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Abstract—This paper proposes a Dirichlet process (DP)-based
radio simultaneous localization and mapping (SLAM) algorithm
enabling mapping arbitrary structures (ASs) as well as the
standard point landmarks. The ASs cannot be characterized
by a low-dimensional state, in contrast to the standard point
landmarks, leading to incorrect mapping results in the existing
radio SLAM methods. To tackle the incorrect mapping issue,
we develop a DP-based data association method, where the
landmarks are maintained by the clusters, and each birth
point by the measurement is assigned to the existing or a new
cluster. Compared to the well-known state-of-the-art method,
we evaluate the performance of the proposed algorithm under
the scenario with multiple landmarks deployed. This validation
represents that radio SLAM is possible in an environment where
objects of ASs exist through the proposed method.

Index Terms—5G millimeter wave, 6G Terahertz, simulta-
neous localization and mapping, Dirichlet process, vehicular
networks.

I. INTRODUCTION

In B5G/6G systems, the utilization of higher frequency
from mmWave to terahertz (THz) with wider bandwidth and
large antenna arrays makes it possible to obtain highly resolv-
able channel parameters in the time and angular domains [1].
B5G/6G systems also achieve Tbit/s communication rates.
Consequently, this has given rise to the concept of integrated
sensing and communication (ISAC). ISAC analyzes radio
wave transmission, reflection, and scattering to enable the
provision of a wider range of new services, including radio
simultaneous localization and mapping (SLAM) [2].

In the radio SLAM literature, the random finite set (RFS)-
based works have been developed in [3]–[5], where landmark
states and their cardinality are modeled as an RFS. The
authors in [3] modeled the map as an RFS and the first-
order moment (i.e., probability hypothesis density (PHD)) of
the set of landmarks is propagated for mapping. To handle
the complexity issue of [3], the SLAM filter is jointly imple-
mented by the cubature Kalman filter [6] in [4]. The RFS-
based method can lead to formulating the SLAM problem in
an optimal manner [5].

The belief propagation (BP)-based radio SLAM meth-
ods [7]–[10] have a balanced trade-off between the per-
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Fig. 1. Illustration of radio signal propagation by the arbitrarily shaped and
planar walls. The planar wall can be characterized by a fixed point, while
the curved wall cannot.

formance and the computational complexity. In BP-based
SLAM method, the landmark is modeled by a vector. The
data association process is explicitly handled in the methods
of [7], [8], and only planar walls are considered in [7] while
the multiple landmark types (including SPs) are addressed
in [8]. The joint SLAM density is formulated and marginal
posterior densities are computed by BP in [9], and the angle
information is used as the additional measurement in [10].

In the existing radio SLAM methods, the standard point
landmarks, such as either the planar walls, characterized
by the virtual anchor (VAs) or scattering point (SPs), have
been considered. However, non-planar walls (e.g., arbitrarily-
shaped walls) have not been properly handled, leading to
mapping performance degradation due to missed detections
or false alarms, as illustrated in Fig. 1.

To tackle the arbitrarily-shaped wall issue, we employ the
Dirichlet process (DP) clustering approach in vision-SLAM.
We consider that the radio SLAM in B5G/6G resembles to
the vision-SLAM as the radio signal paths are getting sparse
due to the higher carrier frequency and the radio signals
are considered as light. The Dirichlet process (DP), a non-
parametric clustering technique, is also suitable for radio
SLAM scenarios with limited information of prior knowledge
of landmarks, where the radio signals convey geometric
information with false alarms and missed detections. Several
authors in [11]–[15] have proposed DP-based SLAM and
tracking technologies with the vision-based measurements.

This paper is the first attempt to using the DP approach



for detecting arbitrarily-shaped walls in radio SLAM sce-
narios. We propose a DP-based radio SLAM filter, enabling
mapping arbitrary structures (ASs) as well as the standard
point landmarks. For properly detecting ASs, we develop
a DP-based data association method, where the landmarks
are maintained by the clusters, and each birth point by the
measurement is assigned to the existing or a new cluster.
Extensive simulations are carried out to show the superiority
of the proposed method in detecting and classifying ASs,
compared to the known state-of-the-art method.

II. SYSTEM MODELS

A. Vehicle State and Dynamics

We denote a vehicle state at time k by sk =
[x⊤

k,s, αk, ζk, ξk, Bk]
⊤ ∈ R7, where xk,s = [xk,s, yk,s, zk,s]

⊤,
αk, ζk, ξk, and Bk are 3-dimensional position, heading, trans-
lation speed, turn-rate, and clock bias. With the known
transition density f(sk|sk−1), the vehicle dynamics follow
the motion model [16, Chapter 5]:

sk = g(sk−1) + qk, (1)

where g(·) is the known transition function, and qk denotes
the process noise, modeled as the zero-mean Gaussian dis-
tribution with the known covariance Q.

