
1	

	

Core-Level Activity Prediction for Multi-Core
Power Management

W. Lloyd Bircher1 and Lizy John2
1Advanced Micro Devices, Austin Texas

2Department of Electrical and Computer Engineering, University of Texas at Austin

 Abstract - Existing power management techniques operate
by reducing performance capacity (frequency, voltage,
resource size) when performance demand is low, such as at
idle or similar low activity phases. In the case of multi-core
systems, the performance and power demand is the aggregate
demand of all cores in the system. Monitoring aggregate
demand makes detection of phase changes difficult (active-to-
idle, idle-to-active, etc.) since aggregate phase behavior
obscures the underlying phases generated by the workloads
on individual cores. This causes sub-optimal power
management and over-provisioning of power resources. In
this paper, we address these problems through core-level,
activity prediction.
The core-level view makes detection of phase changes more
accurate, yielding more opportunities for efficient power
management. Due to the difficulty in anticipating activity
level changes, existing operating system power management
strategies rely on reaction rather than prediction. This causes
sub-optimal power and performance since changes in
performance capacity by the power manager lag changes in
performance demand. To address this problem we propose
the Periodic Power Phase Predictor (PPPP). This activity level
predictor decreases SYSMark 2007 client/desktop processor
power consumption by 5.4% and increases performance by
3.8% compared to the reactive scheme used in Windows Vista
operating system. Applying the predictor to the prediction of
processor power, we improve accuracy by 4.8% compared to
a reactive scheme.

 Index Terms – Dynamic power management, prediction,
multi-core, power modeling.

I. INTRODUCTION

Dynamic power management provides a significant
opportunity for increasing energy efficiency and
performance of computing systems. Energy efficiency is
increased by reducing performance capacity (frequency,
parallelism, speculation, etc.) when the demand for
performance is low. Efficiency or a lack thereof may
impact the performance of a system.

The challenge in applying power management to increase
efficiency is in identifying when to adapt performance
capacity. The ubiquitous, architected solution implemented
in operating systems such as Windows/Linux is to react to
changes in performance demand. Though this approach is
simple, it performs sub-optimally [4][10] for workloads
with many distinct and/or short phases. Each time a
workload transitions from a phase of low performance
demand to a phase of high performance demand, reactive
power management increases performance capacity
sometime after the phase transition. During the time
between the change in demand and capacity, performance
may be less than optimal. Similarly, power consumption is
sub-optimal on transitions from high to low demand. The
amount of performance loss is proportional to the number
of phase changes in the workload and the lag between
demand and capacity.
Identifying when to adapt is complicated by the presence of
multiple cores sharing power resources. Consider Fig. 1.
Core-level power consumption is shown for a system with
multiple simultaneous threads. The program threads are
fixed to the cores with thread N on core N, thread N-1 on
core N-1, etc. Since power monitoring is typically
provided at the system-level [12], existing power control
techniques use the erratic fluctuations in the total power for
predicting future behavior. This is unfortunate since in this
example, the individual threads have a periodic, easily
discernable pattern, while the pattern in the aggregate
power is less discernable. If power phases can be tracked
at the core-level, accurate dynamic power management
schemes can be devised.

We propose to improve the effectiveness of power
management through the use of predictive, core-level
power management. Rather than reacting to changes in
performance demand, we use past activity patterns to
predict future transitions. Rather than using aggregate
power information, we use activity and power measured at
the core-level.

2	

	

Fig. 1. Thread and Aggregate Power Patterns

To analyze the effectiveness of our predictor we use the
SYSMark 2007 benchmark. It contains numerous,
desktop/personal computing applications such as Word,
Excel, PowerPoint, Photoshop, Illustrator, etc. The
benchmark is structured to have a high degree of program
phase transitions, including extensive use of processor idle
states (c-states) and performance states (p-states) [1].
Rather than being strictly dominated by the characteristics
of the workload itself, SYSMark 2007 accounts for the
impact of periodic, operating system scheduling and I/O
events. Using this observation, we construct a periodic
power phase predictor. This simple periodic predictor
tracks and predicts periodic phases by their duration. By
predicting future demand, aggressive adaptations can be
applied. The core-level predictive technique outperforms
existing reactive power management schemes by reducing
the effective lag between workload phase transitions and
power management decisions. By predicting the individual
power contribution of each thread rather than predicting the
aggregate effect, complex phases can be predicted.

