays.

State: The set of states S in our system consist of two com-
ponents which can be defined as the sum delay Dsum delay of the

6 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

entire system and the available computational capability lC.availij

of the MEC server which can be computed as

lC.avail
ij = lC.max

ij −
M∑
i=1

lCij (13)

where
M∑
i=1

lCij is the allocated computational resource (i.e., CPU

cycles per sec).
Action: Set of actions A carried out by the agent and

the actions in our system can be the resource allocation
lCij = [lC1j , l

C
2j , · · ·, lCnj] and the computation ratio α =

[α1, α2, · · ·, αn]. The list of actions performed by the agent have
a finite impact on the delay. After a series of actions the agent
attempts to reach the sum delay Dsum delay.

Reward: After executing each possible action a in each step,
the environment grants the agent a reward R(s, a) in a certain
state s at discrete time t. Each state-action pair will have a value
Q(s, a), i.e., the expected discounted reward when starting in
state s and selecting an action a. This value can be regarded as
a long term reward. In general, the reward function should be
related to the objective function. Our objective is to meet the
sum delay Dsum delay and the goal of RL is to get the maximum
rewards. After each action, we compute the delay increased (or
decreased). If decreased we get the positive reward of +1, and
if increased we get the negative reward of -1. So the value of
reward should be negatively correlated to the size of objective
function. In our system the immediate reward can be defined as

Immediate.Reward =
1

delaycurr.exec
min

, (14)

where delaycurr.exec
min is the minimum delay in executing a task in

current state.
The agent computes for each step and stores Q(s, a) in a

Q-table. We build a M ×N table Q ∈ RM×N to drive Q(s, a).
The simplest form of one-step Q-learning approach can be given
as

Q(st, at) = Q(st, at)+η[rt+1+γmaxaQ(st+1, a)−Q(st, at)],
(15)

where η, 0 < η < 1, is the learning rate and γ, 0 < γ < 1,
is the discount factor, which determines the importance of the
predicted future rewards. The next action is a and the next state
is st+1.

Q-learning can be considered as a function approximator in
which the values of the approximator, Q, depend on the state
and action. The dynamic programming equation for computing
a function approximator Q (also known as Bellman equation) is
as follows

Q(st, at) = maxa(E[Rt + γQ(st+1, a)]), (16)

where Rt is the immediate reward received at time t and E de-
notes the expectation operator.

Algorithm 1 shows the process of proposed Q-learning algo-
rithm. In the context of a femtocell network, FBS deployed with
an edge cloudlet acts as an agent in the Q-learning algorithm,
which means each FBS runs Algorithm 1, separately. Prob-
lem (12) can be solved by finding optimal values of computation

Algorithm 1 Computing resource allocation using Q-Learning
algorithm.
1: Initialization: Initialize Q(st, at)
2: for all episodes do
3: Initialize st
4: for all steps of episode do
5: Choose at from set of actions
6: Take action at , observe reward Rt , and next state st+1

7: Update the table entry Q(st, at) as in eq (15)
8: Q(st, at) = Q(st, at) + η[rt+1 + γmaxaQ(st+1, a)

−Q(st, at)]
9: st := st+1

10: Until reach expected state sterminal
11: end for
12: end for

ratio and computation resource allocation lCij . Our objective is to
meet the sum delay Dsum delay by allocating optimal computing
resources to an edge cloudlet. The set of actions carried out by
the agent isA and the set of states is S. The environment grants
the agent a reward R(s, a) after the algorithm takes an action
a ∈ A when it is in state s ∈ S at discrete time t. After each
action, we compute the delay increased (or decreased). Each
state-action pair will have a value Q(s, a). The agent computes
for each step and stores value Q(s, a) in a Q-table. This value
can be considered as a long term reward. We build a M × N
table Q ∈ RM×N to drive Q(s, a).

