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   Abstract - Existing power management techniques operate 
by reducing performance capacity (frequency, voltage, 
resource size) when performance demand is low, such as at 
idle or similar low activity phases.  In the case of multi-core 
systems, the performance and power demand is the aggregate 
demand of all cores in the system.  Monitoring aggregate 
demand makes detection of phase changes difficult (active-to-
idle, idle-to-active, etc.) since aggregate phase behavior 
obscures the underlying phases generated by the workloads 
on individual cores.  This causes sub-optimal power 
management and over-provisioning of power resources.  In 
this paper, we address these problems through core-level, 
activity prediction. 
The core-level view makes detection of phase changes more 
accurate, yielding more opportunities for efficient power 
management.  Due to the difficulty in anticipating activity 
level changes, existing operating system power management 
strategies rely on reaction rather than prediction.  This causes 
sub-optimal power and performance since changes in 
performance capacity by the power manager lag changes in 
performance demand.  To address this problem we propose 
the Periodic Power Phase Predictor (PPPP). This activity level 
predictor decreases SYSMark 2007 client/desktop processor 
power consumption by 5.4% and increases performance by 
3.8% compared to the reactive scheme used in Windows Vista 
operating system.  Applying the predictor to the prediction of 
processor power, we improve accuracy by 4.8% compared to 
a reactive scheme. 

   Index Terms – Dynamic power management, prediction, 
multi-core, power modeling. 

I. INTRODUCTION 

Dynamic power management provides a significant 
opportunity for increasing energy efficiency and 
performance of computing systems.  Energy efficiency is 
increased by reducing performance capacity (frequency, 
parallelism, speculation, etc.) when the demand for 
performance is low.  Efficiency or a lack thereof may 
impact the performance of a system.   
 
 
 

The challenge in applying power management to increase 
efficiency is in identifying when to adapt performance 
capacity.  The ubiquitous, architected solution implemented 
in operating systems such as Windows/Linux is to react to 
changes in performance demand.  Though this approach is 
simple, it performs sub-optimally [4][10] for workloads 
with many distinct and/or short phases.  Each time a 
workload transitions from a phase of low performance 
demand to a phase of high performance demand, reactive 
power management increases performance capacity 
sometime after the phase transition.  During the time 
between the change in demand and capacity, performance 
may be less than optimal.  Similarly, power consumption is 
sub-optimal on transitions from high to low demand.  The 
amount of performance loss is proportional to the number 
of phase changes in the workload and the lag between 
demand and capacity.   
Identifying when to adapt is complicated by the presence of 
multiple cores sharing power resources.  Consider Fig. 1.  
Core-level power consumption is shown for a system with 
multiple simultaneous threads.  The program threads are 
fixed to the cores with thread N on core N, thread N-1 on 
core N-1, etc.  Since power monitoring is typically 
provided at the system-level [12], existing power control 
techniques use the erratic fluctuations in the total power for 
predicting future behavior.  This is unfortunate since in this 
example, the individual threads have a periodic, easily 
discernable pattern, while the pattern in the aggregate 
power is less discernable.  If power phases can be tracked 
at the core-level, accurate dynamic power management 
schemes can be devised. 

We propose to improve the effectiveness of power 
management through the use of predictive, core-level 
power management.  Rather than reacting to changes in 
performance demand, we use past activity patterns to 
predict future transitions.  Rather than using aggregate 
power information, we use activity and power measured at 
the core-level.   
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Fig. 1. Thread and Aggregate Power Patterns 

To analyze the effectiveness of our predictor we use the 
SYSMark 2007 benchmark. It contains numerous, 
desktop/personal computing applications such as Word, 
Excel, PowerPoint, Photoshop, Illustrator, etc.  The 
benchmark is structured to have a high degree of program 
phase transitions, including extensive use of processor idle 
states (c-states) and performance states (p-states) [1].  
Rather than being strictly dominated by the characteristics 
of the workload itself, SYSMark 2007 accounts for the 
impact of periodic, operating system scheduling and I/O 
events.  Using this observation, we construct a periodic 
power phase predictor.  This simple periodic predictor 
tracks and predicts periodic phases by their duration.  By 
predicting future demand, aggressive adaptations can be 
applied.  The core-level predictive technique outperforms 
existing reactive power management schemes by reducing 
the effective lag between workload phase transitions and 
power management decisions.  By predicting the individual 
power contribution of each thread rather than predicting the 
aggregate effect, complex phases can be predicted.   

The contributions of this study are summarized as follows.  

(1) Concept of core-level power phases in multi-core 
systems.  Core-level power phases unveil more 
opportunities for power saving adaptations than are 
possible if only aggregate system level information is used.  

