
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 5, OCTOBER 2020 399

A Fault Detection and Diagnosis Approach for
Multi-tier Application in Cloud Computing

Khiet Thanh Bui, Len Van Vo, Canh Minh Nguyen, Tran Vu Pham, and Hung Cong Tran

Abstract: Ensuring the availability of cloud computing ser-
vices always concerns both service providers and end users.
Therefore, the system always needs precautions for unex-
pected cases. Accordingly, cloud computing services must
be capable of identifying faults and behaving appropriately
when it is abnormal to ensure the smoothness as well as
the service quality. In this study, we propose a fault de-
tection method for multi-tier web application in cloud com-
puting deployment environment based on the Fuzzy One-
class support vector machine and Exponentially Weighted
Moving Average method. And then, the suspicious met-
rics are located by using feature selection method which
based on Random Forest algorithm. To evaluate our ap-
proach, a multi-tier application is deployed by a transna-
tional web e-Commerce benchmark by using TPC-W (TPC
Benchmark™ W, simulates the activities of a business ori-
ented transaction web server in a controlled internet com-
merce environment) in private cloud and then it is injected
typical faults. The effectiveness of the fault detection and
diagnosis are demonstrated in experiment results.

Index Terms: Cloud computing, fault detection, fuzzy One-class
SVM, multi-tier web application

I. INTRODUCTION

CLOUD computing has been widely used in a variety of
fields like business, high performance computing, social

network and scientific computing thanks to its capability to offer
information technology infrastructure and application as scal-
able services. The cloud infrastructure contains both physical
layer and abstraction layer. The physical layer typically includes
server, storage and network components that are necessary to

Manuscript received December 23, 2019; revised June 18, 2020; approved for
publication by Zhu Han, Division III Editor, July 16, 2020.

This research is funded by Thu Dau Mot University under grant number
DT.20-093. Also, we would like to thank Ho Chi Minh City University of Tech-
nology (HCMUT) for the support of time and facilities for this study.

K. T. Bui and T. V. Pham are with Faculty of Computer science and En-
gineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly
Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam, email: khi-
etbt@tdmu.edu.vn and ptvu@hcmut.edu.vn.

K. T. Bui and T. V. Pham are with Vietnam National University Ho Chi Minh
City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, email:
khietbt@tdmu.edu.vn and ptvu@hcmut.edu.vn.

K. T. Bui and L. V. Vo are with Faculty of Engineering and Techonlogy, Thu
Dau Mot University, Binh Duong, Vietnam, email: khietbt, lenvv@tdmu.edu.vn.

C. M. Nguyen is with Key Learning Facilities, Sai Gon University, Ho Chi
Minh city, Vietnam, email: canh.nm@lib.sgu.edu.vn.

H. C. Tran is with Training and Science Technology Department, Posts and
Telecoms Institute of Technology, Ho Chi Minh city, Vietnam, email: con-
ghung@pithcm.edu.vn.

K. T. Bui is corresponding author.
Digital Object Identifier: 10.1109/JCN.2020.000023

support the cloud services. The abstraction layer consists soft-
ware which are deployed across the physical layer. Correspond-
ing to cloud service models, abstraction layer is divided into
three types of service models including IaaS (Infrastructure as a
Service), PaaS (Platform as a Service), and SaaS (Software as
a Services). IaaS provides consumers with computing resource
as virtual machine while PaaS offers programming language, li-
braries, services and tools; and applications running on cloud
infrastructure are supplied by SaaS [1].

The openness, flexibility, and complex architecture of cloud
computing have led to many different types of fault from in-
frastructure systems, platforms to applications on them. These
affect users and cause enormous economic losses. For exam-
ple, in August 2013 Amazon stopped working in 45 minutes
due to a fault which caused losses of up to $5.000.000. Accord-
ing to Tellme Networks, fault detection takes 75% of the system
recovery time and prevents 65% of faults from occurring [2].
Thence, the reliability of the service is one of the prerequisite
issues when building up cloud computing system. Also, cloud
computing services require the ability to identify and to behave
appropriately to ensure smoothness and readiness in the face of
faults [4], [5]. Having a prior understanding of faults in cloud in-
frastructure will help minimize the impact of faults on the cloud.
Although much research and improvement have been done on
cloud computing, some companies have suffered a large amount
of downtime as a result of cloud failures resulting in significant
revenue loss. According to some researchers, it is likely that in
the future, the tool service-level agreement (SLA) Google appli-
cations are expected to manage all causes of faults [6]. The sys-
tem allows operators to set rules for specific parameters to mon-
itor and operate the system monitoring tools of leading compa-
nies like Tivoli of IBM, OpenView of HP, CloudWatch of Ama-
zon. The system will then issue alerts when system parameters
exceed a set threshold. However, setting thousands of threshold
parameters for applications is difficult and depends on the op-
erator’s experience. Also, it is hard to have no faults in system
because of the large scale of cloud computing data center and its
complex architecture. What’s more, faults on cloud computing
are extremely various with causes to faults existing everywhere
in the physical layer. Also, faults have bad effect on abstrac-
tion layer. For example, if a fault occurs in the operating system
in the PaaS, it may make applications in SaaS fail. Similarly,
if faults occur on the IaaS, it will lead to a fault in the oper-
ating system of the PaaS. And this will affect faults occurring
in the application of the SaaS layer. More unfortunately, faults
occur in physical layer like servers, storage and network com-
ponents, it will gradually affect IaaS, PaaS, and SaaS. It is diffi-
cult to collect system parameters from layers such as networks,
hardware, operating systems, virtual machines, platforms, ap-

1229-2370/19/$10.00 © 2020 KICS

400 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 5, OCTOBER 2020

plications from scale of cloud environment with thousands of
processing nodes made. In addition, due to the transparency of
cloud computing service, it is difficult to analyze the status of
the application; because it depends on the interaction of com-
ponents in the system and its applications. Additionally, fault
checking and removing may not totally prevent all faults from
occurring [3] since fault detecting and diagnosing face following
challenges:
• Cloud computing elasticity and its multi-purposed user ser-

vices have caused continuous changes in the system mod-
els and other apps in cloud computing from time to time,
especially in resources allocation.

• Cloud computing transparency makes it difficult to analyze
apps status as this much depends on the interaction among
the system components together with other apps.

• Cloud computing‘s large scale with thousands of nodes
make difficulty in collecting figures of the system from net-
work, hard ware, operating system, virtual machines, in-
frastructure and apps.

• In practice, collecting abnormal and faults is a problem and
it is really costly to make system operate in fault condi-
tions.

• Abnormal and faults in system are tremendous, so it is
hardly possible to combine all these types in practice to
form training data consisting all abnormal and faults.

Currently, mathematical and statistical models are prominent
techniques used for detecting faults. Many different solutions
have been suggested to solve this problem such as density-based
method [8], [9], neural network based-method, kernel-based
method [14] and data mining [7], [10], [11]. Fault detection
model is built from monitoring data, history event, and brief sys-
tem. However, in real applications, collecting all abnormals or
faults data is very difficult because of high cost in activity sys-
tem in fault condition. Therefore, there are very few or no ab-
normal/fault samples in the training dataset. Also, faults happen
in real environment very diversely with species as complication
of influencing factors making faults. Prerequisite conditions of
technique fault detection must understand procedures and sys-
tem constructors, especially toward large scale and modern pro-
cedures. Most of fault detection methods have focused on mod-
eling normal data in order to figure out faults. During the detect-
ing approach, measures on normal data are done easily. While
Schölkopf et al. [12] have proposed a method of using a support-
ing vector in one-class classification named one-class support
vector machine (OCSVM), Tax and Duin [13] applied a more
effective one called support vector data description (SVDD) in
which a hyperplane is replaced with a hypersphere. Due to the
ability of generalization of SVDD compared to Neural network,
SVM celebrated and was popular in the fields. OCSVM is a
particular type of support vector machine (SVM) which needs
normal data for training. This is used for forming a decisive
boundary with max margin between normal data and the ori-
gin. If there is a new object in the boundary, it, then, will be
considered a normal datum. Otherwise, it will be grouped into
abnormals if it is outside the boundary. OCSVM needs no ab-
normal data, it is easier to train and to apply to detect abnor-
mal compared to the traditional SVM. However, OCSVM is ex-
tremely sensitive to outliers in the training data [15]. Outliers