The contributions of this study are summarized as follows.

(1) Concept of core-level power phases in multi-core
systems. Core-level power phases unveil more
opportunities for power saving adaptations than are
possible if only aggregate system level information is used.

(2) A simple, periodic power phase predictor. Though
prior research [11][14] demonstrates the effectiveness of

power management using predictive schemes on
uniprocessors, our research shows its effectiveness when
applied to multi-core systems with operating system
scheduling interactions. The proposed predictive power
management is compared against the reactive algorithm in
the Windows Vista operating system. Previous research
focused on single-threaded SPEC CPU 2000 benchmarks,
while our study uses SYSMark 2007 which includes
popular desktop/personal computing applications such as
Microsoft Word, Excel, PowerPoint, Adobe Photoshop,
Illustrator, etc. These workloads include difficult to predict
power management events due to large numbers of
interspersed idle phases and frequent thread migrations.

(3) Detailed, power management-aware, CPU power model
for an AMD Quad-Core Opteron processor. Since power
values are available at system level only, core-level
prediction is performed using performance counters as
proxies. To realize our core-level phase detection
objectives, we develop a detailed power model for this
quad-core processor, using core-level performance metrics.
We improve upon exiting models based on performance
counters [5] to account for leakage, temperature and power
management effects.

II. COMMERCIAL DVFS ALGORITHM

Existing, commercial DVFS algorithms in Windows and
Linux operating systems select processor clock frequencies
by reacting to changes in core activity level [25]. Activity
level represents the ratio of architected code execution
(active time) to wall clock time (active + idle time).
Processors become idle when they exhaust the available
work in their run queues. The intent of these algorithms is
to apply low frequencies when a processor is mostly idle
and high frequencies when mostly active. This provides
high performance when programs can benefit and low
power when they cannot.

In this study we compare our predictive DVFS algorithm to
that currently used in the Windows Vista operating system
[25]. This Vista algorithm reactively selects DVFS states
(core frequency) in order to maintain a target core activity
level of 30%-50%. See Fig. 2. The “predicted” activity
level is the last observed activity level, hence this is a
reactive scheme.

When the core activity level is greater than 50%, the
reactive algorithm selects a higher frequency to increase
performance enough to allow the core to be idle more than
50% (i.e. active < 50%) of the time. The new frequency is
selected assuming a 100% frequency increase reduces
active time by 50%. For example assume a core operates at
1GHz and is 100% active. In order to achieve an activity
level of 50%, the algorithm would attempt to double the
frequency to 2GHz. Frequency reductions are similar in
that activity levels below 30% cause the algorithm to

Phase
Misalignment

3	

	

reduce frequency in order to increase activity levels to
30%. Since processors have a finite number of architected
DVFS states, the algorithm selects the nearest frequency
which meets the target activity level.

Fig. 2. Windows Vista Reactive P-State Selection Algorithm	

III. WORKLOAD CHARACTERIZATION

To analyze the power/performance impact of our predictive
power management scheme on real-world workloads, we
characterize a system running the desktop/client SYSMark
2007 benchmark. This benchmark represents a wide range
of desktop computing applications. The benchmark
components are E-Learning, Video Creation, Productivity,
and 3D. The individual subtests are listed in Table I. This
benchmark is particularly important to the study of
dynamic power adaptations since it provides realistic user
scenarios that include user interface and I/O delays. These
delays cause a large amount of idle-active transitions in the
cores. Since current OSs determine dynamic adaption
levels using core activity level, the replication of these user
interactions in the benchmark is critical.