According to Algorithm 1, if all actions are repeatedly sam-
pled in all states, Q-leaning approach in (15) will be updated
until the value of Q converges to the optimal value. The final
value of Q may be suboptimal because the number of updates
are limited. Q-learning itself is a greedy policy since on each it-
eration it finds the action which derives the maximum Q-value.
Greedy policies have sometimes the disadvantage of being vul-
nerable to environmental changes, and they can be trapped in a
limited search area which may cause the algorithm to converge
slower. The effective solution for this is to act randomly with
probability ε (exploring) and act greedily with probability 1− ε
(exploiting). Algorithms that try to explore and exploit fairly
are called ε-greedy and different values for ε provide a trade-off
between exploration and exploitation. However, as compared to
the greedy policy in [33], it is demonstrated that the ε-greedy
policy has a faster convergence rate and closer final value to the
optimal one in a limited number of iterations. In this paper, we
used ε-greedy policy.

C. Cooperative Q-Learning

To further enhance the search speed in Q-learning method,
a cooperative Q-learning technique is proposed. Cooperation
and Q-value information sharing among agents in proposed Q-
learning method can reduce search time for the optimum re-
source allocation. In [35] and [36], a cooperative assembled
learning system has been developed as a new method with dif-
ferent training sets in neural network (NN). The robots cooper-
ate with each other in order to learn to share their sensory data
and play the role of scout for each other. In fact, by using a multi
agent RL network (MARL), agents can communicate and share

KIRAN et al.: JOINT RESOURCE ALLOCATION AND COMPUTATION OFFLOADING ... 7

their experiences with each other, and learn from one another.
Episode sharing can be used to communicate the action, state,
and reward triples between the reinforcement learners. The au-
thor proved that, sharing episodes with an expert agent could
improve the group learning significantly. MARL network that
consists of a large number of new agents, cooperation and in-
formation sharing among these agents can reduce search time
for the delay minimization solution. The time complexity of a
RL algorithm depends on the structure of states and the primary
knowledge of the agents [37]. The search time can be excessive
if priori knowledge is not available to an agent or if agent has to
adapt environment changes. Hence, providing agents with pri-
ori knowledge and decreasing the effect of state space size on
learning rate has been a subject of significant research. Trans-
ferring information between agents instead of expecting agents
to discover all the necessary information can be the best solu-
tion to reduce the search time. In other words, the agents search
different choices in parallel by sharing their information, which
decreases the search time greatly.

In an SDN based network, the centralized controller gathers
information regarding the network. The nature of this informa-
tion for each FBS may be different and directly related to its
active time in the network. In this paper, we propose a coopera-
tive Q-learning approach where the Q-tables of FBSs that are in
the same state, i.e., the FBSs that are located in the same vicinity
are shared with one another. The proposed approach reduces the
communication overhead among the FBSs by sharing the useful
information among them. Sharing Q-values in MARL networks
for resource allocation and management is still an open research
problem.

Based on the proposed Algorithm 2 for the femtocell network,
the agents learn in two modes: Individual learning mode and
cooperative learning mode. At first, all of the agents follow the
individual learning mode. FBSs execute the proposed RL al-
gorithm independently by initializing the Q-values of a small
subset of FBSs. Agent executes n learning trials. Each learning
trial starts from a random state and ends when the agent reaches
the goal. After a specified number of individual trials, all agents
switch to cooperative learning mode. In this mode, the MARL
network consists of experienced FBSs and new FBS. The new
FBS takes its priori knowledge from the experienced FBSs and
all FBSs execute the RL algorithm. Q-tables are shared after
each iteration to form a new Q-table. In cooperative learning
mode, some weights are assigned by each learning agent to the
other agents Q-tables based on their expertise. Then, each agent
takes the weighted average of the others Q-tables and uses the
resulted table as its new Q-table which can be written as

QNew
i ←

n∑
j=1

(Wij ·QOld
j). (17)

Assigning Weight Strategies:
a. Learning from all agents: In this method, the measurement

of agent i’s reliance on the experience and knowledge of agent j
is denoted asWij . It can be said that there are some useful skills
to be learned from all agents. By using all agents’ experience,
weight can be assigned to agent j’s skills by a learner i using this
formula

Wij =
ej
n∑
k=1

ek

, (18)

where ej is the expertness of agent j, ek is the expertness
amount of agent k and n is the number of agents. In this ap-
proach, agent j’s knowledge will effect all learners equally i.e.,
W1j =W2j = · · · =Wnj . Also, after each cooperation step all
Q-tables become homogeneous.