are able to hide abnormals and reduce performance on abnor-
mal detecting. It is hard to clearly identify the boundary with an
outlier in the training data. Whenever an outlier occurs, it may
be considered as a fault by a popular fault detection method.
Thence, labeling input records is used as an outlier detecting
method. However, measuring how much outliers influence on
input records is not easy as it much depends on data meaning
and it leads to the technique used to demonstrate outlier degrees
during the process of abnormal detecting. There are some meth-
ods to measure the effects of outliers such as Similarity/Distance
or relationship model [9], [14]. Yin et al. [15] proposed a ro-
bust one-class support vector machine for detecting faults based
on decisive boundary values when outlier appear in the dataset.
The distance between center of the dataset and every sample
is calculated to penalty factor of OCSVM model. It is then
evaluated to decide whether or not a fault occurring based on
a fixed threshold. However, identifying suitable thresholds for
decisive boundary values to identify faults is difficult. In ad-
dition, setting thresholds leads lack of flexible operation in dy-
namic cloud environment. To overcome these defects, in this
research, the combination of fuzzy logic and OCSVM (named
FOCSVM) is proposed to improve the abnormal detection when
outliers appear in the dataset. By using fuzzy logic for calculat-
ing penalty factors of OCSVM model, fault detection approach
improves flexible operations in real time as well as takes ad-
vantage of experts’ knowledge. Based on the FOCSVM abnor-
mal detection model, the fault detection and diagnosis approach
is proposed including abnormal detection, fault detection, and
fault diagnosis. For fault detection problem, the exponentially
weighted moving average (EWMA) chart is then used to iden-
tify abrupt changes if there is any fault to occur like [27], named
EWMA-FOCSVM. And then, the fault diagnosis problem is ab-
stracted to feature selection problem with the training dataset
which are labeled by EWMA-FOCSVM. The Recursive Feature
Elimination (RFE) [42], [43] method which uses Random For-
est (RF) algorithm on each iteration is applied to fault diagnosis
model, named REF-RF. In experiment, a multi-tier web applica-
tion based on TPC-W (industry-standard benchmark) which de-
ploys in private cloud evaluate this proposal. Faults are injected
the system and are detected by EWMA-FOCSVM. The results
of experiment present effectively EWMA-FOCSVM fault de-
tection which benchmark with Threshold-FOCSVM. The RFE-
RE model benchmarks to the Bagged Decision Trees algorithm
(named RFE-BDT).

The main contributions of the study are as following.

(i) By using fuzzy logic membership function, the adaptive
penalties of OCSVM are designed to reduce the effects of
outliers. The membership function presents the distance of
every normal sample to the center of dataset. This method
is called FOCSVM.

(ii) We propose the fault detection approach, named EWMA-
FOCSVM, which monitors abrupt fluctuation of the deci-
sive boundary value of FOCSVM based on EWMA chart.
This chart is used to detect a small shift in the process in
which each point shows a moving average of points.

(iii) The monitored samples are labeled by using EWMA-
FOCSVM in real time. Therefore, the training dataset for
identifying the metrics causing faults is built, but it is un-

KHIETet al..: A FAULT DETECTION AND DIAGNOSIS APPROACH FOR MULTI-TIER... 401

balanced. The fault diagnosis is abstracted to selection fea-
ture problem and is solved by using RFE-RF model. The
suspicious metrics are ranked this training dataset to find
metrics causing faults.

The remainder of this paper is structured as follows. The
state-of-the-art is reviewed in Section 2. In Section 3, the sys-
tem model is represented. The fault detection and diagnosis is
formulated in Section 4. Section 5 describes the evaluation. Fi-
nally, conclusions are the last section.

II. STATE-OF-THE-ART

A. Types of Faults in Cloud Computing

Cloud computing is a distributed system, so its faults are sim-
ilar to in others. Numerous of faults have been shown in previ-
ous research. Jhawar and Piuri [16] have divided faults into two
main groups: crash faults and byzantine faults. These faults are
described as following:
• Crash faults are those occur by one or many system com-

ponents like power source, storage disk, chip memory,
processor, network switch and router, etc. This type of
fault has influence on the physical system and these af-
fected components are manually fixed. Additionally, soft-
ware agents are deployed for fault tolerance.

• Byzantine faults are caused by differences between the ini-
tial expectations and the real results. They, then, directly
lead to unpredictable conditions named byzantine. The ap-
pearance of byzantine faults affects the logic structure of
the system and may not require manual interaction as they
may be processed by proper fault tolerance strategies. It
may be hard to check and conclude exactly on byzantine
conditions due to the system’s complexity and variety. It is
hardest to detect a system providing incorrect result to cus-
tomers. The replicas of system are deployed to avoid this
faults.

Numerous types of faults are identified in the document dedi-
cated to cloud environments [17], [20], [27] which can be classi-
fied into: data faults, calculation faults and response time faults:
• Data faults are faults due to data collection during the oper-

ation of system. The data may be jammed, incomplete, and
even some damaged data may be unreadable. For exam-
ple, the online customer information can be wrong because
hackers falsify information like a “robot” generates thou-
sands of fake information.

• Calculate faults occur in the network due to network par-
tition, packet loss, packet failure, destination fault, link
fault,etc; faults occur in hardware such as CPU faults,
faults in memory, etc; faults occur in the processor, op-
erating system, calculation software,etc; process fault due
to lack of resources.

• Response time faults do not show results like an error page
is displayed rather than the log-in page or a message “Enter
the wrong password” when we log on to a website to shop.
This fault may occur due to data faults or calculation faults.

B. Fault Dtection and Diagnosis in Cloud Computing

Fault detection problem is one of the biggest challenges of
a real system. It is an important task to ensure reliability and

to reduce losses which happen by fault in the system. Sys-
tem fault detecting and diagnosing has attracted lots of atten-
tion from many scientists as well as businessmen and investors.
Millions of dollars has been spent on it with many worldwide
big projects conducted by professors, engineers and workers.
This proves how much important of system fault detecting and
diagnosing is in both research and economics as well. Fault de-
tection in cloud computing cannot be found manually which is
performed by a system. There are two main strategies including
intrusion detection and Heartbeat/Ping to build fault detection
system.
• Intrusion strategy: The variables and status of the system

are observed, collected, and measured periodically. After
that, the process of analyzing and evaluating the variables
and the state of the system are applied to quantify informa-
tion. Intrusions are identified by measuring a bias between
the measured values of system with those measured in the
normal process. There are statistical data mining and ma-
chine learning techniques to monitor this bias. The abnor-
mal behaviors are detected by using the model of normal
behaviors of users in which are deviated from. The objects
monitored and analyzed for detecting intrusion are network
packet attributes (e.g., IP address, network volume and pro-
cessing status) associated with the data from the features of
the web application (e.g., request chain, transaction com-
pletion and request processing).

• Heartbeat strategy: A message is sent periodically from
a monitored node to the bug detector to notify that it is
still alive. If Heartbeat’ messages do not arrive before the
time was up, the fault detector suspected that there is an
occurred fault at this node.

• Pinging strategy: A message is sent continuously from a
fault detector to a monitored node. The fault detector will
get the answer ACK (Acknowledgment). If a sustained
message fails, a probe (a series of messages separated by
a period of time) can be used to verify if a node is actu-
ally faulty. Detecting broken nodes with partially central-
ized monitoring supports to large-scale system. However,
inability to detect malicious attacks if the nodes are still
functioning properly, detecting incidents depending on the
reliability of the detection node and network conditions,
potentially buffer overflow due to transmission the mes-
sage.

Most of the current fault detection techniques are based on
system monitoring and known as fault samples [21]–[23], [25],
[26]. Known faults are defined and turned into specific set of
rules. Fault diagnosing will later be operated by comparing sig-
natures to the existing rules. System’s signatures are collected
by system operators or commercial monitoring tools like HP
OpenView, IBM Tioli, etc., so that alerts will automatically gen-
erate whenever metric values exceed the predefined thresholds.
Web applications provide concurrent services to a large num-
ber of users through Internet connections. Users make interac-
tions, if at the same time the number of inter-acting users soars,
the workload of the web application will increase dramatically
leading to anomalies in the workload of the web application.
Wang et al. in [26] proposed an algorithm which online work-
load samples were trained and used local exceptions in the work-

402 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 5, OCTOBER 2020

load pattern detect abnormal workload of web application. Lin
et al. [21] have suggested a mechanism on IaaS cloud computing
fault detection by extracting data performance using global lo-
cality preserving projection. Local outlier factor is then applied
to detect abnormals. OpenStack and Xen are applied to conduct
a cloud computing platform system for evaluating fault injec-
tion. System’s real time data performance was collected and an-
alyzed continuously. And then, F-measure was operated to mea-
sure the accuracy of the algorithm. Lin et al. have experimented
the efficient data-driven and local outliers factor-LOF in order
to recognize abnormal performance as well as figure out metrics
causing performance abnormal during the experiment. Experi-
ments indicated that global locality preserving projection works
more effectively than PCA algorithm and others in terms of pre-
cision, recall and F-measure. Mounya Smara et al. proposed
a fault detection framework for component-based cloud com-
puting using acceptance test [23]. This framework detects faults
like transient hardware faults, software faults, and response time
faults made locally on each computer in the cloud system. In
the acceptance testing strategy, each cloud node has its own ac-
ceptance check that can be considered an internal monitoring of
node behavior; if any abnormal behavior is detected at the node,
it will be considered intrusive and blocked immediately. Pinto et
al. in [22] proposed the fault prediction by using SVM model.
SVM model which analyze labeled dataset is supervised learn-
ing model for classification. System faults are predicted earlier
by SVM model which monitors metrics on servers. Therefore,
jobs are done earlier by rescheduling based on fault predic-
tion. In addition, a reinforcement learning module is designed to
avoid false positives. Zhang et al. [25] proposed an online fault
detection approach that depends on SVM-Grid to predict emerg-
ing issues in cloud. The accuracy of traditional SVM model is
enhanced by using grid method for model’s input parameters
to accomplish fine-tuned prediction. In addition, FT algorithm
which updates samples database to minimize time costs is devel-
oped. To evaluate the proposed method, Ft algorithm is bench-
marked with Back Propagation, traditional SVM, and Learning
vector quantization (LVQ). FT algorithm has shown to have the
highest accuracy one.