(2) A simple, periodic power phase predictor.  Though 
prior research [11][14] demonstrates the effectiveness of 

power management using predictive schemes on 
uniprocessors, our research shows its effectiveness when 
applied to multi-core systems with operating system 
scheduling interactions.  The proposed predictive power 
management is compared against the reactive algorithm in 
the Windows Vista operating system.  Previous research 
focused on single-threaded SPEC CPU 2000 benchmarks, 
while our study uses SYSMark 2007 which includes 
popular desktop/personal computing applications such as 
Microsoft Word, Excel, PowerPoint, Adobe Photoshop, 
Illustrator, etc.  These workloads include difficult to predict 
power management events due to large numbers of 
interspersed idle phases and frequent thread migrations. 

(3) Detailed, power management-aware, CPU power model 
for an AMD Quad-Core Opteron processor.  Since power 
values are available at system level only, core-level 
prediction is performed using performance counters as 
proxies.  To realize our core-level phase detection 
objectives, we develop a detailed power model for this 
quad-core processor, using core-level performance metrics.  
We improve upon exiting models based on performance 
counters [5] to account for leakage, temperature and power 
management effects. 

II. COMMERCIAL DVFS ALGORITHM 

Existing, commercial DVFS algorithms in Windows and 
Linux operating systems select processor clock frequencies 
by reacting to changes in core activity level [25].  Activity 
level represents the ratio of architected code execution 
(active time) to wall clock time (active + idle time).  
Processors become idle when they exhaust the available 
work in their run queues.  The intent of these algorithms is 
to apply low frequencies when a processor is mostly idle 
and high frequencies when mostly active.  This provides 
high performance when programs can benefit and low 
power when they cannot.   

In this study we compare our predictive DVFS algorithm to 
that currently used in the Windows Vista operating system 
[25].  This Vista algorithm reactively selects DVFS states 
(core frequency) in order to maintain a target core activity 
level of 30%-50%.  See Fig. 2.  The “predicted” activity 
level is the last observed activity level, hence this is a 
reactive scheme.   

When the core activity level is greater than 50%, the 
reactive algorithm selects a higher frequency to increase 
performance enough to allow the core to be idle more than 
50% (i.e. active < 50%) of the time.  The new frequency is 
selected assuming a 100% frequency increase reduces 
active time by 50%.  For example assume a core operates at 
1GHz and is 100% active.  In order to achieve an activity 
level of 50%, the algorithm would attempt to double the 
frequency to 2GHz.  Frequency reductions are similar in 
that activity levels below 30% cause the algorithm to 

Phase 
Misalignment 
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reduce frequency in order to increase activity levels to 
30%.  Since processors have a finite number of architected 
DVFS states, the algorithm selects the nearest frequency 
which meets the target activity level. 

 

 
Fig. 2. Windows Vista Reactive P-State Selection Algorithm	
  

III. WORKLOAD CHARACTERIZATION 

To analyze the power/performance impact of our predictive 
power management scheme on real-world workloads, we 
characterize a system running the desktop/client SYSMark 
2007 benchmark.  This benchmark represents a wide range 
of desktop computing applications.  The benchmark 
components are E-Learning, Video Creation, Productivity, 
and 3D.  The individual subtests are listed in Table I.  This 
benchmark is particularly important to the study of 
dynamic power adaptations since it provides realistic user 
scenarios that include user interface and I/O delays.  These 
delays cause a large amount of idle-active transitions in the 
cores.  Since current OSs determine dynamic adaption 
levels using core activity level, the replication of these user 
interactions in the benchmark is critical. 

One of the most critical aspects of this workload is shown 
in Fig. 3.  Unlike traditional scientific and computing 
benchmarks, core activity level varies greatly over time.  
The primarily single-thread E-Learning and Productivity 
subtests are composed of single core active phases 
interspersed with all cores idle.  The frequent transitions 
between active and idle make power management decisions 
difficult.  Reacting too quickly to idle phases can induce 
excessive performance loss as code execution is halted to 
allow transition of clocks, voltage planes or component 
state.  At the other extreme the 3D and Video Creation 
workloads have large sections of all cores being active.  

These regions, also interspersed with all-idle and one-
active regions are critical for power sharing strategies.  As 
the workload/operating systems adds and removes threads 
from cores the resultant power level changes drastically.  
The power difference between cores in the active versus 
idle state is much greater than differences within the active 
state. 