One of the most critical aspects of this workload is shown
in Fig. 3. Unlike traditional scientific and computing
benchmarks, core activity level varies greatly over time.
The primarily single-thread E-Learning and Productivity
subtests are composed of single core active phases
interspersed with all cores idle. The frequent transitions
between active and idle make power management decisions
difficult. Reacting too quickly to idle phases can induce
excessive performance loss as code execution is halted to
allow transition of clocks, voltage planes or component
state. At the other extreme the 3D and Video Creation
workloads have large sections of all cores being active.

These regions, also interspersed with all-idle and one-
active regions are critical for power sharing strategies. As
the workload/operating systems adds and removes threads
from cores the resultant power level changes drastically.
The power difference between cores in the active versus
idle state is much greater than differences within the active
state.

Fig. 3. Utilization of Multiple Cores by SYSMark 2007 Benchmark

The effect of these frequent transitions on power and
performance is significant. Bircher et al [4] show that the
slow reaction of the Vista DVFS algorithm leads to a
performance loss of 6%-10% for SYSMark07. We show
that this performance loss is due to a large portion of the
benchmark operating at DVFS state with frequencies as
low as 1/3 of the maximum frequency. Similarly, power
consumption is excessively high due to the DVFS
algorithm choosing high-power states for many of the
frequent, idle phases in the benchmark.

Outlook
Excel

Media
Encoder

Photoshop

After
Effects

Sketchup

3dsMax

Photoshop
Illustrator

Flash Photoshop Flash

4	

	

TABLE I

SYSMARK 2007 COMPONENTS

E-Learning Video Creation Productivity 3D
Adobe
- Illustrator
- Photoshop
-Flash
Microsoft
- PowerPoint

Adobe
- After Effects
- Illustrator
- Photoshop
Microsoft
- Media Encoder
Sony
- Vegas

Microsoft
- Excel
- Outlook
- Word
- PowerPoint
- Project
Corel
- WinZip

Autodesk
- 3Ds Max
Google
- SketchUp

Performance Loss for Vista Reactive Power Management [4]

8.8% 6.2% 9.5% 5.9%

IV. METHODOLOGY

To expose the effect of core-level phase prediction we
develop a, performance monitoring counter (PMC)-based,
core-level power model. It is necessary to use a power
model since it is impossible to measure core-level power
consumption in existing multi-core processors due to cores
sharing a single power plane [31]. Physical instrumentation
thus cannot provide core-level power information, whereas
the power model using performance counters can provide
power estimates from individual cores. Prior studies show
that accurate power models can be built using performance
counter measurements [2][15][5][19]. Our model is more
accurate due to its ability to account for leakage power,
temperature effects and the impact of power management
that are present in modern multi-cores. These models are
preferred for dynamic power management since there is no
need to measure power with out-of-band instrumentation.
The details of our power and performance counter tracing
methodology are provided below.

A. Power Measurement

To measure power consumption, we instrument an AMD
quad-core processor. Processor core power consumption is
measured using a hall-effect sensor placed in-line between
CPU cores and their power supply (Core VDD). This
sensor produces an output voltage that is linearly
proportional to current. We also measure voltage levels at
the point where the current enters the processor socket. We
perform all sampling at a rate of 1 MHz, using a National
Instruments NIUSB-6259 [23] data acquisition system.
This granularity allows the measurement of most power
phases that are sufficiently long enough for
power/performance adaptation. Though shorter duration
phases exist, current adaptation frameworks are not readily
able to exploit them.

B. Performance Counter Measurement

To sample performance monitoring counters we developed
a small kernel that provides periodic sampling of the four
Opteron performance counters. This kernel uses a device
driver to give privileged access to user-mode applications.
This approach is preferred over existing user-mode
performance counter APIs as it affords more precise
control of sampling and lower overhead. In all experiments
the sampling overhead for performance counter access
averaged less than 1%. Another benefit of using a device
driver is that it provides access to others registers besides
performance counters. In particular, our approach requires
access to model specific registers (MSRs) and PCI
configuration registers. These registers allow our
application to take control of processor frequency, voltage,
power management. They also give access to on-die CPU
temperature. This is required to account for static power
consumption. Finally, sampling is invoked at a user-
specified periodicity using the built-in Windows
multimedia timer [30].