However, in large-scale system with thousands of metrics, it
is difficult to define faults as well as find suitable thresholds.
There are some methods to solve this problem which do not
know about faults previously [24], [27]. Sometimes, the sys-
tem is operated normally, suddenly warning faults or fault oc-
curs [24]. Apart from classical or known faults, it is difficult
to determine what is happening. A research used fault injection
and assumed that this injection fault will correspond to the ac-
tual error of the system. So, it is entirely possible to rely on
the information from this fault to determine the root caused for
the fault to be alerted in the actual system. This method is im-
plemented by combining fault analysis and data analysis, and
it has ability to find previously unknown faults. Another work
proposed the method of fault recognition based on the canonical
correlation analysis (CCA) [27]. This research proposed an on-
line incremental clustering method to identify access behavior
patterns and used CCA to model the correlation between work-
load and performance metrics/resources in a specific access be-
havior pattern. From this correlation, a coefficient is found that

AnalysisMonitoring

IaaS cloud

Virtulization

Physical resources

Application

VM VM VM

History
data

Online
data

Fault dection

Fault diagnosis

Application

VM VM VM

 Anomaly dection
Data collector

Fig. 1. System architecture.

the difference between two consecutive coefficients will tell us
that an error exists there. In [19] proposed the online abnor-
mal detection method based on self-adaptive cloud monitoring.
To address the issues which administrators manually define suit-
able monitoring rules, the self-adaptive monitoring approach is
built with two phases. First, the correlations between metrics
is calculated to reflect the running status of a system. Second,
the running status is characterized by using principal component
analysis (PCA) to estimate the anomaly degree, and to predict
the possibility of faults. By adjusting automatically in the mon-
itoring period, the accuracy of abnormal detection is improved.
This approach has low overhead. Differently, we proposed the
method which detects faults by monitoring the decisive bound-
ary values of Fuzzy One-Class support vector machine model.

III. FAULT DETECTION AND DIAGNOSIS APPROACH

A. System Architecture

Web applications are hosted on cloud computing which usu-
ally possess multi-tier architecture such as Servlet, JavaServer
Pages and Enterprise JavaBeans based on Java Framework or
.Net Framework of Microsoft. A typical multi-tier architecture
usually consists of a view tier, business logic tier and data base
tier. There are specific servers for each layer which is a virtual
machine (VM) for applications in cloud computing infrastruc-
ture services. Fig. 1 shows the system architecture which in-
cludes three main components Infrastructure as a Service (IaaS)
cloud, monitoring and fault analysis.

A.1 Monitoring Component

Monitoring component collects data from physical resources
and virtualization. Metrics of system performance such as re-

KHIETet al..: A FAULT DETECTION AND DIAGNOSIS APPROACH FOR MULTI-TIER... 403

source usage of servers, workloads, and performance metrics
in the application are gathered by interfaces provided by oper-
ation system or third-party software like Hyperic SIGAR, Gan-
glia, or Promethus etc. The collected data will be first processed
by standardizing, outliers adjusting and deleting those repeated.
Next, the gathered data is both stored in historical and online
ones. Finally, online data will be transformed into Fault analysis
component while the historical one will be labeled as normals or
faults to be used for fault diagnosis. After that, the monitoring
data will be saved to the archive (historical data).

A.2 Fault Analysis Component

There are three main phases in fault analysis component in-
cluding abnormal detection, fault detection and fault diagnosis.
• Abnormal detection is a process to identify objects with

bias compared to common ones. These objects carry sig-
nificant differences or are created by a different mechanism
compared to the normal ones. It is essential to find out a
proper method of deviation measurement serving for ab-
normal detection purpose.

• Fault detect is a component to monitor the characteristic
system state and then identify abnormal data related to
faults by comparing the multidimensional monitoring data
collected. Sudden changes in the metrics are detected us-
ing EWMA control charts that do not require specialized
knowledge.

• Fault diagnosis is a component which applies feature se-
lection method through analyzing variance of multiple pa-
rameters. And then, auto-scaling technologies (e.g., scale-
up, scale-down, migration) is used to reduce the impact
of faults through adjusting allocation resources in the IaaS
cloud.

B. Abnormal Detection Based on Fuzzy One-Class Support
Vector Machine

In this section, the fuzzy one-class support vector machine
abnormal detection model is proposed based on the general one-
class support vector machine first proposed by Schölkopf et al.
In many real-world applications, types of training dataset have
different effects on training models like some training points
which are more important than others. In particular, the tar-
get dataset al.ways includes some outliers for the reasons of
non-representative sampling or instrument failures. In one-class
SVM, the slack variables ξ = [ξ1, ξ2, · · ·, ξN] are used to lo-
cate some data points outside the decisive boundary. The num-
ber of points located outside the decisive boundary can be con-
trolled by the penalty factors of 1/Nυ. However, the normal
data points and outliers which have the same penalty factors in
the optimization problem in (1) lead to the shifting toward the
decisive boundary in the outliers trend. Tuning down the penalty
factors reduces the effects of outliers. Consequently, the classi-
fication accuracy of one-class SVM is badly affected by a part
of normal data points outside the decisive boundary. In order to
improve the one-class SVM with outliers, the adaptive penalty
factors are designed based on the fuzzy membership function of
a data point with outliers occurred. The adaptive penalty factors
based on fuzzy membership function describes the distances of
relationship between a data point and the center of the training

dataset. Calculating the center of the training data is applied the
total square loss center (tSL-center) model proposed by Liu et
al. [30]. In [31], the experiments presented the ability of tSL-
center to outliers. To solve Fuzzy one-class support vector ma-
chine problem, the SMO algorithm is applied to select two α
parameters, αa and αb and to optimize the objective value [32].
The output of abnormal detection phase is used to identify faults
in the fault detection phase.

B.1 One-class Support Vector Machine

Schölkopf et al. proposed a method for forming a deci-
sive boundary which has the maximum margin between the
origin and the normal data set. Considering the dataset of
X = [x1, x2, · · ·, xN] ∈ <NXM , which accommodates normal
data, an optimization model of the boundary is considered as
follows:

min
w,ξ,ρ

1

2
‖w‖2 +

1

Nυ

N∑
i=1

ξi − ρ

subject to w.Φ(xi) ≥ ρ− ξi, ξi ≥ 0,

(1)

where N is the number of the instances, υ ∈ (0, 1] is a regu-
larization parameter and ξ = [ξ1, ξ2, · · ·, ξN] is nonzero slack
variables penalized in the objection function. ρ and w are the
parameters which determine the decisive boundary and they are
target variables of the objection function. The decisive bound-
ary can be formulated as:

f(x) = sgn[w.Φ(x)− ρ]. (2)

The dataset of the classification problem is not always lin-
early separable in original space. However, with the Φ, the orig-
inal dataset can be linearly separable in high dimensional space.
However, it is difficult to find Φ in the practical application and k
kernel function representing the dot product form k(x,y) is nec-
essary to be known,

k(x, y) = Φ(x).Φ(y). (3)

The commonly used kernel functions follow as:
- Linear kernel: k(x, y) = xT y
- Polynomial kernel: k(x, y) = (xT − c)d

- RBF kernel: k(x, y) = exp(−‖x− y‖
2

2σ2
)

where c is constant, d is the degree of polynomial and σ is the
width of radial function (RBF) kernel.