 

 
Fig. 3. Utilization of Multiple Cores by SYSMark 2007 Benchmark 

The effect of these frequent transitions on power and 
performance is significant.  Bircher et al [4] show that the 
slow reaction of the Vista DVFS algorithm leads to a 
performance loss of 6%-10% for SYSMark07.  We show 
that this performance loss is due to a large portion of the 
benchmark operating at DVFS state with frequencies as 
low as 1/3 of the maximum frequency.  Similarly, power 
consumption is excessively high due to the DVFS 
algorithm choosing high-power states for many of the 
frequent, idle phases in the benchmark. 
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TABLE I 

SYSMARK 2007 COMPONENTS 

E-Learning Video Creation Productivity 3D 
Adobe  
- Illustrator 
- Photoshop 
-Flash 
Microsoft  
- PowerPoint 
 

Adobe  
- After Effects 
- Illustrator 
- Photoshop 
Microsoft  
- Media Encoder 
Sony 
- Vegas 

Microsoft  
- Excel 
- Outlook 
- Word 
- PowerPoint 
- Project 
Corel 
- WinZip 

Autodesk  
- 3Ds Max 
Google  
- SketchUp 

Performance Loss for Vista Reactive Power Management [4] 

8.8% 6.2% 9.5% 5.9% 

IV. METHODOLOGY 

To expose the effect of core-level phase prediction we 
develop a, performance monitoring counter (PMC)-based, 
core-level power model.  It is necessary to use a power 
model since it is impossible to measure core-level power 
consumption in existing multi-core processors due to cores 
sharing a single power plane [31]. Physical instrumentation 
thus cannot provide core-level power information, whereas 
the power model using performance counters can provide 
power estimates from individual cores. Prior studies show 
that accurate power models can be built using performance 
counter measurements [2][15][5][19]. Our model is more 
accurate due to its ability to account for leakage power, 
temperature effects and the impact of power management 
that are present in modern multi-cores. These models are 
preferred for dynamic power management since there is no 
need to measure power with out-of-band instrumentation.  
The details of our power and performance counter tracing 
methodology are provided below. 

A.  Power Measurement 

To measure power consumption, we instrument an AMD 
quad-core processor.  Processor core power consumption is 
measured using a hall-effect sensor placed in-line between 
CPU cores and their power supply (Core VDD).  This 
sensor produces an output voltage that is linearly 
proportional to current.  We also measure voltage levels at 
the point where the current enters the processor socket.  We 
perform all sampling at a rate of 1 MHz, using a National 
Instruments NIUSB-6259 [23] data acquisition system.  
This granularity allows the measurement of most power 
phases that are sufficiently long enough for 
power/performance adaptation.  Though shorter duration 
phases exist, current adaptation frameworks are not readily 
able to exploit them.  

 

 

B. Performance Counter Measurement 

To sample performance monitoring counters we developed 
a small kernel that provides periodic sampling of the four 
Opteron performance counters.  This kernel uses a device 
driver to give privileged access to user-mode applications.  
This approach is preferred over existing user-mode 
performance counter APIs as it affords more precise 
control of sampling and lower overhead.  In all experiments 
the sampling overhead for performance counter access 
averaged less than 1%.  Another benefit of using a device 
driver is that it provides access to others registers besides 
performance counters.  In particular, our approach requires 
access to model specific registers (MSRs) and PCI 
configuration registers.  These registers allow our 
application to take control of processor frequency, voltage, 
power management.  They also give access to on-die CPU 
temperature.  This is required to account for static power 
consumption.  Finally, sampling is invoked at a user-
specified periodicity using the built-in Windows 
multimedia timer [30]. 

V. PERIODIC POWER PHASE PREDICTOR 

While power management in operating systems like 
Windows/Linux is reactive, there have been proposals to 
use predictive power management [14][11][10].  Isci [14] 
uses table-based predictors of memory 
operations/instruction, to direct DVFS (dynamic voltage 
and frequency scaling) decisions for single-threaded 
workloads.  Duesterwald et al. [11] examine table-based 
predictor techniques to predict performance-related metrics 
(IPC, cache misses/instruction and branch misprediction 
rates) of single-thread workloads, but not power.  Diao [10] 
uses machine learning to predict activity patterns.  The 
predictions are used to make policy decisions for entering 
core idle states.  In contrast we propose the periodic power 
phase predictor (PPPP) which makes use of table-based 
prediction structures and the repetitive nature of power 
phases to predict performance demand and/or power 
consumption.  The predictor is shown in Fig. 4.  Like 
traditional table-based predictors, the main components are: 
a global phase history register (GPHR), pattern history 
table (PHT) and predicted level.  Typically, table-based 
predictors track sequences of events such as branch 
outcomes or IPC samples [11][14].  This predictor is 
distinct in that it tracks run-length-encoded sequences of 
core active/idle phases.  Activity in this case is defined as 
execution of architected instructions.  In APCI[1] 
terminology that is popularly used for power management, 
it is known as the C0 state.  All other time is considered 
non-active or idle.  Idle time is explicitly defined as 
“executing” in a processor idle state via the HLT 
instruction or other idle state entry method [3].  This state 
is also known as the Cx state where x = 1 to N.  These non-
C0 states are responsible for the largest power reductions 
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due to the application of clock and power gating.  Large 
power changes or phases can be detected by tracking core 
activity patterns.  For this reason we construct the PPPP to 
track core activity patterns.        