B. Propagation Environment

The propagation environment is specified by the follow-
ing four types of landmarks: i) a single BS, periodically
transmitting mmWave signals; ii) large planar walls which
specularly reflect the signal, each is characterized as one VA;
iii) small objects (i.e., SPs) that scatter the signals; and iv)
arbitrarily-shaped walls, which specularly reflect the signal
at the incident point on the wall.

A landmark location is denoted by xm ∈ R3, and a
landmark type is represented by m ∈ M, where M =
{BS,VA,SP,AS}. A static BS location, denoted by xBS ∈
R3, is known. We denote VA and SP locations by xVA and
xSP, respectively, also static. While the VAs and SPs are
modeled as the standard fixed points, the ASs are modeled
as a collection of time-varying incident points.

C. Observation

At time k, the BS transmits the mmWave/THz signals,
and the vehicle receives multipath consisting of LOS and
NLOS paths. Among the resolvable signal paths, we consider
a LOS path (BS tovehicle) and single-bounce NLOS paths
(BS to reflector to vehicle and BS to SP to vehicle), due
to the severe path loss. We assume other paths cannot be
detectable due to severe signal attenuation. After the channel
estimation routine [17] at the receiver, the vehicle obtains
the measurements. The signal path is indexed by i, and
the measurement of signal path i is denoted by zik. A
set of measurements is denoted by Zk = {z1k, . . . , z

Ik
k }.

Following [3], the measurement zik for each path is modeled
as

zik = h(sk,x
i,m) + ni

k,m, (2)

where h(sk,x
i,m) = [τ ik, (θ

i
k)

⊤, (ϕi
k)

⊤]⊤, ni
k,m ∼

N (0,Nm) with the covariance matrix Nm. Here, τ ik, θi
k =

[θik,az, θ
i
k,el]

⊤, and ϕi
k = [ϕi

k,az, ϕ
i
k,el]

⊤ respectively denote
the time of arrival (TOA), direction of arrival (DOA) in
azimuth and elevation, and direction of departure (DOD) in
azimuth and elevation. Due to the channel estimation error,
false alarm, transient vehicle, or object that is only visible
during a short time, may occur, considered as clutter. The
clutter measurement is included in Zk with the element zik.

III. METHODOLOGY FOR DIRICHLET PROCESS-BASED
SIMULTANEOUS LOCALIZATION AND MAPPING

A. Vehicle Prediction

Given the posterior density of the vehicle state at time
k−1, f(sk−1|Z1:k−1) = N (sk−1; s̃k−1, Ṽk−1), where s̃k−1,
Ṽk−1 are the mean and covariance of predicted vehicle state
at time k − 1, respectively. The predicted vehicle density at
time k is denoted by f(sk|Z1:k−1) = N (sk; sk,Vk), is given
by

f(sk|Z1:k−1) =

∫
f(sk|sk−1)f(sk−1|Z1:k−1)dsk−1. (3)

We compute the mean sk and covariance Vk as

sk = g(sk−1), (4)

Vk = GkṼk−1G
⊤
k +Q, (5)

where Gk is a Jacobian matrix of g(·), with
∂g(sk−1)/∂sk−1.

B. Environmental Mapping using DP Clustering

The proposed DP-based mapping process consists of the
birth generation and clustering.

1) Initialization: In the initial step (k = 1), the map is
empty. When k > 1, the prior map is given with the fol-
lowing components: cluster mean cjk−1,m, cluster covariance
Σj

k−1,m, and the number of data points that consists of the
corresponding cluster djk−1,m of the j-th cluster whose type
is m at time k − 1.

2) Birth Generation Process: In the birth process, the birth
point for landmark type m by the measurement zik is denoted
by bi

k,m, modeled as the Gaussian density:

bi
k,m ∼ N (mi

k,m,Ci
k,m), (6)

where mi
k,m and Ci

k,m are respectively the birth mean and
covariance. The computation of mi

k,m, and Ci
k,m is detailed

in [3, Appendix B]. We employ the same birth generation
procedure for AS birth points as for SP.

3) Data Association with DP Clustering: In parallel, each
generated birth will go through the following process.

a) VA & SP Mapping: For VA mapping, we calculate
and compare the probability that each birth point belongs to
the existing and new clusters (m = VA). The probabilities
of i-th birth point bi

k,m will be included in existing Jk−1,m

clusters, and a new cluster, referred as (Jk−1,m+1)-th cluster
at time k are expressed as follows respectively.



