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ABSTRACT
Handwriting is a natural and versatile method for human-
computer interaction, especially on small mobile devices such
as smart phones. However, as handwriting varies significantly
from person to person, it is difficult to design handwriting
recognizers that perform well for all users. A natural solu-
tion is to use machine learning to adapt the recognizer to the
user. One complicating factor is that, as the computer adapts
to the user, the user also adapts to the computer and prob-
ably changes their handwriting. This paper investigates the
dynamics of co-adaptation, a process in which both the com-
puter and the user are adapting their behaviors in order to im-
prove the speed and accuracy of the communication through
handwriting. We devised an information-theoretic framework
for quantifying the efficiency of a handwriting system where
the system includes both the user and the computer. Using
this framework, we analyzed data collected from an adaptive
handwriting recognition system and characterized the impact
of machine adaptation and of human adaptation. We found
that both machine adaptation and human adaptation have sig-
nificant impact on the input rate and must be considered to-
gether in order to improve the efficiency of the system as a
whole.
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INTRODUCTION
Handwriting is a natural and versatile method for human-
computer interaction, especially on small mobile devices such
as smart phones. As handwriting varies significantly from
person to person, it is difficult to design a handwriting recog-
nition system that performs well for all users. Modern hand-
writing recognizers resort to machine learning techniques to
adapt and specialize their handwriting models to each indi-
vidual user. As the recognizer adapts to the human user, the
user is likely to adapt to the system as well. We call this situa-
tion “co-adaptation” where both human and computer adapts
to each other simultaneously.

In general, co-adaptation can manifest in any adaptive sys-
tem. Designing a system that co-adapts with the users is a
challenging problem on its own [1, 2, 3]. Our goal in this pa-
per is not to address those challenges, but rather to focus on
characterizing the impact of machine adaptation and of hu-
man adaptation in the context of handwriting recognition. We
believe that this study will provide us with useful insights to-
wards designing a more efficient adaptive handwriting recog-
nition system.

In order to evaluate performance of a handwriting recogni-
tion system under co-adaptation, we introduce a framework
based on the idea of Shannon’s communication channel [4]
that considers both the user and the handwriting recognizer in
a single system. Under this framework, we define the notion
of “channel rate” that measures the amount of information
successfully transfered from the user to the computer.

To quantify the effect of machine adaptation and of user adap-
tation empirically, we developed a handwriting recognition
system that is capable of adapting to the handwriting of each
individual user over time. We collected usage data from 15
different users and performed an analysis of the channel rate.

The paper is organized as follows. First, in Section , we
present the information-theoretic framework for quantifying
the efficiency of a handwriting system where the system in-
cludes both the user and the computer. Next, in Section , we
describe our adaptive handwriting recognition algorithm that
we developed for our experiment. Then, in Section , we de-
scribe the experiment and present the results in terms of the
performance measures derived from the proposed framework.
Finally, we draw some conclusions in Section .

HANDWRITING RECOGNITION AS A COMMUNICATION
CHANNEL
Unlike typing, which transmits information to the computer
at discrete time points, handwriting continuously transmits
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information as the writer creates the trajectory. Traditionally,
handwriting data is analyzed one “unit” at a time where “unit”
can be a stroke, a character, a word or even a sentence. In this
work, we propose an alternative analysis where the data is
analyzed in fixed intervals of time. We consider the process
of writing as a process through which the intended letter is
disambiguated from the other possible letters.

We formalize this process using the concept of communica-
tion channel [4]. Let E denote the set of all possible input.
Technically, the set E can be a set of sentences, a set of words,
or a set of characters. Without loss of generality, in this work,
we assume that E is a set of 26 English characters. We also
ignore dependencies between characters due to the language
model and due to the co-articulation effects between neigh-
boring handwritten characters.

As shown in Figure 1, the channel is comprised of two sep-
arate processes. First, the handwriting process is the process
of which the user translates an intent M ∈ E into a series of
hand movements which is sampled at some rate to create a
discrete time trajectory: W1:T = [(x1, y1), . . . , (xT , yT )]. In
other words, this process encodes the intent M into a trajec-
tory W1:T . Let W denote the entire trajectory vector. The
distribution P (W |M) denotes the variability of the encoding
process. The second process is the recognition process that
decodes the handwriting trajectory back into the original in-
tent. For each time step t where 1 ≤ t ≤ T , the process maps
a trajectory W1:t to a distribution over E , denoted by Qt.