A diagram and functional description of the predictor are 
provided in Fig.s 4 to 5 and Table II.  The main feature of 
the predictor is its ability to capture frequent, power-
relevant events by tracking active/idle patterns.  Transitions 
to active or idle states and the resultant power level can be 
predicted by tracking previous patterns.  One of the most 
common events is the periodic timer tick event used in 
many commercial operating systems [28].  This event 
occurs on a regular interval to provide timing and 
responsiveness to the operating system scheduler.  When a 
core is otherwise idle, the timer tick produces an easily 
discernable pattern.   
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Fig. 4. Periodic Power Phase Predictor 

For Windows operating systems, the boot strap processor 
remains idle for periods of 16 milliseconds interrupted by 
active periods lasting about 100 microseconds. 

The predictor tracks the duration of the idle and active 
phases in the length fields.  As a pattern of active and idle 
period repeats the predictor updates the quality of the 
prediction using the confidence field.  The correctness of 
the prediction is assessed by comparing the predicted time 
of the next transition (timestamp field) to the actual 
transition time.  Also the power level observed at the 
transition is recorded.  Returning to the previous example, 
when an idle core wakes to respond to the timer tick 
interrupt, the power consumption is compared to the 
previously observed power level.  If the power levels do 
not match, the prediction confidence is reduced.  The valid 
and pending fields are used to determine which predictor 
entries can be used for predictor matches and which have 
outstanding predictions respectively. 

 

Fig. 5. Example of Program Phase Mapping to Predictor 

TABLE II 
PERIODIC POWER PHASE PREDICTOR FIELD DESCRIPTIONS 
Predictor 

Field 
Description 

Length 
Duration of phase.  This is also the table index.  When a 
periodic phase is detected, it is used to index the 
prediction table. 

Level 
Predicted level at next transition.  For utilization 
predictor this is active or idle.  For power prediction this 
is the last power level seen when this phase occurred. 

Timestamp 

Records timestamp of when predicted phase change is to 
occur.  This is the most critical value produced by the 
predictor.  It is used by the power manager to schedule 
changes in power/performance capacity of the system.  
This value allows for optimal selection of performance 
capacity given the anticipated duration of operation at a 
particular performance demand. 

Confidence 

“Quality” of phase as a function of past predictions and 
duration.  The confidence is used by the power manager 
to determine if a prediction will be used or not.  It is also 
used by the replacement algorithm to determine if the 
phase will be replaced if the predictor is full.  All newly 
detected phases start with a confidence of 1.  If the phase 
is subsequently mispredicted, the confidence is reduced 
by a fixed ratio. 

Valid Indicates whether this entry has a valid phase stored with 
a “true” or “false.” 

Pending Indicates if this phase is predicted to occur again.  This 
value is set “true” on the occurrence of the phase and 
remains true until the phase prediction expires. 

 

VI. PREDICTING CORE ACTIVITY LEVEL 

This section provides power and performance results for 
the core and aggregate-level periodic power phase predictor 
in comparison to a commercial reactive scheme.  We 
compare prediction accuracy, prediction coverage, power 
and performance.  Also, a characterization of core activity 
phases is given.  	
  
	
  
First we consider prediction accuracy.   We define accuracy 
according to the existing, commercial, reactive DVFS 
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algorithm used in the Windows Vista operating system 
[25]. A correct prediction is one in which the selected 
DVFS frequency selection keeps the processor within the 
target range of 30% to 50% activity.   
 
The accuracy of the reactive scheme is determined by 
analyzing traces of core DVFS and activity levels from a 
real system.  If the selected frequency did not cause the 
core to have an activity level between 30% and 50%, the 
selection is considered wrong.  For the predictive schemes, 
the activity level trace is played back through our predictor 
while allowing it to select a frequency to meet the 30%-
50% target.  Since core activity level changes according to 
core frequency, the resultant activity level must be scaled 
accordingly.  The amount of scaling is determined 
experimentally by measuring performance of the SYSMark 
workload under a range of core frequencies.  Performance, 
and therefore activity level, scale 70% for each 100% 
change in core frequency.	
  