b. Learning with positive weights from all agents: If emin =
min{ek | k = 1, · · ·, n}, and c > 0 is a constant, then
ek − emin + c > 0. So the following weight assigning method
can be defined as

Wij =
ej − emin + c

n∑
k=1

(ek − emin + c)
> 0. (19)

The least expert agent’s weight can be written as

Wi,min =
c

n∑
k=1

(ek − emin + c)
. (20)

c. Learning from expert agents: In this method the learner
may use only the Q-tables of the more expert agents to min-
imize the amount of communication required to exchange the
Q-tables. Based on learner i’s expertness difference with other
expert agents it assigns the weights by using following formula:

Wij =


1− µi, if i = j

µi
ej−ei

n∑
k=1

(ek−ei)
, if ej > ei

0, otherwise,

(21)

where µi is the impressibility factor and indicates how much
each agent relies on other agents. n is the total number of the
agents, ei and ej are the expertness value of agents i and j, re-
spectively.

If other agents are less expert than the learner agent i then
their partial weights are zero. Substituting (21) in line 24 of Al-
gorithm 2 (weighted averaging formula) results in

QNew
i ← 1− µi ·QOld

i + µi ·
∑

j∈expert(i)

(
ej − ei

n∑
k=1

(ek − ei)
·QOld

j), (22)

where expert(i) = {j | ej > ei} represents the set of agents
that are more expert than less expert agent.

VI. SIMULATION RESULTS

In this section, we present the simulation results to estimate
the performance of proposed scheme. We compare the proposed
algorithm with a random scheme and investigate the impact of
task computation amount and data size on the performance of
task offloading. We assume data size yi and task computation

8 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

Algorithm 2 Weighted strategy sharing using cooperative Q-
Learning scheme for agent ai.
1: Initialize:
2: While not end of learning do
3: begin
4: If in individual learning mode then
5: begin learning individually
6: xi := Current State()
7: ai := Choose Action()
8: Do Action (ai)
9: ri := receive an immediate Reward()
10: yi := move to next State()
11: V (yi) :=Maxb∈actionsQ(yi, b)
12: QNewi (xi, ai) := (1− βi)QOldi (xi, ai)

+βi(ri + γiV (yi))
13: ei := update expertness(ri)
14: end
15: else cooperative learning
16: begin
17: for j := 1 to n do
18: ej := get expertness of agent aj
19: QNewi := 0
20: for j := 1 to n do
21: begin
22: Wij := compute waits(i, j, e1· · ·en)
23: QOldj := get Q(aj)

24: QNewi := QNewi +Wij ·QOldj

25: end
26: end
27: end

amount of qi is generated by a probability distribution. The
total computation resource of mobile user is 15 GHz and the
computing resource of edge cloudlet is 30 GHz. The femto net-
work is simulated with 5 number of FBSs where each FBS sup-
ports 10 UEs as shown is Fig. 2. The UEs can connect within
a 30m radius from its serving FBS. The task processing time
when the computing task is processed by the UE is 1/15 s and
1/30 s when the computation is done by the EC. We also pre-
sume that the channel gain is determined as 127 + 30·log(d) for
the link of UEs and FBSs where d is the distance between UE
and FBS. The other radio network parameters are set as in Ta-
ble 1. For implementing the proposed Q-learning algorithm, we
use OpenAI Gym [38] environment with Python. Gym provides
different game environments which we can plug into our code
and test an agent. The library is responsible to take care of API
for delivering all the information that our agent would require,
like possible actions, current state, and score. We just need to
focus on the algorithm for our agent. All statistical results are
averaged over 3000 independent runs.