V. PERIODIC POWER PHASE PREDICTOR

While power management in operating systems like
Windows/Linux is reactive, there have been proposals to
use predictive power management [14][11][10]. Isci [14]
uses table-based predictors of memory
operations/instruction, to direct DVFS (dynamic voltage
and frequency scaling) decisions for single-threaded
workloads. Duesterwald et al. [11] examine table-based
predictor techniques to predict performance-related metrics
(IPC, cache misses/instruction and branch misprediction
rates) of single-thread workloads, but not power. Diao [10]
uses machine learning to predict activity patterns. The
predictions are used to make policy decisions for entering
core idle states. In contrast we propose the periodic power
phase predictor (PPPP) which makes use of table-based
prediction structures and the repetitive nature of power
phases to predict performance demand and/or power
consumption. The predictor is shown in Fig. 4. Like
traditional table-based predictors, the main components are:
a global phase history register (GPHR), pattern history
table (PHT) and predicted level. Typically, table-based
predictors track sequences of events such as branch
outcomes or IPC samples [11][14]. This predictor is
distinct in that it tracks run-length-encoded sequences of
core active/idle phases. Activity in this case is defined as
execution of architected instructions. In APCI[1]
terminology that is popularly used for power management,
it is known as the C0 state. All other time is considered
non-active or idle. Idle time is explicitly defined as
“executing” in a processor idle state via the HLT
instruction or other idle state entry method [3]. This state
is also known as the Cx state where x = 1 to N. These non-
C0 states are responsible for the largest power reductions

5	

	

due to the application of clock and power gating. Large
power changes or phases can be detected by tracking core
activity patterns. For this reason we construct the PPPP to
track core activity patterns.

A diagram and functional description of the predictor are
provided in Fig.s 4 to 5 and Table II. The main feature of
the predictor is its ability to capture frequent, power-
relevant events by tracking active/idle patterns. Transitions
to active or idle states and the resultant power level can be
predicted by tracking previous patterns. One of the most
common events is the periodic timer tick event used in
many commercial operating systems [28]. This event
occurs on a regular interval to provide timing and
responsiveness to the operating system scheduler. When a
core is otherwise idle, the timer tick produces an easily
discernable pattern.

	

LengthTn-1 LengthTn

	

LengthTn-1

LengthTn

	
 LengthTn-1

	

LengthTn

	
 LengthTn-1

	

LengthTn

	
 LengthTn-1

	

LengthTn

	
 LengthTn-1

	

LengthTn

	
 LengthTn-1

	

LengthTn

	
 LengthTn-1

	

LengthTn

	

	

LengthTn-1

	

LengthTn

	

LevelTn+2

Confidence

TS

GPHR Size = 2

GPHR Size = 2

LevelTn+2

	

Confidence

	

TS

	

LevelTn+2

	

Confidence

	

TS

	

LevelTn+2

	

Confidence

	

TS

	

LevelTn+2

	

Confidence

	

TS

	

LevelTn+2

	

Confidence

	

TS

	

LevelTn+2

	

Confidence

	

TS

	

LevelTn+2

	

Confidence

	

TS

	

V

 V

	

V

	

V

	

V

V	

	

V

	

V

	

V

	

P

 P

	

P

	

P

	

P

	

P

	

P

	

P

	

V
al

id

P
en

di
ng

L
ev

el

(W
at

ts
,U

ti
l%

)

Period Length

T
im

eS
ta

m
p

 Level

Most
Recent
Phase PHT Size = 48

Fig. 4. Periodic Power Phase Predictor

For Windows operating systems, the boot strap processor
remains idle for periods of 16 milliseconds interrupted by
active periods lasting about 100 microseconds.