• Existing cluster (j ≤ Jk−1,m)

p(li = j|l−i, ω)

= N (mi
k,m; cjk−1,m,Σj

k−1,m)
djk−1,m

Dk − 1 + ω
, (7)

• New cluster (j = Jk−1,m + 1)

p(li = j|l−i, ω) = N (mi
k,m; c0,Σ0)

ω

Dk,m − 1 + ω
,

(8)

where j is the cluster index, Jk−1,m is the number of
the existing clusters of type m. li ∈ Li denotes the as-
sociation variable, where Li = {1, . . . , Jk−1,m + 1}, and
l−i = Li \ {li}. Note that c0 and Σ0 are the mean and
covariance of the 0-th cluster, which is defined by a new
cluster created due to data points that does not belong to any
existing cluster. ω is the concentration parameter of DP, and
Dk,m =

∑
j d

j
k−1,m + 1 indicates the total number of new

data points and stacked data points consisting of type m’s
clusters up to time k − 1. We compare these probabilities
and decide that the data points belong to the cluster with the
highest probability j∗i as follows.

j∗i = argmax
j∈{1,...,Jk−1,m+1}

p(li = j). (9)

Now, the birth bi
k,m in (6) is assigned to the j∗i -th cluster

with type m. We set dj
∗
i

k,m = d
j∗i
k−1,m + 1 for j∗i ≤ Jk−1,m,

and for j∗i = Jk−1 + 1, dj
∗
i

k,m = 1. The following clusters
are determined as the landmark with type m: djk,m ≥ Nm,
where Nm is the threshold for detection of landmark with
type m.

After the VA mapping is finished, the SP mapping starts
with the measurements that were assigned to either j∗i =

Jk−1,VA + 1 or j∗i ≤ Jk−1,VA with d
j∗i
k,VA < NVA, performed

in parallel, as VA mapping above.
b) AS mapping: Unlike the previous point-shaped dis-

tributed VA/SP mapping, another method is required to
map AS distributed along with the shape of an object.
To cluster the AS, we set the AS cluster as a Gaussian
mixture consisting of the points with mean and covariance
assigned to the cluster. We denote the mean and covariance
of ϵ-th data points of j-th AS cluster at time k by dϵ,j

k,AS

and Dϵ,j
k,AS, respectively. Therefore, the probability that birth

points belong to each cluster can be obtained as follows.
• Existing cluster (j ≤ Jk−1,AS)

p(li = j|l−i, ω)

=

dj
k,AS∑
ϵ=1

N (mi
k,AS;d

ϵ,j
k−1,AS,D

ϵ,j
k−1,AS)

djk−1,AS

Ek − 1 + ω
,

(10)

• New cluster (j = Jk−1,AS + 1)

p(li = j|l−i, ω) = N (mi
k,AS; c

0,Σ0)
ω

Ek − 1 + ω
, (11)

where Ek =
∑

j d
j
k−1,AS + 1 indicates the total number of

new data points and stacked data points consisting of AS
clusters up to time k − 1. Finally, in the same way, as in
(9), the final cluster to which the birth point belongs is
determined. The following clusters are determined as AS:
djk,AS ≥ NAS.

At the end of this environment mapping, all birth points
are assigned to the clusters. Then, we can obtain the cluster
indices that the birth points are assigned, different from
j∗i in (9), as follows: q(i)∗ = jm for i ∈ Ik = {i :

d
j∗i
k,m ≥ Nm for m = {VA,SP}}, indicating that that the

measurement zik generates the birth point bi
k,m for the

landmark types, and the birth bi
k,m is assigned to the cluster

j with the landmark type m. For example, when q(2) = 3VA,
then c

q(2)
k−1 = c3k−1,VA and Σ

q(2)
k−1 = Σ3

k−1,VA. Note that the
clusters that had been determined as landmarks at least once
(by djk′,m ≥ Nm for k′ < k) remain as landmarks even if no
birth point is assigned at time k.

C. Map Update by DP Cluster

Given the data association with the assigned birth points,
we update the VA and SP clusters. For the assigned birth
point bi

k,m and assigned cluster index j∗i , we update the
cluster covariance Σ

j∗i
k,m and mean c

j∗i
k,m as follows [18]:

Σ
j∗i
k,m = ((Σ

j∗i
k−1,m)−1 + (Ci

k,m)−1)−1, (12)

c
j∗i
k,m = Σ

j∗i
k,m((Σ

j∗i
k−1,m)−1c

j∗i
k−1,m + (Ci

k,m)−1mi
k,m).