Let Tfinal and Qfinal denote the final writing duration and the
posterior distribution when the user finishes writing the tra-
jectory. According to the theory of channel capacity, the in-
formation transmitted through the channel can be quantified
by the mutual information between the input M and the de-
coding posterior Qfinal, denoted by I(M ;Qfinal). We define
the mean posterior of Qfinal conditioned on M and the aver-
age posterior distribution as follows.

P (Qfinal|M) =

∫
W∼P (W |M)

P (Qfinal|W )P (W |M)

P (Qfinal) =
∑
m∈E

P (M = m)P (Qfinal|M = m)

Given these two expressions, we define the mutual informa-
tion between the character M and the decoding Qfinal as

I(M ;Qfinal) = H(Qfinal)−
∑
m∈E

P (M = m)H(Qfinal|M = m)

where the entropy of Qfinal is defined as

H(Qfinal) = −
∑
m∈E

P (Qfinal = m) log2 P (Qfinal = m)

Next, we can define the channel rate in terms of the mutual
information and expected writing duration as

RMI =
I(M ;Qfinal)

E [Tfinal]
(1)

However, the channel rate RMI is not suitable for practi-
cal implementation for two reasons. First, the estimation
of H(Qfinal|M) requires an extensive amount of data. Sec-
ondly, suppose the original intent is m, RMI yields a high
value as long as P (Qfinal|M = m) concentrates any single
intent n even when n 6= m. Thus, we propose an alternative
measure to the RMI based on the idea of log loss, called RLL.
We define RLL to be

RLL =

H(Qfinal)−
∑
m∈E

P (M = m)(− log2 P (Qfinal = m|M = m))

E[Tfinal]
(2)

The relationship between RMI and RLL is worth noting.
When (− log2 P (Qfinal = m|M = m)) is small then the
conditional entropy H(Qfinal|M) is also small. As a result,
the mutual information I(M ;Qfinal) will be close to its max-
imal possible value of H(Qfinal). In other words, the log loss
term (− log2 P (Qfinal = m|M = m)) provides an upper
bound for the conditional entropy H(Qfinal|M) up to some
constant factor. For the remaining of this paper, when we
refer to the channel rate, we strictly refer to RLL.

Intuitively, the channel rate is a measure that quantifies both
accuracy and speed of a handwriting recognition channel at
the same time. Handwriting, as well as many other motor
control tasks, obeys the speed-accuracy tradeoff [5]. It is not
sufficient to quantify the efficiency of a handwriting recogni-
tion system by its recognition accuracy alone. For example,
a system that requires the user to write each character in a
specialized form may attain a very high recognition accuracy,
but it would require the user more time and effort to use. Such
system might not be as efficient as a system that makes more
errors but allows the user to write freely. This leads us to
believe that the channel rate is a suitable measure that any
handwriting recognition system should aim to maximize. In
a sense, maximizing the channel rate is equivalent to finding
a balance between maximizing the recognition accuracy and
minimizing the writing time and effort of the user.

Based on this framework, it follows that the channel rate can
be improved by a combination of human learning and ma-
chine learning, which corresponds to improving the handwrit-
ing process and the recognition process respectively. Ideally,
Qfinal will always be concentrated on the original intent M .
This would mean that the channel is perfect and works with-
out error. However, in real-world scenarios, errors will occur.
One source of errors comes from mistakes made in the recog-
nition process. These recognition errors can be reduced using
training data and machine learning. The harder problem is
when there is a significant overlap between P (W |M) for dif-
ferent intents. In this situation, we will need to rely on the
user to make their handwriting less ambiguous. Although the
effect of human learning is always present, we believe that it
can be enhanced by giving useful feedback to the user in the
form of guidance or lessons.

ADAPTIVE RECOGNITION ALGORITHM
We developed an adaptive handwriting recognition algorithm
that, for every time step t, maps a partial handwriting trajec-
tory W1:t to a posterior distribution over E , denoted byQfinal.
By realizing that the effect of user adaptation is likely to be



Figure 1: A summary of the handwriting recognition channel.

present, we designed our recognition algorithm so that it can
adapt not only to each individual user, but also to the changes
of the handwriting trajectory distribution P (W |M) unique to
each user over time. The idea of specializing and adapting
the recognizer for each user has been studied and shown to be
effective in reducing the error rate [6, 7, 8].