The predictor tracks the duration of the idle and active
phases in the length fields. As a pattern of active and idle
period repeats the predictor updates the quality of the
prediction using the confidence field. The correctness of
the prediction is assessed by comparing the predicted time
of the next transition (timestamp field) to the actual
transition time. Also the power level observed at the
transition is recorded. Returning to the previous example,
when an idle core wakes to respond to the timer tick
interrupt, the power consumption is compared to the
previously observed power level. If the power levels do
not match, the prediction confidence is reduced. The valid
and pending fields are used to determine which predictor
entries can be used for predictor matches and which have
outstanding predictions respectively.

Fig. 5. Example of Program Phase Mapping to Predictor

TABLE II
PERIODIC POWER PHASE PREDICTOR FIELD DESCRIPTIONS
Predictor

Field
Description

Length
Duration of phase. This is also the table index. When a
periodic phase is detected, it is used to index the
prediction table.

Level
Predicted level at next transition. For utilization
predictor this is active or idle. For power prediction this
is the last power level seen when this phase occurred.

Timestamp

Records timestamp of when predicted phase change is to
occur. This is the most critical value produced by the
predictor. It is used by the power manager to schedule
changes in power/performance capacity of the system.
This value allows for optimal selection of performance
capacity given the anticipated duration of operation at a
particular performance demand.

Confidence

“Quality” of phase as a function of past predictions and
duration. The confidence is used by the power manager
to determine if a prediction will be used or not. It is also
used by the replacement algorithm to determine if the
phase will be replaced if the predictor is full. All newly
detected phases start with a confidence of 1. If the phase
is subsequently mispredicted, the confidence is reduced
by a fixed ratio.

Valid Indicates whether this entry has a valid phase stored with
a “true” or “false.”

Pending Indicates if this phase is predicted to occur again. This
value is set “true” on the occurrence of the phase and
remains true until the phase prediction expires.

VI. PREDICTING CORE ACTIVITY LEVEL

This section provides power and performance results for
the core and aggregate-level periodic power phase predictor
in comparison to a commercial reactive scheme. We
compare prediction accuracy, prediction coverage, power
and performance. Also, a characterization of core activity
phases is given. 	

	

First we consider prediction accuracy. We define accuracy
according to the existing, commercial, reactive DVFS

1ms 4ms

GPHR

20%

1ms
4ms

U
til

iz
at

io
n

Time (ms)

20%

80%

2ms 2ms

GPHR

80%

Pred.
Level 2ms

2ms

Time (ms)

20%

80%

U
til

iz
at

io
n

Pred.
Level

+5ms

Time
Stamp

+4ms

Time
Stamp

6	

	

algorithm used in the Windows Vista operating system
[25]. A correct prediction is one in which the selected
DVFS frequency selection keeps the processor within the
target range of 30% to 50% activity.

The accuracy of the reactive scheme is determined by
analyzing traces of core DVFS and activity levels from a
real system. If the selected frequency did not cause the
core to have an activity level between 30% and 50%, the
selection is considered wrong. For the predictive schemes,
the activity level trace is played back through our predictor
while allowing it to select a frequency to meet the 30%-
50% target. Since core activity level changes according to
core frequency, the resultant activity level must be scaled
accordingly. The amount of scaling is determined
experimentally by measuring performance of the SYSMark
workload under a range of core frequencies. Performance,
and therefore activity level, scale 70% for each 100%
change in core frequency.	

Using this approach we present results for SYSMark 2007
prediction accuracy in Table III. DVFS hit rate is provided
for three predictors. Core-level PPPP represents our
predictor applied to each core. Aggregate PPPP represents
our predictor driven by the total activity level. All target
activity levels remain the same. A single predictor, driven
by the aggregate activity level (i.e. average of all cores) is
used to select the next core frequency. Core-level reactive
represents the Windows Vista DVFS algorithm.