Lagrangian theorem is used to solve the problem of optimiza-
tion in (1), and the dual problem becomes:

min
1

2

N∑
i=1

N∑
j=1

αiαjk(x, y)

subject to
N∑
i=1

αi = 1, 0 ≤ αi ≤
1

Nυ
,

(4)

where αi ≥ 0(i = 1, · · ·, N) is multiplier Lagrangian

404 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 5, OCTOBER 2020

Together with (3), the f(x) function (2) becomes:

f(x) = sgn

[
N∑
i=1

αik(xi, x)− ρ

]
. (5)

The f(x) function takes the value +1 in a region capturing
most of the data points and −1 elsewhere [28]. The α is ob-
tained by solving the optimization problem (4) and then ρ can
be given as:

ρ =
1

ns

Ns∑
i=1

N∑
j=1

αjk(xj , xi), (6)

where ns is the number of support vectors which satisfy ξi =

0 and 0 < αi <
1

Nυ
.

B.2 Fuzzy One-class Support Vector Machine

Supposing a set of training points with associated fuzzy mem-
bership are given

X = (x1, λ1), · · ·, (xN , λN). (7)

The optimization model of fuzzy one-class SVM is then for-
mulated as

min
w,ξ,ρ

1

2
‖w‖2 +

1

Nυ

N∑
i=1

λiξi − ρ

subject to w.Φ(xi) ≥ ρ− ξi, ξi ≥ 0,

(8)

in here 0 < λi ≤ 1 is a fuzzy membership to shows the level of
outlier influence for each training point xi, the slack variables
ξi describes a measure of error in OCSVM, and the term λiξi
describes a measure of error with different weighting [29].

The adaptive penalty factors related to the distances of rela-
tionship between xi and the center of the training dataset. The
distances can be calculated as

di = ‖xi −C‖2, (9)

in which C is the center of the training dataset. The C can be
expressed as

C =
N∑
i=1

kixi, (10)

where

ki =

1√
1 + 4‖xi‖2

N∑
j=1

1√
1 + 4‖xj‖2

. (11)

Substituting (10) into (9), we have

dj = ‖xi‖2 − 2xi

N∑
j=1

kjxj + kTHk. (12)

Using k(xi, xj) to replace xi.xj into (12)

dj = k(xi, xj)− 2
N∑
j=1

kjk(xi, xj) + kTHk, (13)

Short LongMedium

t2 t3t1
0

1

0.5

D
e
g
re

e
o
f

m
e
m

b
e
rs

h
ip

Distance d in (9)

Fig. 2. Membership function of distance.

where k = [k1, k2, · · ·, kN] with ki is

ki =

1√
1 + 4k(xi, xi)

N∑
j=1

1√
1 + 4k(xj , xj)

. (14)

In this study, we propose the adaptive penalty factors based
on fuzzy membership function to the distances of relationship
between xi and the center of the training dataset. Outliers have
smaller penalty factors λi than the normal data points if they are
far from the center. The distances are fuzzified by the triangular
membership function associated with three kinds of fuzzy sets
Fk, k = 1, 2, 3 in which variable languages of Short, Medium
and Long are measured as illustrated in Fig. 2.

MF1(xi) = max

{
xi − a2
a1 − a2

, 0

}
MF2(xi) = min

{
xi − a2
a1 − a2

,
xi − a2
a2 − a3

}
+ 1 (15)

MF3 = max

{
−xi − a2
a2 − a3

, 0

}
a1 = max

i=1,···,N
xi, a3 = min

i=1,···,N
xi, a2 = (a1 + a3)/2,

the membership function of the distances are calculated as fol-
lowed

gk(di) =
MFk(di)∑

k=1,2,3MFk(di)
, (i = 1, · · ·, N). (16)

In order to solve the optimization problem (8), Lagrange mul-
tipliers αi ≥ 0, γi ≥ 0(i = 1, 2, · · ·, N) are introduced and the
Lagrange equation is formed as:

L(w, ρ, ξ, α, γ) =
1

2
‖w‖2 +

1

Nυ

N∑
i=1

(λiξi − ρ)

−
N∑
i=1

αi[(w.Φ(xi))− ρ+ ξi]−
N∑
i=1

γiξi. (17)

KHIETet al..: A FAULT DETECTION AND DIAGNOSIS APPROACH FOR MULTI-TIER... 405

The partial derivatives of the Lagrangian equation with re-
spect to w, ρ and ξ are set to zero:

∂L

∂w
= w −

N∑
i=1

αiΦ(xi) = 0,

⇒ w =
N∑
i=1

αiΦ(xi) (18)

∂L

∂ρ
= 1−

N∑
i=1

αi = 0

⇒
N∑
i=1

αi = 0, (19)

∂L

∂ξ
= λi

1

Nυ
− αi − γi = 0

⇒ αi = λi
1

Nυ
− γi and αi ≤ λi

1

Nυ
. (20)

Substituting (18) (20) into (17) and its dual form is presented
as:

min
α

1

2

N∑
i,j=1

αiαjk(xi, xj)

subject to
N∑
i=1

αi = 1, 0 ≤ αi ≤ λi
1

Nυ
,

(21)

B.3 SMO Algorithm for Fuzzy One-class Support Vector Ma-
chine

By breaking a large quadratic problem into a series of size
two quadratic problems, the objective function of (21) can be
rewritten as:

L(αa, αb) =
1

2
αa

2k(xa, xa) +
1

2
αb

2k(xb, xb)

+ αaαbk(xa, xb)

+
∑
i=a,b

αi

N∑
j=1,j 6=a,b

αbk(xi, xj) + L′, (22)

where L′ is a term of strictly constant with respect to αa, αb.
Due to the equality constraints of optimization problem, we let

s∗ = α∗a + α∗b = αa + αb (23)

We get

αa = s∗ − αb. (24)

Substituting (24) into (22)

L(αb) =
1

2
(s∗ − αb)2k(xa, xa) +

1

2
α2
bk(xb, xb)

+(s∗ − αb)αbk(xa, xb) + αb

N∑
j=1,j 6=a,b

αjk(xb.xj)

+(s∗ − αb)
N∑

j=1,j 6=a,b

αjk(xa.xj) + L′. (25)

The partial derivatives of the Lagrangian equation with re-
spect to αb

∂L(αb)

∂αb
= (αb − s∗)k(xa, xa) + αb(xb, xb)

+(s∗ − 2αj)k(xa, xb) +
N∑

j=1,j 6=a,b

αjk(xb, xj)

−
N∑

j=1,j 6=a,b

αjk(xa, xj).

(26)

Let
∂L(αb)

∂αb
= 0, we get

αb =η[s∗(k(xa, xa)− k(xb, xb))

−
N∑

j=1,j 6=a,b

αjk(xb, xj)

−
N∑

j=1,j 6=a,b

αjk(xa, xj)], (27)

where

η =
1

k(xa, xa) + k(xb, xb)− 2k(xa, xb)
. (28)

Let

f̄ =

N∑
i=1

αik(xi, x)− ρ, (29)

we get

αb =η[s∗(k(xa, xa)− k(xb, xb))− f̄∗(b) + f̄∗(a)

+ (s∗ − αb)k(xb, xa) + α∗bk(xb, xb)

− (s∗ − α∗b)k(xa, xa)− α∗bk(xa, xb)]

=η[f̄(a)− f̄(b) + α∗b(k(xb, xb) + k(xa, xa)− 2α∗b]

=α∗b + η[f̄∗(a)− f̄∗(b)]. (30)

The (30) is the rule for updating αb.
To ensure upper bound and lower bound of αa, αb with 0 ≤

αa ≤ λi
1

Nυ
, 0 ≤ αb ≤ λi

1

Nυ
, we use:

• L = max(s∗ − λi
1

Nυ
, 0)

• H = min(λi
1

Nυ
, S∗)

Karush-Kuhn-Tucker (KKT) condition is used to check the
optimization of SMO. Before each iteration, KKT is used to
check whether αi needs updating or not including:
• αi(ω.Φ(xi))− ρ+ ξi = 0
• γiξi = 0
Regarding an optimal solution, KKT includes three cases:

* Case 1 αi = 0

We have γi = λi
1

Nυ
− αi → γi 6= 0 → ξi = 0

Therefore, αi(ω.Φ(xi))−ρ+ ξi > 0 then αi(ω.Φ(xi))−ρ > 0

406 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 5, OCTOBER 2020

→ f̄(xi) > 0

* Case 2 0 < αi < λi
1

Nυ

We have γi = λi
1

Nυ
− αi → γi 6= 0 → ξi = 0

Therefore, αi(ω.Φ(xi))−ρ+ ξi > 0 then αi(ω.Φ(xi))−ρ = 0
→ f̄(xi) = 0

* Case 3 αi = λi
1

Nυ

We have γi = λi
1

Nυ
− αi → γi = 0 → ξi 6= 0

Therefore, αi(ω.Φ(xi))−ρ+ ξi > 0 then αi(ω.Φ(xi))−ρ < 0
→ f̄(xi) < 0

From the three cases above, a αi is optimized if one of the
following three conditions is fulfilled.
• αi = 0 ∧ f̄(xi) > 0