At a high-level, our adaptive recognition system can be out-
lined as follows. For each user, the system creates and main-
tains one or more character models for each character in E .
We refer to each of such models as a prototype. Each proto-
type is basically a representative handwriting instance from
the user. Technically, the prototypes can be viewed as left-to-
right hidden Markov models with Gaussian observation [9].
Let Pu denote the set of prototypes for a user u. The adaptiv-
ity of our system comes directly from the fact that Pu is mod-
ified over time. In the decoding process, given a handwriting
trajectory and a set of prototypes Pu, the system computes
a posterior distribution Qfinal and, when a single prediction
is needed, the element with the maximum likelihood is pre-
dicted.

Feature vectors and distance function
In addition to the x- and y-coordinate, each handwriting
trajectory is supplemented with writing direction informa-
tion. Specifically, each handwriting instance is represented
by a sequence of feature vectors 〈f1, . . . , fT 〉 where fi =
(xi, yi, dxi, dyi). (xi, yi) denotes the normalized touch-
screen coordinate and (dxi, dyi) = (xi−xi−1

z , yi−yi−1

z ), z =√
(xi − xi−1)2 + (yi − yi−1)2 denotes the writing direction.

To measure the similarity between two handwriting instances,
we use dynamic time warping (DTW) distance [10] as the
distance function in our algorithm. The DTW distance is
commonly used for variable-length data such as handwriting
and speech. The calculation can be done efficiently using dy-
namic programming.

Initial adaptation
The initial adaptation is critical for any intelligent system. It
is unquestionable that the performance of any well-behaved
intelligent system increases as the system learns more about
the user. If the initial adaptation is poor, the users might get

frustrated with the system and stop using it even before it can
fully adapt to them.

We address the problem of initial adaptation by sharing data
across different users. Typically, people do have similar hand-
writing especially when they share the same educational cul-
ture. The process of the initial adaptation can be described
as follows. In the very first interaction with the user u, our
system has no information about the user and, therefore, as-
sign a set of typical prototypes which has been trained using
data from multiple users in the past. Specifically, the typ-
ical prototypes are the centroids of the clusters returned by
running a clustering algorithm (k-means) on a set of training
handwriting instances. We refer to this set of prototypes as
P0. After the first interaction, the system creates a new set of
prototypes P(u,1) by recomputing the centroids of the clus-
ters after adding the examples from the user to the pool with
significantly higher weights than the rest.

Adapting the prototypes over time
After collecting a few examples of the user’s handwriting,
the system again performs the weighted clustering algorithm
on the data to generate a new set of prototypes P(u,i+1). In
this stage, only examples from the user and previous proto-
types are considered. This adaptation process happens after
3-5 new examples are acquired.

To improve real-time performance, we need to keep the
lengths (number of states) of the prototypes as small as pos-
sible. After the new prototypes are chosen, the system per-
forms an additional step to shorten the length of each proto-
type. This pruning process is similar in spirit to removing
and merging unnecessary hidden states in an HMM. The ba-
sic idea is to remove unwanted states while maintaining the
same recognition power using a variant of forward-backward
algorithm [11]. Figure 2 shows the hidden states before and
after the reduction step.

Decoding
Our decoding algorithm is based on the standard Bayesian in-
ference. Namely, given a trajectory W1:T and the current set
of prototypes Pu, the algorithm computes the distance from
W1:t to each of the prototypes in Pu for all 1 ≤ t ≤ T . The
distances are then transformed into a probability distribution



Figure 2: The hidden state reduction process is applied to
each prototype to remove rarely visited states with respect to
the training set. The originally trained prototype is shown on
the left and the reduced prototype is shown on the right. The
intensity of the colors corresponds to the expected number of
times the state being mapped to.

Qt. We use e−x as the transfer function. When a single pre-
diction is expected, the algorithm simply returns the predic-
tion with the maximum likelihood.

EXPERIMENT
The main objective of our experiment is to determine and
quantify the effect of machine adaptation and of human adap-
tation when the users interact with the system over some pe-
riod of time. We implemented the handwriting recognition
system described in Section as an application on Apple iOS
platform. The application was presented to the users as a writ-
ing game. In each session, each participant was presented
with a random permutation of the 26 lowercase English al-
phabets i.e. E = [a . . . z] and P (M) is uniform. The ob-
jective of the game was to write the presented characters as
quickly as possible and, more importantly, the handwritten
characters should be recognizable by the system. A score,
which is the average channel rate of the session, was given
to the user right after each session to reflect the performance
of the session. There were 15 participants in this experiment.
We asked them to play our game for at least 20 sessions over
multiple days in his/her own pace. We did not control past
experience of the participants. Some of them had more expe-
rience with touch screens than others.