TABLE III
SYSMark 2007 DVFS Hit Rate

Predictor E-Learning Productivity Video
Creation 3D

Core-Level
PPPP 82.6% 73.8% 76.4% 72.7%

Aggregate
PPPP 26.8% 26.3% 40.2% 30.7%

Core-Level
Reactive
(Vista)

66.4% 65.2% 63.5% 59.7%

The limitations of reactive DVFS selection are evident.
Due to frequent transitions between high and low activity
levels, the reactive scheme is only able to achieve the
correct frequency about 2/3 of the time. PPPP applied at
the aggregate level is much worse with an average of 31%
accuracy. The best case is achieved with the core-level
PPPP which averages 76%. The differences in the success
of these predictors are a result of prediction coverage and
accuracy of the predicted phases. See Table IV. Coverage
is defined as percentage of the workload in which a
prediction is available. A prediction could be unavailable
if the last observed activity pattern has not been seen before
or has caused too many mispredictions. The reactive
scheme does not have coverage since it does not predict. In
contrast PPPP has much lower prediction coverage,
especially for the aggregate predictor. The aliasing of

multiple core phases obscures predictable behavior to less
than 3% for E-Learning and Productivity. Video Creation
and 3D are slightly better at 16% and 8% respectively.
One possible reason is that these workloads have larger
portions of multi-threaded execution. The aggregate
activity level is likely more representative of core-level
activity compared to the single-threaded E-Learning and
Productivity. Core-level PPPP achieves the highest
accuracy by having a large workload coverage of 43% and
accuracy over 95% in the covered portion. Outside of the
covered portions the predictor selects frequency according
to the reactive algorithm.

TABLE IV
SYSMark 2007 Prediction Coverage

Predictor E-Learning Productivity Video
Creation 3D

Core-Level
PPPP 57.0% 33.5% 43.0% 37.9%

Aggregate
PPPP 1.3% 2.3% 16.3% 8.0%

Core-Level
Reactive (Vista) N/A N/A N/A N/A

To quantify the improved predictability of core-level versus
aggregate PPPP, Table V presents a characterization of
core active and idle durations for SYSMark 2007.
Durations group into the following ranges: < 10
milliseconds, 10-100 milliseconds, 100-1000 milliseconds
and > 1000 milliseconds. One of the major distinctions
between core-level and Aggregate is the high concentration
of short phases, less than 10ms for CoreTotal. Just as in
the example shown in Fig. 1, these short phases are largely
a result of misalignment of the core-level activity. In
particular, the most common phases are in the 10-100ms
range. This is caused by the timer tick, scheduling and
power adaptation intervals for the Windows operating
systems.The timer tick normally occurs on 16ms
boundaries. Thread creation and migration events also
occur on these boundaries. Power adaptations (DVFS)
occur on 100ms boundaries. Therefore, idle phases are very
frequently interrupted by these events. Similarly, active
phases are often terminated by threads being migrated to
other cores on these same boundaries. Any misalignment
of these events between cores causes the effective activity
durations to be shorter and less predictable.

Fig. 6 provides the frequency distribution of active and idle
phases across SYSMark 2007. Active and idle phase are
considered as a group since both are relevant for prediction.
Idle phases must be predicted in order to anticipate how
long a power surplus will be available. Similarly, active
phase must be predicted to anticipate durations of power
deficits. In both cases the predicted durations is needed in
order to weigh the power and performance cost of
transitioning to low power states or changing the DVFS
operating point. Several local maximums are present due
to the periodic nature of the interaction between power

7	

	

management, OSs and system hardware. By removing or
varying the intensity of these various events and observing
the change in frequency distribution, we are able to relate
period length to its source. Note the prevalence of phases
in the 10-15ms range that corresponds to the OS scheduling
interval. Also, consider the spikes at 100ms, which
corresponds to the DVFS scheduling interval. Additional,
longer-duration maximums occur in the 200ms and higher
range. These correspond to GUI interaction and I/O delays
occurring in the SYSMark benchmark.