• 0 < αi < λi
1

Nυ
∧ f̄(xi) = 0

• αi = λi
1

Nυ
∧ f̄(xi) < 0

We consider the equality constraint condition of (21), then the
Lagrange function can be performed as following:

L̄ =

N∑
i,j=1

αiαjk(xi, xj) + δ(1−
N∑
i=1

αi). (31)

The Lagrange multiplier δ = ρ with ρ in (29), so the (31) can
be presented as following:

L̄ =
N∑

i,j=1

αiαjk(xi, xj) + ρ(1−
N∑
i=1

αi). (32)

In the (32), gradient of objective function with αb is demon-
strated as

∂L̄

∂αb
=

N∑
i=1

αik(xi, xb)− ρ = f̄(xb). (33)

For the target function, the greater absolute value of the gradi-
ent is, the larger the function oscillation becomes when the opti-
mal variables change.The first optimal variable is chosen based
on this criterion. For others, the criterion of how to make the
oscillation variables greatest which is suggested by Scholkopf is
taken into consideration. Therefore, the two-step-heuristic strat-
egy for selecting value pairs is calculated as following:
• Firstly,the first variable of αb is chosen by browsing

through the entire training and being checked to see if any
of the samples violate KKT and create Max(|f̄(xb)|).

• Secondly, the second variable of αa is continually counted
by maximizing the steps performed during the optimization
process of Max(|f̄(xb)− f̄(xa)|).

C. Fault Detection with EWMA Chart

In this section, the fault detection model, named EWMA-
FOCSVM, is modeled by using the output of the abnormal de-
tection model and EWMA chart. The decision value of f(x) in

Algorithm 1 Abnormal detection - Training model with SMO
Input:
Data instances: X = [x1, · · ·, xn]T

Output:
The abnormal detection model

1: Initialization αold
a , αold

b

2: while ¬KKTCondition do
3: Choose two parameter αa,αb
4: Calculate αnew

b by equation (30)
5: if αnew

b > H then
6: αnew

b = H
7: end if
8: if αnew

b < L then
9: αnew

b = L
10: end if
11: Calculated αnew

a = αold
a + αold

b − αnew
b

12: Calculated ρ follow equation (6)
13: end while

Training

 data

Training

data 1

Training

ata 2

Training

ata n

........

Random ree

lgorithm

Random ree

lgorithm

Random ree

lgorithm

Classifier 1

Classifier 2

Classifier n

Result 1

Result n

Result 2

Result

Test data

........

Fig. 3. Random Forest feature selection model.

(5) will be stable in a normal situation. Otherwise, it will fluctu-
ate much when faults are triggered. In dynamic cloud environ-
ment, the fluctuation of decision values need to be figured out
if they are stable or not. To do this, these values are monitored,
and then an alarm is set when the current values are inconsistent
with the past ones. For example, Web applications run normally
in most cases, but they become abnormal when there is a huge
of sudden users’ requests at the same time or the systems are at-
tacked by “hackers”. Thus, a control chart is needed to track and
calculate the stability of the decision values. In statistical qual-
ity control, the EWMA chart is used to monitor variables using
process’s entire output [38]. Each data point in the EWMA rep-
resents a moving average of points. This chart is appropriate for
detecting a small shift in the process. In addition, EWMA has
lower computational cost than the abrupt change detection tech-
nologies [27]. Furthermore, EWMA requires no knowledge for
fault detection based on thresholds. The output of fault detec-

KHIETet al..: A FAULT DETECTION AND DIAGNOSIS APPROACH FOR MULTI-TIER... 407

tion model helps to label training data in fault diagnosis phase.
The decisive values f(x) in 5 are measured with EWMA in

fault detection. EWMA formula is as following:

Zi = τfi + (1− τ)Zi−1. (34)

where 0 < τ < 1 is the smoothing constant, and Zi is the
EWMA statistic for the ith, fi is the ith decisive value, and Z0

is the average value of the initial decisive values:

UCLx(i) = µz + Lzσz

LCLx(i) = µz − Lzσz,
(35)

where UCL is the upper control limit, LCL is the lower control
limit. When Zi < LCLx(i)orZi > UCLx(i) , an alarm of fault
will be set in the system.
D. Fault Diagnosis with Feature Selection Method

In this section, the fault diagnosis model named RFE-RF is
presented by adopting a feature selection method. Fault roots
are automatically located by analyzing the online data moni-
tored before and after the faults occurred. Faults play key roles
in increasing the metrics fluctuation, so identifying fluctuation
metrics is vital to find the fault roots. There are many types
of metrics in a monitored sample. However, the metrics caus-
ing faults contain high fluctuations are those need fixing in fault
tolerance. And then, the result of high fluctuation metrics posi-
tioning will be abstracted to the feature selection problem. The
training dataset for the fault diagnosis problem is built based on
the output of fault detection phase. After detecting faults, the
online monitoring data is labeled as fault and as normal before
faults occur. However, the training dataset of this problem is
usually unbalanced because there are more normal samples than
the faulty ones. In unbalanced training dataset cases, the RF al-
gorithm was proved suitability [33], [39]. RF is an extended of
decision tree which classifies data by building a number of clas-
sifiers (decision trees) to reach high accuracy. The classifiers
are constructed for a given task, and then they are combined to
a new classifier. However, to improve the performance of RF
algorithm, the RFE method [42], [43] which uses RF algorithm
on each iteration is applied to rank the suspicious metrics related
to faults.

The fault diagnosis problem is shown as follows:

L = F(Normal, Fault) (36)

where L is set of suspicious metrics, Fault is fault dataset,
Normal is the normal dataset and F is a feature selection
method. As shown in Table 1, the samples are labeled Normal
before fault detecting at 14:43:30, and the samples after detect-
ing named Fault.

As shown in Fig. 3, training data are sampled randomly into
n groups from Training data 1, 2, · · ·, n in order to form deci-
sion trees of Classifier 1, 2, · · ·, n by using the decision tree al-
gorithm. These decision trees are then combined into random
forest models which are applied to classify data into specific
purposes named final result. Random training data is one way
of reducing the extent of this imbalance [40].

The fault diagnosis algorithm is showed in Alg.2 in which
the features are ranked by RF algorithm. Given L =
{(Xi, Yi)

N
i=1|Xi ∈ RM , Yi ∈ {Normal, Fault}}, where Xi

are predictor variables, Yi is a class of feature, N is the num-
ber of instances in training dataset, M is the number of features.
Each tree is built from a bagged sample set which is two-third of
the samples in L (called in-bag sample). The rest of the samples
in L, called out-of-bag (OOB), are used to estimate the predic-
tion error. The prediction of random forest with K is:

Ŷ = V{Ŷ k}K1 (37)

where Ŷ k is the prediction of kth tree, and V is voting method.

E. Fault Detection and Diagnosis Scheme

In this section, the fault detection and diagnosis scheme in-
cluding training phase and online processing phase is proposed
by using the abnormal detection model, fault detection model,
and fault diagnosis model. In the training phase, there are four
steps including data normalizing, membership function calcu-
lating, abnormal detection model solving, and ρ parameter cal-
culating. There are five steps in the online processing phase
when a new sample arrives. These steps include data normal-
izing, the boundary decision calculating, fault detection based
on EWMA-FOCSVM model, locating fault roots when faults
occur, and training dataset will be updated in the next time.

E.1 Training Phase

Given a training data set X, the model of fuzzy one-class
SVM can be formulated as:
1) The columnsX = [x1, · · ·, xN]T ∈ R(NXM) are normalized
to zero mean and unit variance. By using PCA, the normalized
data set obtain its score vector T:

T = XPpc = [t1, · · ·, tN]T ∈ RNX l, (38)

where Ppc = [p1, . . . , pl] ∈ R(NX l) represents the principal
component matrix.
2) Calculate the crisp out of the data points based on member-
ship function fuzzy logic gk(di)
3) Train FOCSVM model based on T

min
α
αTHα

subject to
N∑
i=1

αi = 1, 0 ≤ αi ≤ yi
1

Nυ
,

(39)

where

Hij = k(ti, tj) = Φ(ti).Φ(tj). (40)

4) Calculate the constant ρ as

ρ =
1

ns

ns∑
i=1

n∑
j=1

αjk(ti, tj), (41)

where ti are the support vectors with ξi = 0, ns is the number
of support vectors, tj denote the score vectors.

408 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 5, OCTOBER 2020

Table 1. Dataset for feature selection problem.
Time CPU idle (%) Memory used (MiB) Page in (kBs) Inbound (kBs) ... Label

...
14:42:30 95.85 548 343 370 ... Normal
14:42:45 97.5 551 352 383 ... Normal
14:43:00 97 549 348 371 ... Normal
14:43:15 80.8 548 360 372 ... Normal
14:43:30 82 551 398 360 ... Fault
14:43:45 88 549 380 332 ... Fault

...