The proposed algorithm lets the agent use the received re-
wards to learn, over time to take the best action in a given state.
We have the reward table in our environment, that the agent will
learn from. It is looking for receiving a reward by taking an ac-
tion in the current state, then updating a Q value to recall if that
action was valuable. First, we will initialize the Q-table to a ma-
trix of zeros and then we can create the training algorithm that

0 20 40 60 80 100
meters

0

20

40

60

80

100

m
et

er
s

UE1
UE2

UE3UE4

UE5

UE6

UE7

UE8

UE9
UE10

UE11
UE14 UE15

UE16

UE17UE18

UE19
UE12

UE13 UE20

UE21
UE22

UE23

UE24

UE25

UE26

UE27

UE28UE29

UE30

UE31

UE32

UE33

UE34

UE35

UE36

UE37UE38
UE39

UE40

UE41

UE42
UE43 UE44

UE45

UE46

UE47UE48
UE49

UE50

FBS1
FBS2

FBS3

FBS4

FBS5

Mininet-WiFi Graph

Fig. 2. Network topology.

Table 1. Simulation parameters.

Parameters Values
Number of FBSs 5
Number of UEs per FBS 10
Channel power gain 127 + 30 · log(d)
Transmit power of UE, pi 0.5 W
Transmission bandwidth of
UE, B

10 MHz

Total battery capacity,
EUE.max
i

500 J

Gaussian channel noise, σ2 3 · 10−15 W

will update this Q table as the agent explores the environment
over thousands of episodes. We determine whether to pick a
random action or to exploit the already computed Q values. We
execute the prefered action in the environment to get the next
state and the reward. Then, we calculate the maximum Q value
for the actions corresponding to the next state, and with that, our
Q value can easily be updated to the new Q value.

We implement proposed algorithms and set the machine
learning parameters as in Table 2. The following values are used
to perform Q-learning: Learning rate α = 0.5, discount factor
γ = 0.9. The maximum number of iterations is set to 3000 and
the e-greedy algorithm is used for the first 60 percent of itera-
tions with random ε = 0.1. The optimal action-value function
of Q-learning is learned after ξ episodes. We compare the pro-
posed algorithm to the results of the approach with a random
algorithm which selects the users randomly using traditional Q-
learning algorithm and Q-learning with epsilon greedy. As the
time complexity of a RL algorithm depends on state space size
and the prior knowledge of the agents. The search time can be
excessive if environment changes very rapidly and prior knowl-
edge is not available to the agent. Best approach to deal with
such problems is transferring information between the agents in-
stead of expecting them discovering the mandatory information
by themselves. By using the proposed cooperative Q-learning
algorithm, the agents cooperate each other and share their ex-
periences and Q-table values. This cooperation can reduce the
search time for RL algorithms. In Fig. 3 we show how the to-
tal delay changes with the increasing capacity of edge cloudlet.

KIRAN et al.: JOINT RESOURCE ALLOCATION AND COMPUTATION OFFLOADING ... 9

Table 2. Machine learning parameters.
Parameters Values
Number of episodes, ξ 3000
Exploration rate, ε 0.1
Discount factor, γ 0.9
Learning rate, α 0.5
Exploration rate decay d 0.99
Minimum exploration rate,
εmin

0.020

0 2 4 6 8 10 12 14
Capacity of edge cloudlet (GHz/s)

4

5

6

7

8

9

To
ta

l d
el

ay
 (s

)

Random algorithm
Q-Learning with epsilon greedy
Cooperative Q-Learning

Fig. 3. Total delay vs. capacity of edge cloudlet.

We can observe that the delay in our proposed cooperative Q-
learning policy decreases with the increasing computational ca-
pacity of edge cloudlet, because the execution time gets shorter
if each UE is allocated more computational resource. This is due
to the fact that after learning from the environment and sharing
Q-table values with expert agents the system will learn to handle
maximum number of users in a short time with minimum de-
lay. Fig. 3 also demonstrates how cooperative Q-learning algo-
rithm causes to share Q-tables of more expert agents to achieve
the sum delay requirement and also minimizes the amount of
communication required to exchange the Q-table values. At
this stage, the proposed algorithm performs better than the Q-
learning with epsilon greedy and random algorithm.