TABLE V
Core Phase Residency by Length

E-Learning Video Creation

Phase Length Core Aggregate Core Aggregate

< 10 ms 11% 93% 44% 82%

10 - 100 ms 49% 7% 27% 2%

100 - 1000 ms 10% 0% 14% 9%

> 1000 ms 30% 0% 16% 7%

Productivity 3D

Phase Length Core Aggregate Core Aggregate

< 10 ms 55% 97% 55% 97%

10 - 100 ms 30% 3% 30% 3%

100 - 1000 ms 5% 0% 5% 0%

> 1000 ms 11% 0% 11% 0%

Next we consider the resultant power and performance
impact of the core-level PPPP versus reactive DVFS
selection. Aggregate PPPP is not considered due its very
poor prediction accuracy. Table VI presents power and
performance results for the two schemes. Power and
performance are estimated using the measured and
predicted DFVS, active and idle states shown in Table VII.
On average, power is reduced by 5.4% while achieving a
speedup of 3.8%. This improvement is caused by PPPP
more frequently selecting high frequencies for active
phases and low frequencies for performance-insensitive
idle phases. This shift can be seen in the active residencies
of all subtests. The 2.4GHz – Active state increases by 0.6
to 2.5 percentage points. Similarly, the active time in lower
frequencies is reduced an average of 0.76 percentage
points. The performance impact of selecting a low
frequency for an active phase can be large. For example,
selecting 800MHz rather than 2.4GHz yields a performance
loss of 47% ((1-0.8GHz/2.4GHz) x 70%). Therefore, it
takes only a small change in residency to drastically impact
performance. Also, the impact on performance is larger
due to active time representing only an average of 17%
total time. This magnifies the performance impact by about
6x (1/0.17). The net effect on active frequency is an
increase of 144 MHz from 1.55GHz to 1.69GHz. Note that
though frequency increases by 9.3%, performance

increases only 3.8% due to limited frequency scaling of the
workload (70%) and reduced total time in the active state.

Fig. 6. Core-Level Phase Length Probability Distributions

TABLE VI
SYSMark 2007 Power and Performance Impact of PPPP

 E-Learning Productivity

Predictive

(PPPP)
Reactive
(Vista)

Predictive
(PPPP)

Reactive
(Vista)

Power (W) 16.6 18.2 14.3 15.1
Power

Savings 8.3% 5.3%

Delay (sec) 924 963 585 607
Speedup 4.2% 3.7%

Energy (KJ) 15.4 17.5 8.4 9.2
Energy
Savings 12.3% 8.7%

 Video Creation 3D

Predictive

(PPPP)
Reactive
(Vista)

Predictive
(PPPP)

Reactive
(Vista)

Power (W) 18.6 19.5 18.6 19.5
Power

Savings 4.7% 2.9%

Delay (sec) 1129 1172 1129 1172
Speedup 3.8% 3.6%

Energy (KJ) 20.9 22.8 20.9 22.8
Energy
Savings 8.2% 6.3%

Next we consider power savings. Though it is possible to
bias a reactive DVFS algorithm to achieve performance
comparable to a predictive algorithm, it is not possible to
do so without increasing power consumption drastically.

Scheduling
Quantum

16ms

DVFS Change
Interval
100ms

8	

	

Prediction allows DVFS selection to select the “correct”
frequency for both performance and power savings. In this
case our predictor achieves a 3.8% performance increase
while reducing power consumption by 5.4%. The primary
cause is a shift in idle frequency selections away from the
high-performance, high-leakage states. Residency in the
most inefficient state, 2.4GHz – Idle, was reduced by an
average of 7.8 percentage points. Residency in other idle
states above the minimum frequency also decreased, but by
a smaller 3.1 percentage points. This increases idle
residency in the minimum frequency idle state of 800MHz
by an average of 15%. Average idle frequency decreases
by 200MHz from 1.2GHz to 1.0GHz.