(13)

When the birth point is assigned to a new cluster, we set the
mean c

j∗i
k,m = mi

k,m and covariance Σ
j∗i
k,m = Ci

k,m.

D. Vehicle Update

To update the vehicle state, instead of using the particle
filter we estimate the posterior of joint vehicle state and
detected landmarks density, and the detected landmarks are
marginalized out. At the end of data association, the cluster
indices q(i) returned |Ik| landmarks, where |·| stands for the
set cardinality, and we introduce the random vector for joint
vehicle and detected landmarks

tk = [(sk)
⊤, . . . , (x

|Ik|
k )⊤]⊤, (14)

with an a priori Gaussian distribution N (tk, t̄k, T̄k), where

t̄k = [(s̄k)
⊤, . . . , (c

q(Ik)
k )⊤]⊤, (15)

T̄k = blkdiag(Vk, . . . ,Σ
q(Ik)
k ), (16)

where blkdiag(·) is the block diagonalizing function. We re-
call that the following example of data association and corre-
sponding cluster: when q(2) = 3VA, then c

q(2)
k−1 = c3k−1,VA and

Σ
q(2)
k−1 = Σ3

k−1,VA. Given the corresponding measurements to
the detected landmarks zk = [z1k, . . . , z

|Ik|
k ]⊤, we estimate

the joint posterior density of the vehicle state and detected
landmarks, approximated to the Gaussian distribution by the
standard extended Kalman filter [19].
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Fig. 2. Examples of propagation environments caused by VA, SP, and AS.
The simulation environment includes 1 vehicle, 1 BS, 1 VA, 1 SP, and 1
AS.

TABLE I
SIMULATION PARAMETER UNITS

Parameter Units

diag(Q) [m2,m2,m2, rad2, rad2, rad2, rad2]
s0, σ0 [m,m,m, rad,m/s, rad/s,m]⊤

diag(N) [m2, rad2, rad2, rad2, rad2]
diag(Σ),diag(Σ0) [m,m]
µ0 [m,m,m]

IV. PERFORMANCE EVALUATION

A. Simulation Environment

We consider a vehicle that drives along a circular road
for Kmax = 30 with an interval of 0.5 seconds. The
MATLAB simulation is conducted using the parameters
as follows. We set Q, the covariance noise matrix as
diag[0.22, 0.22, 0, 0.012, 0, 0, 0.22]. The initial state of the ve-
hicle was set as s0 = [0.7285, 0, 0, π/2, 22.22, 2π/15, 300]⊤

and assume that the translation speed and turn-rate
are known. The initial prior of the vehicle state fol-
lows Gaussian distribution with the standard deviation
σ0 = [0.3, 0.3, 0, 0.3, 0, 0, 0.3]⊤. We set Nm differently
depending on the object, for m = BS, VA, Nm =
diag[0.1, 0.01, 0.01, 0.01, 0.01] and for m = SP, AS, Nm =
2NVA. For DP, we set ω, µ0, and Σ0 as 0.9, [0, 0, 0]⊤, and
diag[100, 100, 100] respectively, and the units of simulation
parameters are listed in Table I. The thresholds for the
clusters to be determined as the detected landmarks of VA,
SP, and AS are respectively denoted by NVA, NSP, and NAS,
set to 3, 3, and 5. As shown in Fig. 2, the BS is located
at [0, 0, 40]⊤, and a VA is located at [200, 0, 40]⊤, with
unit m. A SP is located at [65, 65, zSP]

⊤ with unit m and
zSP ∼ U(0, 40). For AS, we place a cylindrical wall with a
center of [−100, 0]⊤ and a radius of 100 on the xy plane with

(a)

(b)

Fig. 3. Average GOSPA of (a) VA and (b) SP by the proposed method. SP
is detected in turn due to the limited FoV, and the SP GOSPA decreases
stepwise (2 steps).

unit m. The face of AS is the concave face of the cylinder
when viewed from the BS.

We set the detection probability, pD = 0.9 within the field
of view (FoV). The FoV of signal from SP and AS is 50 m,
and from BS and VA is always visible. We consider clutter
intensity, c(z) follows Poisson distribution as λ/(4Rmaxπ

4)
as the average of the number of clutter measurements λ = 1,
and the maximum sensing range Rmax = 100 m. We use
the average of the generalized optimal subpattern assign-
ment (GOSPA) distance [20] for measuring the mapping
performance, and the parameter settings as [3] for calculating
GOSPA distance were used. Simulation results are obtained
by averaging over 100 Monte Carlo runs and using MATLAB
implementation for the proposed SLAM algorithm, executed
on a PC with 3.2 GHz M1 pro CPU and 16 GB RAM, and
the OS is macOS Monterey.