Fig. 4 represents the delay performance of the proposed algo-
rithm under different frequency cycle requirements in the EC.
Different cycles of frequency requirements play an important
role to compute different tasks and have a great impact on la-
tency performance in the system. In order to ensure the qual-
ity of service (QoS), the frequency cycles in the EC needs to
be adjusted. The system assigns more frequency resources be-
tween the EC and UE, which increases the throughput of the
network and minimizes the delay. For evaluating the influence
of frequency cycle requirement to satisfy the QoS of UE, we
set 3 different frequency cycles for distributed ECs under var-
ied iteration numbers, where 60 Hz is considered as the optimal
frequency. From Fig. 4 we can observe that due to the highest
latency efficiency requirement, the algorithm needs to allocate
more frequency resources. We allocate optimal frequency of 60
Hz which achieves the highest latency efficiency. The algorithm
returns lowest latency efficiency due to assigning the least fre-
quency of 15 Hz.

Fig. 5 shows the number of iterations needed till convergence
for the proposed cooperative Q-learning approach. In this figure,

0 2 4 6 8 10
Maximum frequency cycles of the edge cloudlet (Hz)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 T
ot

al
 d

el
ay

 (s
)

Maximum freq allocation 60 Hz
Maximum freq allocation 30 Hz
Maximum freq allocation 15 Hz

Fig. 4. Delay vs. maximum frequency cycles of the edge cloudlet.

0 500 1000 1500 2000 2500 3000
Number of iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Q-
ta

bl
e

va
lu

es

Q-Learning table
Cooperative Q-Learning table

Fig. 5. Convergence of the proposed cooperative Q-learning algorithm.

we can see that, as time proceeds, the values of Q-tables increase
until convergence to their final values. It also demonstrates that
the proposed approach requires 2000 iterations to reach conver-
gence while Q-learning approach needs 2500 iterations to reach
convergence. It also shows that the proposed cooperative Q-
learning algorithm goes through all iterations for each agent, and
the agents share their Q-table values according to the algorithm.
This indicate that the proposed approach is successful in satis-
fying the delay requirement of all UEs. From Fig. 5, we can
also see that, tables for cooperative Q-learning and Q-learning
may have different values as time increases. However, as time
continues to elapse, the cooperative Q-learning table will con-
verge earlier than the individual Q-table value. This is due to
the fact that, at each iteration, the proposed algorithm selects an
action based on the value of one Q-table and updates the actions
Q-value in all the other Q-tables.

The results in Fig. 6 indicate the delay performance under
different QoS. In this evaluation, the latency optimization per-
formance is evaluated under optimal resource allocation to the
appropriate edge cloudlet. Because when the user needs to en-
sure the higher QoS, the system allocates more frequency re-
sources to the edge cloudlets, which increases the throughput
of the network and minimizes the delay. We simulate with the
maximum allocated frequency of 50 Hz under three different re-
quired QoS, 700 kbps, 300 kbps and 100 kbps. Fig. 6 shows
that with higher QoS requirement, the overall delay of the sys-
tem is reduced drastically. In contrast, Fig. 7 shows that due
to random resource allocation to all edge cloudlets, the latency
performance is deteriorating. This is attributed to inefficient re-
source allocation in the edge cloudlet, rather than selecting the

10 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

0 1 2 3 4 5
Number of edge cloudlets

5

10

15

20

25

 T
ot

al
 d

el
ay

 (s
)

QoS=700 kbps
QoS=300 kbps
QoS=100 kbps

Fig. 6. Delay vs. number of edge cloudlets.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Frequency cycles of the edge cloudlet (Hz)

1

2

3

4

5

 T
ot

al
 d

el
ay

 (s
)

QoS=100 kbps
QoS=200 kbps

Fig. 7. Delay vs. frequency cycles of the edge cloudlets (Hz).

best EC with sufficient computing resources to provide services.

VII. CONCLUSION

In this paper we introduce a novel SDN based framework
for computation offloading in MEC wireless networks. Then,
we propose reinforcement learning based approaches (i.e., Q-
learning and cooperative Q-learning) to solve the delay mini-
mization problem, which takes both reward and punishment into
consideration as a sign of being experienced; which is very im-
portant for a dynamic based MEC system. This approach ba-
sically shows the application of machine learning to address
task offloading and resource allocation problem in MEC net-
works. In a multiple agent scenarios, the delay minimization in
MEC is a non-convex problem that can be simplified to solve
by implementing machine learning techniques instead of using
conventional optimization methods. Our simulation results show
that the proposed approach serves all users in a more appropri-
ate way by sharing the learning experiences among all agents
to compute UEs tasks. The proposed cooperative Q-learning
scheme can achieve better performance than other baseline so-
lutions under different system parameters to achieve delay re-
quirements in SDN based edge network. Further, this RL based
approach helps in selecting the best edge cloudlet with sufficient
computing resources for providing services to users. By using
this approach, we found that in most cases the agents learnt to
cooperate, despite the fact that each agent was aiming to max-
imize its users preferences. Agents with different levels of ex-
pertness learn better in satisfying the delay requirement of UEs
when they implement the weighted strategy sharing scheme us-