Using this approach we present results for SYSMark 2007 
prediction accuracy in Table III.  DVFS hit rate is provided 
for three predictors.  Core-level PPPP represents our 
predictor applied to each core.  Aggregate PPPP represents 
our predictor driven by the total activity level.  All target 
activity levels remain the same. A single predictor, driven 
by the aggregate activity level (i.e. average of all cores) is 
used to select the next core frequency.  Core-level reactive 
represents the Windows Vista DVFS algorithm. 

TABLE III 
SYSMark 2007 DVFS Hit Rate 

Predictor E-Learning Productivity Video 
Creation 3D 

Core-Level  
PPPP 82.6% 73.8% 76.4% 72.7% 

Aggregate  
PPPP 26.8% 26.3% 40.2% 30.7% 

Core-Level 
Reactive 
(Vista) 

66.4% 65.2% 63.5% 59.7% 

The limitations of reactive DVFS selection are evident.  
Due to frequent transitions between high and low activity 
levels, the reactive scheme is only able to achieve the 
correct frequency about 2/3 of the time.  PPPP applied at 
the aggregate level is much worse with an average of 31% 
accuracy.  The best case is achieved with the core-level 
PPPP which averages 76%.  The differences in the success 
of these predictors are a result of prediction coverage and 
accuracy of the predicted phases.  See Table IV. Coverage 
is defined as percentage of the workload in which a 
prediction is available.  A prediction could be unavailable 
if the last observed activity pattern has not been seen before 
or has caused too many mispredictions.  The reactive 
scheme does not have coverage since it does not predict.  In 
contrast PPPP has much lower prediction coverage, 
especially for the aggregate predictor.  The aliasing of 

multiple core phases obscures predictable behavior to less 
than 3% for E-Learning and Productivity.  Video Creation 
and 3D are slightly better at 16% and 8% respectively.  
One possible reason is that these workloads have larger 
portions of multi-threaded execution.  The aggregate 
activity level is likely more representative of core-level 
activity compared to the single-threaded E-Learning and 
Productivity.  Core-level PPPP achieves the highest 
accuracy by having a large workload coverage of 43% and 
accuracy over 95% in the covered portion.  Outside of the 
covered portions the predictor selects frequency according 
to the reactive algorithm. 

TABLE IV 
SYSMark 2007 Prediction Coverage 

Predictor E-Learning Productivity Video 
Creation 3D 

Core-Level 
PPPP 57.0% 33.5% 43.0% 37.9% 

Aggregate 
PPPP 1.3% 2.3% 16.3% 8.0% 

Core-Level 
Reactive (Vista) N/A N/A N/A N/A 

To quantify the improved predictability of core-level versus 
aggregate PPPP, Table V presents a characterization of 
core active and idle durations for SYSMark 2007.  
Durations group into the following ranges: < 10 
milliseconds, 10-100 milliseconds, 100-1000 milliseconds 
and > 1000 milliseconds.  One of the major distinctions 
between core-level and Aggregate is the high concentration 
of short phases, less than 10ms for CoreTotal.  Just as in 
the example shown in Fig. 1, these short phases are largely 
a result of misalignment of the core-level activity.  In 
particular, the most common phases are in the 10-100ms 
range.  This is caused by the timer tick, scheduling and 
power adaptation intervals for the Windows operating 
systems.The timer tick normally occurs on 16ms 
boundaries.  Thread creation and migration events also 
occur on these boundaries.  Power adaptations (DVFS) 
occur on 100ms boundaries. Therefore, idle phases are very 
frequently interrupted by these events.  Similarly, active 
phases are often terminated by threads being migrated to 
other cores on these same boundaries.  Any misalignment 
of these events between cores causes the effective activity 
durations to be shorter and less predictable.   

Fig. 6 provides the frequency distribution of active and idle 
phases across SYSMark 2007.  Active and idle phase are 
considered as a group since both are relevant for prediction.  
Idle phases must be predicted in order to anticipate how 
long a power surplus will be available.  Similarly, active 
phase must be predicted to anticipate durations of power 
deficits. In both cases the predicted durations is needed in 
order to weigh the power and performance cost of 
transitioning to low power states or changing the DVFS 
operating point.  Several local maximums are present due 
to the periodic nature of the interaction between power 
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management, OSs and system hardware.  By removing or 
varying the intensity of these various events and observing 
the change in frequency distribution, we are able to relate 
period length to its source.  Note the prevalence of phases 
in the 10-15ms range that corresponds to the OS scheduling 
interval.  Also, consider the spikes at 100ms, which 
corresponds to the DVFS scheduling interval.  Additional, 
longer-duration maximums occur in the 200ms and higher 
range.  These correspond to GUI interaction and I/O delays 
occurring in the SYSMark benchmark. 