Algorithm 2 Fault diagnosis - Feature rank with Random Forest
Input:
Data instances: X = [x1, · · ·, xn]T

Label instances: Y = [y1, · · ·, yn]T , yi ∈ {Normal, Fault}
Training dataset: L = {(Xi, Yi)

N
i=1}

The number of trees: K
The size of the subspace: S
Output:
Feature ranked list
1: for k ← 1 to K do
2: Draw a bagged subset of sample Lk from L
3: while stopping criteria is not met do
4: Select randomly S features
5: for s← 1 to S do
6: Compute the decrease in the node impurity
7: end for
8: Choose the feature which decreases the impurity most

and the node is divided into children nodes
9: end while
10: end for
11: Combine the K trees to a random forest model

E.2 Online Processing Phase

The online computation for fault detection when a new sam-
ple arrives, i.e. x ∈ R1XM , consists of:
1) The score vector t is obtained by normalizing the new sample
with the mean and variance of X

t = xPpc ∈ R1X l. (42)

2) Calculate the boundary decision function

F (t) = −
ns∑
i=1

αik(ti, t) + ρ, (43)

where ti are the support vectors with xii = 0 , ns is the number
of support vectors.
3) Using EWMA-FOCSVM model to detect a fault to F (t)
4) Using RFE-RF model to ranking suspicious metrics after de-
tecting fault.
5) Updating training dataset after detecting fault.

IV. EVALUATIONS

A. Environment

Table 2. Confusion matrix.

Actual/Predict Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Fig. 4. TPC-W e-commerce application system.

To evaluate methods of detecting and identifying faults, TPC-
W1 - open source e-commerce application on service of cloud
computing- was implemented. TPC-W is a benchmark for E-
commerce web, including three main components: (i) Web Ap-
plication System Under Test (STU); (ii) workload generator
and send to STU; and (iii) performance monitoring component
for SUT. TPC-W allows simulation of three different types of
web interactions: shopping (WIPS), web browsing (WIPSb) and
web-based ordering (WIPSo). TPC-W uses the concept of an
Emulated Browsers (EB) group to make requests to the SUT. EB
simulates users interacting with SUT using a browser by send-
ing and receiving HTML content through HTTP. The number
of EB used for a test is determined by the size and ratio factor
of the SUT, which is constant throughout the test. The work-
load generated by EB is indicated by the navigation patterns in a
session and its workload intensity. TPC-W defines user session
duration as the time elapsed between the first transaction made
by an EB and the current time.

Fig. 4 demonstrates four VMs which run Ubuntu 18.04 with 1
VCPU and 2 GB RAM, 40GB Disk. We deploy TPC-W multi-
tier web application benchmark on 4 processing nodes includ-
ing 01 load balancer node (LB) based on NGINX2 that re-
ceives requests from users and dispatches to web server with

1http://www.tpc.org/tpcw/
2https://www.nginx.com/

KHIETet al..: A FAULT DETECTION AND DIAGNOSIS APPROACH FOR MULTI-TIER... 409

0 100 200 300 400 500 600

0
.0

0
.5

1
.0

Fault detection for LB

Time (s)

F

Fig. 5. Threshold-FOCSVM fault detection for LoadBalancer.

RoundRobin load balancing algorithm; 02 nodes as web-server
(Web1, Web2); 01 node serves as database server (DB). The sys-
tem parameters of the processing nodes are monitored via the
Prometheus3 tool. Prometheus has a central component to pro-
cess, called the Master Server, to collect data and query them,
and a Node Exporter to export the system index follow the for-
mat of Prometheus.

The Prometheus monitoring tool is used to collect system pa-
rameter data for each processing node. Types of faults like [34]
are put into the system with the method as in [35]–[37]. The
system will be injected with two batches of faults including:
• Firstly, the faults are injected from 420th to 441st by in-

creasing suddenly concurrent users from 20 to 200. This
fault injection leads to the increase of Network traffic, lack-
ing of Memory, and Disk I/O access.

• Secondly, from 485th to 512th, an endless loop in the
source code of multi-tier application is triggered. This fault
software leads to stack overflow.

B. Evaluating Fault Detection

In order to evaluate the proposed method, Sensitivity,
Specificity, and Accuracy are taken into consideration. Ta-
ble 2 shows accuracy measurement of the model which are used
to calculate these criteria. The formulas of these criteria are cal-
culated as following:

Sensitivity =
TP

TP + FN
(44)

Specificity =
TN

TN + FP
(45)

3https://prometheus.io/

0 100 200 300 400 500 600

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fault detection for WEB1

Time (s)
F

Fig. 6. Threshold-FOCSVM fault detection for WEB1.

0 100 200 300 400 500 600

0
.0

0
.5

1
.0

Fault detection for WEB2

Time (s)

F

Fig. 7. Threshold-FOCSVM fault detection for WEB2.

Accuracy =
TP

TP + FP + TN + FN
, (46)

where:
• TP : Shows the number of instances whose actual label is
Fault and the fault detection model also correctly recog-
nizes this label.

• TN : Shows the number of instances whose actual label is
Normal and the fault detection model also correctly rec-

410 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 5, OCTOBER 2020

0 100 200 300 400 500 600

0
.0

0
.5

1
.0

Fault detection for DB

Time (s)

F

Fig. 8. Threshold-FOCSVM fault detection for DB.

Group

G
ro

u
p

 S
u

m
m

a
ry

 S
ta

ti
s
ti
c
s

1 33 70 112 159 206 253 300 347 394 441 488 535 582

0
.0

0
.5

1
.0

EWMA Chart

for F[1:300] and F[301:600]

LCL

UCL

Calibration data New data

Number of groups = 600

Center = 0.01210371

StdDev = 0.1101281

Smoothing parameter = 0.2

Control limits at 10*sigma

No. of points beyond limits = 14

Fig. 9. EWMA-FOCSVM fault detection for Loadbalancer.

ognizes this label.
• FP : Shows the number of instances whose actual data is
Normal but the fault detection model has mistakenly iden-
tified it as Fault.

• FN : Shows the number of records whose actual data is
Fault but the fault detection model has mistakenly identi-
fied it as Normal.

The value of decisive boundary F (t) in (43) is used to detect

Group

G
ro

u
p

 S
u

m
m

a
ry

 S
ta

ti
s
ti
c
s

1 33 70 112 159 206 253 300 347 394 441 488 535 582

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

EWMA Chart

for F[1:300] and F[301:600]

LCL

UCL

Calibration data New data

Number of groups = 600

Center = 0.501084

StdDev = 0.1052469

Smoothing parameter = 0.38

Control limits at 11*sigma

No. of points beyond limits = 33

Fig. 10. EWMA-FOCSVM fault detection for WEB1.

Group

G
ro

u
p

 S
u

m
m

a
ry

 S
ta

ti
s
ti
c
s

1 33 70 112 159 206 253 300 347 394 441 488 535 582

−
0

.5
0

.0
0

.5
1

.0

EWMA Chart

for F[1:300] and F[301:600]

LCL

UCL

Calibration data New data

Number of groups = 600

Center = −0.02077636

StdDev = 0.1328905

Smoothing parameter = 0.2

Control limits at 10*sigma

No. of points beyond limits = 48

Fig. 11. EWMA-FOCSVM fault detection for WEB2.

faults by setting up a threshold in [15]. Figs. 5 to 8 show that
the faults are detected when F (x) > 0.7. To evalutate the per-
formance of Threshold-FOCSVM fault detection, the value of
decisive boundary F (t) are used as thresholds of receiver oper-
ating characteristic (ROC) curve as shown in Fig. 13. The ROC
curve is created by plotting the true positive rate (TPR) against
the false positive rate (FPR) at various threshold settings. In
machine learning, TPR is also known as sensitivity and FPR

KHIETet al..: A FAULT DETECTION AND DIAGNOSIS APPROACH FOR MULTI-TIER... 411

Group

G
ro

u
p

 S
u

m
m

a
ry

 S
ta

ti
s
ti
c
s

1 33 70 112 159 206 253 300 347 394 441 488 535 582

−
0

.5
0

.0
0

.5
1

.0

EWMA Chart

for F[1:300] and F[301:600]

LCL

UCL

Calibration data New data

Number of groups = 600

Center = 0.2448451

StdDev = 0.1558072

Smoothing parameter = 0.25

Control limits at 10*sigma

No. of points beyond limits = 36

Fig. 12. EWMA-FOCSVM fault detection for DB.

is (1 − Specificity). The loss caused by inaccurate fault de-
tection of the prediction model plays key role in determining if
Sensitivity or Specificity should be paid more attention to.
In the fault detection model, these loss is counted by the cost
of fault tolerance strategy in the later stage. A model with high
Sensitivity may prevent the system from faults and it is pre-
dicted to be false negative which cause lots of damage if the
system possesses no solutions for fault tolerance. A model with
high Specificity allows to avoid cases of false positive in which
the system has no fault while it is supposed to. Consequently,
these false positives cause unnecessarily avoidable damages in
the later stage of fault tolerance.