ing cooperative Q-learning.

REFERENCES
[1] S. Jose, “Cisco visual networking index: Global mobile data traffic fore-

cast update,” Cisco, San Jose, CA, USA, White paper c11-741490, Mar.
2017. [Online]. Available: http://www.cisco.com.

[2] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks Applicat., vol. 18, no. 1,
pp. 129–140, 2013.

[3] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can offload-
ing computation save energy?” Computer, vol. 43, no. 4, pp. 51–56, 2010.

[4] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mo-
bile cloud computing: Taxonomy and open challenges,” IEEE Commun.
Surveys Tuts., vol. 16, no. 1, pp. 369–392, 2014.

[5] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, and A. Neal,
“Mobile-edge computing introductory technical white paper,” White pa-
per, Mobile-edge Computing (MEC) industry initiative, 2014.

[6] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for vm-
based cloudlets in mobile computing,” IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14–23, 2009.

[7] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[8] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing key technology towards 5g,” ETSI white paper, vol. 11, no. 11,
pp. 1–16, 2015.

[9] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge comput-
ing: A taxonomy,” in Proc. AFIN, 2014, pp. 48–55.

[10] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” arXiv preprint arXiv:1702.05309, 2017.

[11] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub, and
E. Benkhelifa, “Sdmec: Software defined system for mobile edge com-
puting,” in Proc. IEEE IC2EW, 2016, pp. 88–93.

[12] M. Chen and Y. Hao, “Task offloading for mobile edge computing in soft-
ware defined ultra-dense network,” IEEE J. Sel. Areas Commun., vol. 36,
no. 3, pp. 587–597, 2018.

[13] N. A. Jagadeesan and B. Krishnamachari, “Software-defined network-
ing paradigms in wireless networks: A survey,” ACM Comput. Surveys,
vol. 47, no. 2, p. 27, 2015.

[14] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos, “Software-
defined and virtualized future mobile and wireless networks: A survey,”
Mobile Networks Applicat., vol. 20, no. 1, pp. 4–18, 2015.

[15] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-
defined networking,” IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 27–51, 2015.

[16] A. O. A. C. Baktir and C. Ersoy, “How can edge computing benefit from
software-defined networking: A survey, use cases, and future directions,”
IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2359–2391, 2017.

[17] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A compre-
hensive survey,” IEEE Trans. Network Service Manage., vol. 13, no. 3,
pp. 518–532, 2016.

[18] H. Pang and K.-L. Tan, “Authenticating query results in edge computing,”
in Proc. IEEE ICDE, 2004, pp. 560–571.

[19] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: Architecture, applications, and approaches,” Wireless Com-
mun. Mobile Comput., vol. 13, no. 18, pp. 1587–1611, 2013.

[20] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proc. ACM MCC workshop, 2012,
pp. 13–16.

[21] B. Liang, Mobile edge computing, Cambridge University Press, 2017.
[22] N. Ansari and X. Sun, “Mobile edge computing empowers internet of

things,” IEICE Trans. Commun., vol. 101, no. 3, pp. 604–619, 2018.
[23] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision and re-

source allocation for multi-user multi-task mobile cloud,” in Proc. IEEE
ICC, 2016, pp. 1–6.

[24] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–
983, 2015.

[25] C. Xian, Y.-H. Lu, and Z. Li, “Adaptive computation offloading for energy
conservation on battery-powered systems,” in Proc. IEEE ICPADS, 2007,
pp. 1–8.