TABLE V 
Core Phase Residency by Length  

 
E-Learning Video Creation 

Phase Length Core Aggregate Core Aggregate 

< 10 ms 11% 93% 44% 82% 

10 - 100 ms 49% 7% 27% 2% 

100 - 1000 ms 10% 0% 14% 9% 

> 1000 ms 30% 0% 16% 7% 

 
Productivity 3D 

Phase Length Core Aggregate Core Aggregate 

< 10 ms 55% 97% 55% 97% 

10 - 100 ms 30% 3% 30% 3% 

100 - 1000 ms 5% 0% 5% 0% 

> 1000 ms 11% 0% 11% 0% 
 
Next we consider the resultant power and performance 
impact of the core-level PPPP versus reactive DVFS 
selection.  Aggregate PPPP is not considered due its very 
poor prediction accuracy.  Table VI presents power and 
performance results for the two schemes.  Power and 
performance are estimated using the measured and 
predicted DFVS, active and idle states shown in Table VII.  
On average, power is reduced by 5.4% while achieving a 
speedup of 3.8%.  This improvement is caused by PPPP 
more frequently selecting high frequencies for active 
phases and low frequencies for performance-insensitive 
idle phases.  This shift can be seen in the active residencies 
of all subtests.  The 2.4GHz – Active state increases by 0.6 
to 2.5 percentage points.  Similarly, the active time in lower 
frequencies is reduced an average of 0.76 percentage 
points.  The performance impact of selecting a low 
frequency for an active phase can be large.  For example, 
selecting 800MHz rather than 2.4GHz yields a performance 
loss of 47% ((1-0.8GHz/2.4GHz) x 70%). Therefore, it 
takes only a small change in residency to drastically impact 
performance.  Also, the impact on performance is larger 
due to active time representing only an average of 17% 
total time. This magnifies the performance impact by about 
6x (1/0.17).  The net effect on active frequency is an 
increase of 144 MHz from 1.55GHz to 1.69GHz.  Note that 
though frequency increases by 9.3%, performance 

increases only 3.8% due to limited frequency scaling of the 
workload (70%) and reduced total time in the active state. 
  

 

 
Fig. 6. Core-Level Phase Length Probability Distributions 

TABLE VI 
SYSMark 2007 Power and Performance Impact of PPPP 

 E-Learning Productivity 

 
Predictive 

(PPPP) 
Reactive 
(Vista) 

Predictive 
(PPPP) 

Reactive 
(Vista) 

Power (W) 16.6 18.2 14.3 15.1 
Power 

Savings 8.3% 5.3% 

Delay (sec) 924 963 585 607 
Speedup 4.2% 3.7% 

Energy (KJ) 15.4 17.5 8.4 9.2 
Energy 
Savings 12.3% 8.7% 

 

 Video Creation  3D 

 
Predictive 

(PPPP) 
Reactive 
(Vista) 

Predictive 
(PPPP) 

Reactive 
(Vista) 

Power (W) 18.6 19.5 18.6 19.5 
Power 

Savings 4.7% 2.9% 

Delay (sec) 1129 1172 1129 1172 
Speedup 3.8% 3.6% 

Energy (KJ) 20.9 22.8 20.9 22.8 
Energy 
Savings 8.2% 6.3% 

Next we consider power savings.  Though it is possible to 
bias a reactive DVFS algorithm to achieve performance 
comparable to a predictive algorithm, it is not possible to 
do so without increasing power consumption drastically.  

Scheduling 
Quantum   

16ms 

DVFS Change 
Interval 
100ms 
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Prediction allows DVFS selection to select the “correct” 
frequency for both performance and power savings.  In this 
case our predictor achieves a 3.8% performance increase 
while reducing power consumption by 5.4%.   The primary 
cause is a shift in idle frequency selections away from the 
high-performance, high-leakage states.  Residency in the 
most inefficient state, 2.4GHz – Idle, was reduced by an 
average of 7.8 percentage points.  Residency in other idle 
states above the minimum frequency also decreased, but by 
a smaller 3.1 percentage points.  This increases idle 
residency in the minimum frequency idle state of 800MHz 
by an average of 15%.  Average idle frequency decreases 
by 200MHz from 1.2GHz to 1.0GHz.        