EWMA chart is used to monitor the fluctuation of Zi in
(34) and a fault alarm goes off when Zi < LCLx(i) or Zi >
UCLx(i). As shown from Figs. 9 to 12, the results demonstrate
that the values of decisive boundary function in (41) are nearly
between the LCL and UCL of EWMA control chart when the
faults are not triggered. However, to those which are over the
UCL of EWMA are classified into faults. For example, the faults
are triggered in the 420th sample, but the fault detection is raised
in the 423rd for the first fault injection which lasts from 420th
to 441st. Similarly, fault detection is raised in the 488th sample
for the second fault injection (from 485th to 512th).

Fig 14 illustrates that the fault detection accuracy of EWMA-
FOCSVM and the thresholds of Threshold-FOCSVM. EWMA-
FOCSVM sees higher results in all criteria compared including
LB, WEB1, WEB2 and DB.

C. Evaluating Fault Diagnosis

At the first process, the suddenly increasing of concurrent
users causes a shortage of memory in both LB and DB, net-
work faults in WEB 1 and Context Switch Faults at WEB 2. At

ROC curve of FOCSVM

False positive rate
T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

LB

WEB1

WEB2

DB

Fig. 13. ROC curve of fuzzy one-class support vector machine.

LB WEB1 WEB2 DB

Bechmarking accuracy

A
c
c
u
ra

c
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

EWMA−FOCSVM Threshold−FOCSVM

Fig. 14. Benchmarking accuracy of the fault detection model EWMA-
FOCSVM and Threshold-FOCSVM.

the second fault injection, the endless loop fault of multi-tier ap-
plication causes CPU hog in both LB and WEB 2, I/O fault in
WEB 1 and lack of memory in DB. Both of two case, memory
is an importance resource in DB. Therefore, it can be concluded
that, this type of fault due to lack of resources requires proper
VM types for multi-tier application to meet the quality of service
(QoS).

The fault diagnosis algorithm is evaluated by calculating the
errors of RF predictor which is calculated as following:

Error =
1

NOOB

NOOB∑
i=1

E(Y, ŶOOB), (47)

where NOOB is OOB’s sample size, E is an error function,
ŶOOB is calculated in (37). Fig. 15 illustrates the decreasing of

412 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 5, OCTOBER 2020

0 100 200 300 400 500

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

Error of Random Forest

trees

E
rr

o
r

LB

WEB1

WEB2

DB

Fig. 15. Random Forest algorithm errors correspond to the trees quantity.

2 4 6 8 10

0
.1

0
0

.1
2

0
.1

4
0

.1
6

0
.1

8

Metrics

R
M

S
E

LB

WEB1

WEB2

DB

Fig. 16. Root Mean Square Error of RFE-RF.

errors in Random Forest algorithm when increasing trees. The
proportion of errors has high fluctuation in the fifty first trees.
The error rate keeps stable when trees reach from 100. And, the
error is almost convergent in 500 trees.

The model fit is evaluated by using Root Mean Square Error
(RMSE) which is calculated as following:

RMSE =

√∑N
i=1 (YPredicted − YActual)

2

N
, (48)

where N is sample size.
The Bagged decision trees algorithm [44], [45] which is

among ensemble-based algorithms like as RF algorithm is ap-

2 4 6 8 10

0
.1

0
0

.1
2

0
.1

4
0

.1
6

0
.1

8

Metrics

R
M

S
E

LB

WEB1

WEB2

DB

Fig. 17. Root Mean Square Error of RFE-BDT.

RFE−BDT RFE−RF

0
.1

0
0

.1
1

0
.1

2
0

.1
3

0
.1

4
0

.1
5

0
.1

6
0

.1
7

Algorithms

R
M

S
E

Fig. 18. Root Mean Square Error’s Boxplot of RFE-RF and RFE-BDT.

plied to a baseline algorithm. The Bagged decision trees are
bagged ensembles where each model is a decision tree. Com-
pared to Bagged decision trees which require all features for a
node splitting, Random forests split features into subsets ran-
domly and the best split subset is selected for each node split-
ting. The unbalanced dataset which instances are labeled by
using EWMA-FOCSVM fault detection method in the two in-
jection faults is used to compare performance of Random Forest
and Bagged Decision Trees. Figs. from 16 to 17 show the results
of RFE-RF and RFE-BDT method which present the relation-
ship between RMSE. The RMSE minimum values of REF-RF
are lower than REF-BDT at each metric of LB, WEB1, WEB2,
and DB. As shown in Fig. 18, generally, the median RMSE of

KHIETet al..: A FAULT DETECTION AND DIAGNOSIS APPROACH FOR MULTI-TIER... 413

RFE-RF is lower than of RFE-BDT. However, the range RMSE
of RFE-RF is larger than RFE-BDT. Therefore, the exploration
ability of Random Forest is better than Bagged Decision Trees
and proves the robust of Random Forest against unbalanced
training data.

V. CONCLUSIONS

In this paper, a fault detection and diagnosis approach is pro-
posed for multi-tier web application in infrastructure cloud com-
puting. This problem is addressed through three-step approach,
where we first proposed the Fuzzy one-class support vector
machine model to detect abnormal data based on the decisive
boundary. Then, the exponentially weighted moving average
chart which monitors the decisive boundary value of FOCSVM
model is applied to detect faults for multi-tier web application.
Finally, the Random Forest ranking feature algorithm is applied
to determine if suspicious metrics are the root of faults. The
performance fault detection and diagnosis approach is evaluated
by comparing it with baseline methods. In fault detection prob-
lem, the accuracy of EWMA-FOCSVM is higher than one in
Threshold-FOCSVM. In order to compare Random Forest algo-
rithm and Bagged Decision Trees in term of ranking features,
Recursive Feature Elimination method with each iteration us-
ing Random Forest or Bagged Decision Trees is applied. The
experiment result shows the Root Mean Square Error values of
Recursive Feature Elimination with Random Forest algorithm is
lower one in Bagged Decision Trees. Also, the exploration abil-
ity of Random Forest algorithm in unbalanced training data is
higher Bagged Decision Trees. However, more study should be
done on byzantine fault for further research.

REFERENCES
[1] A. D. Josep, R. Katz, and A. Konwinski, G. Lee, D. Patterson, A. Rabkin,

A. Rapkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” ACM
Commun., vol. 53, no. 4, pp. 50–58, 2010.

[2] D. Oppenheimer, A. Ganapathi, and D. .A. Patterson, “Why do Internet
services fail, and what can be done about it?,” in Proc. USENIX USITS,
2003.

[3] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surveys, vol. 41, no. 3, pp. 15, 2009.

[4] E. Sindrilaru, A. Costan, and V. Cristea, “Fault tolerance and recovery in
grid workflow management systems,” in Proc. CISIS, 2010, pp. 475–480.

[5] Y. Zhang, A. Mandal, C. Koelbel, and K. Cooper, “Combined fault tol-
erance and scheduling techniques for workflow applications on computa-
tional grids,” in Proc. IEEE/ACM CCGRID, 2009, pp. 244–251.

[6] D. C. Plummer, T. J. Bittman, T. Austin, D. W. Cearley, and D. M. Smith,
“Cloud computing: Defining and describing an emerging phenomenon,”
Gartner, vol. 17, June 2008.

[7] G. Jiang, H. Chen, and K. Yoshihira, “Modeling and tracking of transac-
tion flow dynamics for fault detection in complex systems,” IEEE Trans.
Dependable Secure Comput., vol. 3, no. 4, pp. 312–326, 2006.

[8] H. Kriegel, P. Kröger, J. Sander, A. Zimek„ “Density-based cluster-
ing,” Wiley Interdisciplinary Reviews: Data Mining Knowledge Discovery,
vol. 1, no. 3, pp. 231–240, 2011.

[9] B. Tang and H. He, “A local density-based approach for outlier detection,”
Neurocomputing, vol. 241, pp. 171–180, 2017.

[10] S. Agrawal, J. Agrawal, “Survey on anomaly detection using data mining
techniques,” Procedia Comput. Science, vol. 60, pp. 708–713, 2015.

[11] J. Han, J. Pei, and M. Kamber, “Data mining: Concepts and techniques,”
2011.