B. Simulation Results

Under the above simulation environment, we evaluate
the performance of the proposed algorithm. The mapping
performance for VA, SP, and AS is evaluated by the GOSPA
distance, and the vehicle localization performance by the root
means square error (RMSE).

1) Mapping: Fig. 3 represents the mapping performance
for VAs and SPs of the proposed SLAM filter, compared
to PHD SLAM [3]. In the case of the VA, Fig. 3(a) shows
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Fig. 4. Mapping performance of AS, (a) average GOSPA, (b) Hausdorff
distance by the proposed method. GOSPA decreases in stages, and the rate
of decrease is relatively slow because many points can be detected.

the average GOSPA of VAs. The GOSPA of the proposed
method is lower than that of [3] across all time steps except
for a few time steps. In particular, in the case of PHD SLAM,
prominent peaks occur over the entire period. This is because
the PHD-SLAM filter does not correctly capture the ASs and
regards them as VAs. On the other hand, AS measurements
are well addressed in the proposed SLAM filter due to the
developed DP-based data association method. Fig. 3(b) shows
the average GOSPA distances for SPs. Because of the limited
FoV of the vehicle, the SP is detected only at a specific time
to the vehicle. From k = 7, the SPs are getting detectable, and
the GOSPA distance of SPs sharply decrease. After k = 18,
the gap of two GOSPA distances between the proposed and
PHD-SLAM filter is about 0.01 m.

Unlike the above two types of landmarks, each AS is not
expressed as one fixed point. Therefore, we calculated the
AS GOSPA distances by assuming that the set of incident
points on the arbitrary-shaped wall is the ground-truth. Fig.
4(a) shows the AS GOSPA of the proposed SLAM filter. Due
to the relatively larger number of points to be detected in ASs
than that of VAs and SPs, the AS GOSPA distance at k = 1 is
larger than the VA and SP GOSPA distances. As the ASs are
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Fig. 5. Mapping results employing the proposed DP SLAM in the environ-
ment of Fig. 2. VA, SP, and AS were mapped, and clutter was distinguished
by the proposed method.

detected over time steps, the AS GOSPA distance gradually
decrease. For another AS mapping performance metric, we
use the Hausdorff distances, widely used to evaluate the
image matching performance by comparing the images [21].
Assume a set of points at actual locations, A, and a set
of estimated points, B, composed of discrete points. The
Hausdorff distance H(A,B) is defined as

H (A,B) = max (h (A,B) , h (B,A)) , (17)

where h (A,B) = max
a∈A

min
b∈B

∥a−b∥. We set A to the ground-
truth for ASs: incident points on the arbitrary-shaped wall
and B to the determined ASs. Fig. 4(b) shows the average
Hausdorff distance of ASs, which also gradually decrease as
the ASs are determined over time steps.

Fig. 5 illustrates the mapping results by the proposed DP-
SLAM filter, where the small circles with the same color
are recognized as a single cluster. The green, blue, purple,
and orange circles represent a BS, a planar wall, a SP,
and an arbitrary-shaped wall, respectively. Each gray circle
represents clutter that has never belonged to any cluster and
were not determined as the the detected landmarks.

2) Localization: Fig. 6 shows the RMSEs of the vehicle
location of the proposed and PHD-SLAM filters. Due to the
fact that the vehicle and map are correlated and there are false
alarms in the VA map, the localization performance by the
proposed SLAM filter is better than the PHD-SLAM filter.

3) Complexity: Furthermore, we confirm that there is a
distinct gain in the complexity. For Rao-Blackwellized parti-
cle filtering in the PHD filter [3], 2000 particle samples are
used. The average operation time consumed by the proposed
algorithm is 3.5 seconds per 1 Monte Carlo simulation run,
whereas the PHD-SLAM filter [3] consumes more than 8000
seconds.
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V. CONCLUSIONS

In this paper, we have proposed a DP-based radio SLAM
filter that can detect arbitrarily-shaped landmarks as well
as other standard point landmarks, while the existing radio
SLAM filters cannot. Thanks to the developed data associ-
ation with the DP approach, the birth points by the mea-
surements are assigned to the corresponding cluster, leading
to SLAM performance improvement. From the simulation
results, we confirmed that the proposed SLAM filter is robust
to false alarms and missed detections and can well maintain
maps for the different types of landmarks, and provides the
satisfactory SLAM performance with the reasonable compu-
tational complexity.
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