TABLE VII 
SYSMark 2007 P-State and C-State Residency of PPPP versus Reactive 

	
   E-Learning	
   Productivity	
  

	
   Predictive	
  
(PPPP)	
  

Reactive	
  
(Vista)	
  

Predictive	
  
(PPPP)	
  

Reactive	
  
(Vista)	
  

2.4GHz - Active	
   5.4%	
   4.6%	
   2.9%	
   2.4%	
  
2.4GHz - Idle	
   7.1%	
   17.4%	
   4.4%	
   9.6%	
  

1.6GHz - Active	
   1.2%	
   1.4%	
   0.8%	
   0.8%	
  
1.6GHz - Idle	
   5.5%	
   9.4%	
   3.8%	
   6.2%	
  

1.2GHz - Active	
   1.1%	
   1.2%	
   1.2%	
   1.2%	
  
1.2GHz - Idle	
   6.9%	
   9.8%	
   6.6%	
   9.7%	
  

0.8GHz - Active 3.2% 4.5% 3.8% 4.7% 
0.8GHz - Idle	
   69.5%	
   51.8%	
   76.5%	
   65.3%	
  

Active Frequency	
   1.72 GHz	
   1.56 GHz	
   1.47 GHz	
   1.34 GHz	
  
Idle	
  

Frequency	
  
1.01 GHz	
   1.24 GHz	
   0.94 GHz	
   1.07 GHz	
  

	
   Video Creation	
   3D	
  

	
   Predictive	
  
(PPPP)	
  

Reactive	
  
(Vista)	
  

Predictive	
  
(PPPP)	
  

Reactive	
  
(Vista)	
  

2.4GHz - Active	
   6.8%	
   5.3%	
   6.8%	
   5.3%	
  
2.4GHz - Idle	
   5.7%	
   12.4%	
   5.7%	
   12.4%	
  

1.6GHz - Active	
   2.7%	
   3.2%	
   2.7%	
   3.2%	
  
1.6GHz - Idle	
   5.6%	
   9.6%	
   5.6%	
   9.6%	
  

1.2GHz - Active	
   3.8%	
   4.8%	
   3.8%	
   4.8%	
  

1.2GHz - Idle	
   9.2%	
   13.8%	
   9.2%	
   13.8%	
  
0.8GHz - Active	
   3.7%	
   4.8%	
   4.7%	
   6.9%	
  

0.8GHz - Idle	
   62.3%	
   46.1%	
   51.6%	
   36.7%	
  
Active Frequency	
   1.65 GHz	
   1.51 GHz	
   1.92 GHz	
   1.77 GHz	
  

Idle	
  
Frequency	
  

1.01 GHz	
   1.20 GHz	
   1.07 GHz	
   1.32 GHz	
  

VII. PREDICTING POWER LEVELS 

The second application of periodic power phase prediction 
is for predicting core power consumption.  Predicting 
power levels provides opportunities for increased 
performance and efficiency.  Existing power control 
systems such as power capping[12] and turbo boost[9] 
apply power and performance limits statically based on 
user-specified or instantaneous power consumption.  
Knowing power levels a priori could increase performance 

by avoiding adaptations for short duration phases.  For 
example, a core that encounters a short, high-power phase 
of execution may cause the power controller to reduce its 
or other processors’ frequency.  If the controller could 
know that the phase would be too short to cause a power or 
temperature violation, the reduction in performance could 
be avoided.  
 
To this end we apply PPPP to prediction of core-level and 
aggregate power consumption.  We compare results to a 
last value predictor also at the core and aggregate level.  
Core-level power is measured using our PMC-based power 
model.  The model allows fine-grain, power management 
and temperature-aware estimation of core power.  
Additional details of the models are provided in the 
Appendix[6].    
Rather than using core activity level to predict core activity 
level, we use it to cross predict power level.  The predicted 
activity-level in the predictor is replaced by the modeled 
core power level.  The prediction table index remains as 
sequences of core activity levels.  This approach provides 
better pattern matching as variations in temperature and 
application of DVFS tends to hide otherwise discernable 
patterns. 

 
Fig. 7. Prediction Accuracy of Core Power for Various Predictors  

Fig. 7 shows the weighted average percent accuracy of our 
periodic power phase predictor compared to a last-value 
predictor.  Weighted average is chosen since SYSmark 
2007 power consumption contains many idle, low-power 
phases.  In these phases, a small error in absolute terms 
yields a very large percentage error.  Therefore, we scale 
error values by the magnitude of the measured power 
sample compared to the maximum observed.  For example, 
a 10% error on a 5W sample has half the impact of a 10% 
error on a 10W sample.  For all subtests, the core-level 
versions of the predictors outperformed the aggregate 
versions.  The best overall performance was 86% accuracy 
for the periodic core-level predictor compared to 83% for 
the core-level version of the last-value predictor.  The 
benefit of core-level prediction of power is less pronounced 
than for prediction of activity level.  This is due to the 
smaller dynamic range of power consumption compared to 
activity level.  Though activity levels regularly vary from 
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0% to 100%, power levels remain in a much smaller range 
of approximately 25% to 75%. 
 