[26] Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy on
handheld devices: A partition scheme,” in Proc. ACM CASES, 2001,
pp. 238–246.

[27] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan,
“Odessa: Enabling interactive perception applications on mobile devices,”
in Proc. ACM MobiSys, 2011, pp. 43–56.

KIRAN et al.: JOINT RESOURCE ALLOCATION AND COMPUTATION OFFLOADING ... 11

[28] M. ETSI, “Mobile edge computing-introductory technical white paper,”
White paper, 2014.

[29] H. Zhang, Y. Qiu, X. Chu, K. Long, and V. C. Leung, “Fog radio access
networks: Mobility management, interference mitigation, and resource
optimization,” IEEE Wireless Commun., vol. 24, no. 6, pp. 120–127, 2017.

[30] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, 2016.

[31] J. Guo, H. Zhang, L. Yang, H. Ji, and X. Li, “Decentralized computation
offloading in mobile edge computing empowered small-cell networks,” in
IEEE Globecom Workshops, 2017, pp. 1–6.

[32] Y. Pochet and L. A. Wolsey, Production Planning by Mixed Integer Pro-
gramming, Springer Science & Business Media, 2006.

[33] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
vol. 2, no. 4, Cambridge: MIT Press, 1998.

[34] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-
4, pp. 279–292, 1992.

[35] T. Thorpe, “Multi-agent reinforcement learning: Independent vs. coopera-
tive agents,” Ph.D. dissertation, Master’s thesis, Department of Computer
Science, Colorado State University, 1997.

[36] Y. Liu and X. Yao, “A cooperative ensemble learning system,” in Proc.
IEEE IJCNN, 1998, pp. 2202–2207.

[37] S. D. Whitehead, “A complexity analysis of cooperative mechanisms in
reinforcement learning,” in AAAI, 1991, pp. 607–613.

[38] G. Brockman et al., “Openai gym,” arXiv preprint arXiv:1606.01540,
2016.

Nahida Kiran received her B.S. degree in Telecom-
munication & Networking from COMSATs Insti-
tute of Information Technology, Pakistan in March
2013. She acquired her Master’s degree in Electron-
ics and Communication Engineering from the School
of Information and Communication Engineering, Bei-
jing University of Posts and Telecommunications, P.
R. China in 2016. She is currently pursuing her Ph.D.
degree in Information and Communication Engineer-
ing from Beijing University of Posts and Telecommu-
nications, P. R. China. Her research focus includes

mobile edge computing, software defined networking, resource allocation and
mobility management in cellular networks.

Chunyu Pan received the Ph.D. degree with the
School of Information and Communication Engineer-
ing, Beijing University of Posts and Telecommunica-
tions, Beijing, P. R. China. She has been a Lecturer
with School of Information and Communication En-
gineering, Beijing Information Science and Technol-
ogy University, Beijing, P. R. China, since July 2019.
Her research interests include software-defined cel-
lular networks, heterogeneous wireless networks, re-
source allocation and mobility management in cellular
networks.

Sihua Wang is currently pursuing the Ph.D. de-
gree with the School of Information and Communi-
cation Engineering, Beijing University of Posts and
Telecommunications, Beijing, P. R. China. His re-
search interests include mobile edge computing, het-
erogeneous wireless networks, resource allocation and
machine learning in cellular networks.

Changchuan Yin (M’98-SM’15) received the Ph.D.
degree in Telecommunication Engineering from Bei-
jing University of Posts and Telecommunications,
Beijing, P. R. China, in 1998. In 2004, he held a vis-
iting position with the Faculty of Science, the Univer-
sity of Sydney, Sydney, NSW, Australia. From 2007
to 2008, he held a visiting position with the Depart-
ment of Electrical and Computer Engineering, Texas
A&M University, College Station, TX, USA. He is
currently a professor with the School of Information
and Communication Engineering, Beijing University

of Posts and Telecommunications. His research interests include wireless net-
works and statistical signal processing. He was the co-recipient of the IEEE
International Conference on Wireless Communications and Signal Processing
Best Paper Award in 2009. He has served as a Technical Program Commit-
tee member for many leading IEEE conferences (e.g., ICC, Globecom, WCNC,
VTC, etc.).