[12] J. C. Platt et al., “Estimating the support of a high-dimensional distribu-
tion”, Technical Report MSR-T R-99–87, Microsoft Research (MSR) 1999.

[13] D. M. Tax and R. P. Duin, “Support vector data description”, Machine
learning vol. 54, no. 1, pp. 45–66, 2004.

[14] Q. Leng, H. Qi, J. Miao, W. Zhu, and G. Su, “One-class classification with
extreme learning machine,” Mathematical problems engineering, 2015.

[15] S. Yin, X. Zhu, and C. Jing, “Fault detection based on a robust one class
support vector machine,” Neurocomputing, vol. 145, pp. 263–268, 2014.

[16] R. Jhawar and V. Piuri, “Fault tolerance and resilience in cloud computing
environments,” Comput. Information Security Handbook, pp. 165–181,
2017.

[17] A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, and E. Talbi, “To-
wards understanding uncertainty in cloud computing resource provision-
ing,” Procedia Comput. Science, vol. 51, pp. 1772–1781, 2015.

[18] T. Wang, W. Zhang, C. Ye, J. Wei, H. Zhong, and T. Huang, “FD4C:
Automatic fault diagnosis framework for Web applications in cloud com-
puting,” IEEE Trans. Systems Man Cybernetics: Systems, vol. 46, no. 1,
pp. 61–75, 2015.

[19] T. Wang, J. Xu, W. Zhang, Z. Gu, H. Zhong, “Self-adaptive cloud monitor-
ing with online anomaly detection,” Future Generation Computer Systems,
vol. 80, pp. 89–101, 2018.

[20] A. Tchana, L. Broto and D. Hagimont, “Fault tolerant approaches in cloud
computing infrastructures,” in Proc. ICAS), pp. 42–48, 2012.

[21] M. Lin, Z. Yao, F. Gao, and Y. Li, “Data-driven Anomaly Detection
Method for Monitoring Runtime Performance of Cloud Computing Plat-
forms,” Int. J. Hybrid Inf. Technol., vol. 9, no. 2, pp. 439–450, 2016.

[22] J. Pinto, P. Jain, and T. Kumar, “Hadoop distributed computing clusters for
fault prediction,” in Proc. ICSEC, 2016, pp. 1–6.

[23] M. Smara, M. Aliouat, A. K.. Pathan, and Z. Aliouat, “Acceptance test for
fault detection in component-based cloud computing and systems,” Future
Generation Comput. Systems, vol. 70, pp. 74–93, 2017.

[24] C. Pham, L. Wang, B. C. Tak, S. Baset, C. Tang, Z. Kalbarczyk, and
R. K. Iyer, “Failure diagnosis for distributed systems using targeted fault
injection,” IEEE Trans. Parallel Distributed Systems, vol. 28, no. 2,
pp. 503–516, 2016.

[25] P. Zhang, S. Shu, and M. Zhou, “An online fault detection model and
strategies based on SVM-grid in clouds,” IEEE/CAA J.Automatica Sinica,
vol. 5, no. 2, pp. 445–456, 2018.

[26] T. Wang, J. Wei, W. Zhang, H. Zhong, and T. Huang, “Workload-aware
anomaly detection for web applications,” J. Systems Software, vol. 89,
pp. 19–32, 2014

[27] T. Wang, W. Zhang, C. Ye, J. Wei, H. Zhong, and T. Huang, “FD4C:
Automatic fault diagnosis framework for Web applications in cloud com-
puting,” IEEE Trans. Systems, Man, Cybernetics: Systems, vol. 46, no. 1,
pp. 61–75, 2015.

[28] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional distri-
bution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471, 2001.

[29] C.-F. Lin and S.-D. Wang, “Fuzzy support vector machines,” IEEE Trans.
Neural Netw., vol. 13, no. 2, pp. 464–471, 2002.

[30] M. Liu, B. C. Vemuri, S.-I. Amari, and F. Nielsen, “Total Bregman diver-
gence and its applications to shape retrieval,” in Proc. IEEE CVPR, 2010,
pp. 3463–3468.

[31] S. Yin and G. Wang, “A modified partial robust M-regression to improve
prediction performance for data with outliers,” in Proc. IEEE ISIE, 2013,
pp. 1–6.

[32] J. Jiong, Z. Hao-ran, “A fast learning algorithm for One-Class Support
vector machine,” in Proc.ICNC, 2017, pp. 19–23.

[33] T. M. Khoshgoftaar, M. Golawala, and J. V. Hulse, “An empirical study of
learning from imbalanced data using random forest,” in Proc. IEEE ICTAI,
2007, pp. 310–317.

[34] , S. Pertet and P. Narasimhan, “Causes of failure in web applications,”
Technical Report CMU-PDL-05-109, Carnegie Mellon University, 2005.

[35] G. Casale, N. Mi, and E. Smirni, “Model-driven system capacity planning
under workload burstiness,” IEEE Trans. Comput., vol. 59, no. 1, pp. 66–
80, 2009.

[36] H. Kang, H. Chen, and G. Jiang, “PeerWatch: a fault detection and di-
agnosis tool for virtualized consolidation systems,” in Proc. ICAC, 2010,
pp. 119–128.

[37] G. Jiang, H. Chen, K. Yoshihira, and A. Saxena, “Ranking the importance
of alerts for problem determination in large computer systems,” Cluster
Comput., vol. 14, no. 3, pp. 213–227, 2011.

[38] Sematech, NIST NIST SEMATECH, 2006.
[39] A. Sîrbu and O. Babaoglu, “Towards data-driven autonomics in data cen-

ters,” in Proc. ICCAC, 2015, pp. 45–56.
[40] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing,

“Learning from class-imbalanced data: Review of methods and applica-
tions”, Expert Systems Applications, vol. 73, pp. 220–239, 2017.

[41] A. Javadpour, S. K. Abharian, and G. Wang, “Feature selection and in-
trusion detection in cloud environment based on machine learning algo-
rithms”, in Proc. IEEE ISPA/IUCC, 2017, pp. 1417–1421.

414 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 5, OCTOBER 2020

[42] B. F. Darst, K. C. Malecki, and C. D. Engelman, “Using recursive feature
elimination in random forest to account for correlated variables in high
dimensional data”, BMC genetics, vol. 19, no. 1, p. 65, 2018.

[43] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, “Gene selection for cancer
classification using support vector machines”, Machine learning, vol. 46,
no. 1-3, pp. 389–422, 2002.

[44] I. Guyon, S. Gunn, M. Nikravesh, L. A. Zadeh, “Feature extraction: foun-
dations and applications”, 2008.

[45] M. A. Munson and R. Caruana, “Joint European Conference on Machine
Learning and Knowledge Discovery in Databases”, Machine learning,
vol. 46, pp. 144–159, 2009.

Khiet Thanh Bui received B.Sc. degree on Soft-
ware Engineering from Ho Chi Minh of Technology
in 2010. He acquired his Master’s degree from Posts
and Telecoms Institute of Technology in Ho Chi Minh
in 2012. He is working at Faculty of Engineering-
Technology, Thu Dau Mot University as a lecture.
At present, he is a Ph.D candidate at Computer Sci-
ence, Faculty of Computer Science and Engineering,
Ho Chi Minh City University of Technology, VNU-
HCM. His research focuses on cloud computing.

Len Van Vo received B.Sc. degree on computer sci-
ence from VNUHCM-University of Science in 2015.
He is studying for a master’s degree at Faculty of En-
gineering -Technology, Thu Dau Mot University, Binh
Duong, Vietnam. His research area is fault detection
in cloud computing

Canh Minh Nguyen received B.Sc. degree on Infor-
mation Technology from SaiGon University in 2011.
At present, he works at Key Learning Facilities Cen-
ter in Saigon university and is studying for a master’s
degree. His research focus includes cloud computing
security and approximate algorithms.

Tran Vu Pham is an Associate Professor and also
the Dean of the Faculty of Computer Science and En-
gineering, Ho Chi Minh City of Technology, VNU-
HCM, Vietnam. He is interested in developing and
applying new and advanced techniques and tools from
big data, IoT, and distributed systems to solve real life
problems in urban traffic, smart cities, agriculture, etc.
Tran Vu Pham received his PhD degree in Computing
from the University of Leeds, UK.

Hung Cong Tran received the master of Engineer-
ing degree in Telecommunications Engineering course
from postgraduate department Hanoi University of
technology in Vietnam, 1998. He received Ph.D at
Hanoi University of technology in Vietnam, 2004. His
main research areas are B – ISDN performance pa-
rameters and measuring methods, QoS in high speed
networks, MPLS, Wireless Sensor Network, Cloud
Computing. He is, currently, an Associate Professor
PhD. of Faculty of Information Technology II, Posts
and Telecoms Institute of Technology in Ho Chi Minh,

Vietnam.