VIII. CONCLUSION 

This paper presents the concept of core-level phase 
prediction and its application to dynamic power 
management.  By observing changes in performance 
demand and power consumption at the core-level, it is 
possible to perceive predictable phase behavior.  Prediction 
of phases allows power management to avoid over or under 
provisioning resources in response to workload changes.  
Using this concept we develop the PPPP, a simple, table-
based prediction scheme for directing DVFS selection.  We 
apply the predictor to the SYSMark2007 benchmark suite 
and attain simultaneous performance and power 
improvements.  Compared to the reactive DVFS algorithm 
used by Windows Vista, performance is increased by 5.4% 
and while power consumption is reduced by 3.8%.  We 
also present a power and temperature-aware core-level 
model for processor power consumption.  Using this 
model, we show processor power can be predicted by PPPP 
with accuracy 4.8% better than a last-value predictor. 

APPENDIX - CPU POWER MODEL 

To provide core-level power measurement we develop a 
performance counter based power model for the AMD 
Opteron processor.  The model is similar to other models 
[2][15][5][19] in that it is composed of a small set of 
performance events that are highly correlated to processor 
power consumption.  The primary distinction is that our 
model accounts for temperature and voltage effects.  This 
allows isolation of microarchitecture-independent power 
consumption such as leakage current and DVFS states.  

Using a real system instrumented for power measurement 
we develop polynomial, regression models for power 
consumption.  The details of the model are given in Tables 
VIII and IX.  The model improves on existing on-line 
models by accounting for power management and 
temperature variation.  All model coefficients are tuned 
empirically using a real system instrumented for power 
measurement.  Like existing models ours contains a 
workload dependent portion that is dominated by the 
number of instructions completed per second.  In this case 
we use the number of fetched operations per second in lieu 
of instructions completed.  The fetched ops metric for is 
preferred as it also accounts for speculative execution that 
does not update the architected state.   

 

 

 

TABLE VIII 
AMD Quad-Core Opteron Power Model 

Power 
Models 

Equation 

Total 
Power 

	
  
Workloa

d 
Depende
nt Power	
  

(FetchOpsN/Sec)·CoeffF+(FloatPointOpsN/Sec) 
·CoeffFP+(DCAccessN/Sec) ·CoeffDC	
  

Gateable 
Power	
  

(%HaltedN) ·CoeffGateable·(Voltage)2·FrequencyN	
  

Ungateab
le Power	
  

(%NonHaltedN) ·CoeffUngateable·(Voltage)2·FrequencyN	
  

Static 
Power 

(Temp2·CoeffT2+Temp·CoeffT1+·CoeffT2)Voltage 

Average Error = 0.89% 

TABLE IX 
Model Parameter Descriptions 

Quantity Description 
N Core Number. 

FetchOps Micro operations fetched.  Includes speculative 
operations. 

FloatPointOps Floating point operations retired.  Accounts for 
difference in power between INT and FP. 

DCAccess Data cache access.  Accounts for power 
consumed in caches. 

%Halted % of cycles in which the core was halted. 
%Not Halted % of cycles in which the core was not halted. 

Voltage Maximum requested voltage for all cores.  Due 
to shared voltage plane. 

Frequency Current core frequency.  This can be read via 
AMD model specific register. 

Temperature Current processor temperature.  This can be 
read via AMD model specific register. 

Coeffx Model coefficient. The values are determined 
empirically using measurement/regression. 

The primary distinction of our model is that is contains a 
temperature dependent component.  Using workloads with 
constant utilization, we vary processor temperature and 
voltage to observe the impact on static leakage power.  
Temperature is controlled by adjusting the speed of the 
processor’s fan.  Temperature is observed with 0.125 
degree Celsius resolution using an on-die temperature 
sensor [3].  This sensor can be accessed by the system 
under test through a built-in, on-chip register.  Voltage is 
controlled using the P-State control register.  This allows 
selection of one of five available voltage/frequency 
combinations.  Voltage is observed externally using our 
power instrumentation.  Like the workload dependent 
model, we tune the coefficients of the polynomial model 
using regression techniques.  Note that the static power 
model is highly process dependent.  Processors 
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manufactured with different semiconductor process 
parameters require the model to be re-tuned.  

The dominant power management effects 
(voltage/frequency scaling, clock gating) are further 
accounted for using the Gateable and Ungateable power 
models.  Gateable power is found by measuring the effect 
of enabling/disabling idle core clock gating (Cache Flush 
on Halt).  Ungateable represents the portion of power 
which cannot be gated.  These components are also found 
experimentally.  The resultant, average error in the model 
was 0.89%.  The error distribution for SPEC CPU2006 and 
SYSMark 2007 is provided in Fig. 8.     

 
Fig. 8. Model Error Analysis – SPEC CPU 2006 and SYSMark 2007 
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