The experiment was set up to demonstrate a condition called
co-adaptation where both the user and the computer were al-
lowed to adapt together. We denote this condition Radapt.
To investigate the effect of co-adaptation, we create a con-
trolled condition called Rfixed where the computer was not
allowed to adapt with the user. In other words, we ran a sim-
ulation to figure out what the channel rates would have been
if the prototype sets were never changed from P0. Ideally, it
would be more preferable to have Rfixed determined by an-
other control group where the prototypes were kept fixed and
never changed. However, the results from the simulated con-
dition can be seen as a lower bound on the amount of the
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Figure 3: Channel rate per session of all users with (3a) and
without (3b) presence of machine learning.

improvement attributable to human learning and, therefore, it
is sufficient to demonstrate our point.

RESULTS AND DISCUSSION
The average channel rates per session of the two conditions
Radapt and Rfixed are shown in Figure 3a and Figure 3b re-
spectively. In both conditions, the results show increases of
the channel rate over time where the improvement in the early
sessions seems to be larger than in the later sessions. Fig-
ure 3c shows the difference of Radapt and Rfixed which cor-
responds to the channel rate of the system when we ignore
the effect of user adaptation. From the result, we observe that
the impact of machine adaptation tapers off after 10 sessions.

Although the prototype set was not changing in Rfixed, we ob-
serve that channel rate increases over the sessions. To quan-
tify our confidence to this increase, we perform the paired
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Figure 4: The average writing time per session and the av-
erage mutual information per session under the condition
Rfixed.

t-test to compare the difference between the average chan-
nel rate in the first 5 sessions and in the last 5 sessions. We
find that the difference is statistically significant with p-value
¡ 0.0011. This suggests that the users improve the handwrit-
ing on their own even without machine adaptation. In other
words, the effect of user adaptation is indeed significant.

Furthermore, Figure 4a and Figure 4b reveal that the major
contribution of user adaptation comes from the fact that the
users write faster in the last 5 sessions compared to the first
5 sessions (p < 0.0001), and not because of the system re-
ceived more information from the user (p = 0.9723). This
result is as expected according to the law of practice [12].

We also perform per-user analysis of the channel rate. In Fig-
ure 5a, we compare Radapt and Rfixed for each user. We find
that the channel rate of Radapt is significantly higher than
that of Rfixed with p < 0.0006. This result confirms that
the machine adaptation helps improving the overall channel
rate. In addition, we calculate the theoretical maximum of
the channel rate under the assumption of the perfect recog-
nition, denoted by Rideal. The maximum rates are given
by H(Qfinal)/E [Tfinal] and we approximated H(Qfinal) =
log2(26).

In the case of perfect recognition, a simple way to increase the
channel rate is to expand the character set E to incluse more
symbols. However, in reality, doing so can lead to a recogni-
tion error rate which impairs the channel rate. An interesting
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Figure 5: (a) The average channel rate of each user in Radapt

and Rfixed. Rideal shows the maximum channel rate possible
given the average writing speed of each user. (b) Average
channel rate of each character under the condition Radapt.

future direction is to design a character set that would maxi-
mize the channel rate. Figure 5b reveals the efficiency of each
letter for our handwriting channel. Characters with complex
stokes, such as ’q’, ’g’,’k’, are not as efficient as characters
with simple strokes such as ’c’ ,’o’, ’l’. While this finding is
not surprising, it implies that, for a handwriting system to be
truly efficient, it must allow the user to write in a less complex
style while not losing recognition accuracy. How to exactly
design such system is still an open problem and requires a
more elaborate study.

CONCLUSIONS
We presented a information-theoretic framework for quanti-
fying the information rate of a system that combines a human
writer with a handwriting recognition system. Using the no-
tion of channel rate, we investigated the impact of machine
adaptation and human adaptation in an adaptive handwriting
recognition system. We analyzed data collected from a small
deployment of our adaptive handwriting recognition system
and concluded that both machine adaptation human adapta-
tion have significant impact on the channel rate. This result
led us to believe that, for a handwriting recognition system
to achieve the maximum channel rate, both machine adapta-
tion and human adaptation are required and must be present
together. Specifically, such system should be able to adapt
to the user and, at the same time, allow the users to write or
scribble using simple hand movement as improving writing



speed is crucial for attaining a higher channel rate. Addition-
ally, the system should have a mechanism to giving feedback
to the user when their handwriting cannot be recognized.
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