TABLE VII
SYSMark 2007 P-State and C-State Residency of PPPP versus Reactive

	
 E-Learning	
 Productivity	

	
 Predictive	

(PPPP)	

Reactive	

(Vista)	

Predictive	

(PPPP)	

Reactive	

(Vista)	

2.4GHz - Active	
 5.4%	
 4.6%	
 2.9%	
 2.4%	

2.4GHz - Idle	
 7.1%	
 17.4%	
 4.4%	
 9.6%	

1.6GHz - Active	
 1.2%	
 1.4%	
 0.8%	
 0.8%	

1.6GHz - Idle	
 5.5%	
 9.4%	
 3.8%	
 6.2%	

1.2GHz - Active	
 1.1%	
 1.2%	
 1.2%	
 1.2%	

1.2GHz - Idle	
 6.9%	
 9.8%	
 6.6%	
 9.7%	

0.8GHz - Active 3.2% 4.5% 3.8% 4.7%
0.8GHz - Idle	
 69.5%	
 51.8%	
 76.5%	
 65.3%	

Active Frequency	
 1.72 GHz	
 1.56 GHz	
 1.47 GHz	
 1.34 GHz	

Idle	

Frequency	

1.01 GHz	
 1.24 GHz	
 0.94 GHz	
 1.07 GHz	

	
 Video Creation	
 3D	

	
 Predictive	

(PPPP)	

Reactive	

(Vista)	

Predictive	

(PPPP)	

Reactive	

(Vista)	

2.4GHz - Active	
 6.8%	
 5.3%	
 6.8%	
 5.3%	

2.4GHz - Idle	
 5.7%	
 12.4%	
 5.7%	
 12.4%	

1.6GHz - Active	
 2.7%	
 3.2%	
 2.7%	
 3.2%	

1.6GHz - Idle	
 5.6%	
 9.6%	
 5.6%	
 9.6%	

1.2GHz - Active	
 3.8%	
 4.8%	
 3.8%	
 4.8%	

1.2GHz - Idle	
 9.2%	
 13.8%	
 9.2%	
 13.8%	

0.8GHz - Active	
 3.7%	
 4.8%	
 4.7%	
 6.9%	

0.8GHz - Idle	
 62.3%	
 46.1%	
 51.6%	
 36.7%	

Active Frequency	
 1.65 GHz	
 1.51 GHz	
 1.92 GHz	
 1.77 GHz	

Idle	

Frequency	

1.01 GHz	
 1.20 GHz	
 1.07 GHz	
 1.32 GHz	

VII. PREDICTING POWER LEVELS

The second application of periodic power phase prediction
is for predicting core power consumption. Predicting
power levels provides opportunities for increased
performance and efficiency. Existing power control
systems such as power capping[12] and turbo boost[9]
apply power and performance limits statically based on
user-specified or instantaneous power consumption.
Knowing power levels a priori could increase performance

by avoiding adaptations for short duration phases. For
example, a core that encounters a short, high-power phase
of execution may cause the power controller to reduce its
or other processors’ frequency. If the controller could
know that the phase would be too short to cause a power or
temperature violation, the reduction in performance could
be avoided.

To this end we apply PPPP to prediction of core-level and
aggregate power consumption. We compare results to a
last value predictor also at the core and aggregate level.
Core-level power is measured using our PMC-based power
model. The model allows fine-grain, power management
and temperature-aware estimation of core power.
Additional details of the models are provided in the
Appendix[6].
Rather than using core activity level to predict core activity
level, we use it to cross predict power level. The predicted
activity-level in the predictor is replaced by the modeled
core power level. The prediction table index remains as
sequences of core activity levels. This approach provides
better pattern matching as variations in temperature and
application of DVFS tends to hide otherwise discernable
patterns.

Fig. 7. Prediction Accuracy of Core Power for Various Predictors

Fig. 7 shows the weighted average percent accuracy of our
periodic power phase predictor compared to a last-value
predictor. Weighted average is chosen since SYSmark
2007 power consumption contains many idle, low-power
phases. In these phases, a small error in absolute terms
yields a very large percentage error. Therefore, we scale
error values by the magnitude of the measured power
sample compared to the maximum observed. For example,
a 10% error on a 5W sample has half the impact of a 10%
error on a 10W sample. For all subtests, the core-level
versions of the predictors outperformed the aggregate
versions. The best overall performance was 86% accuracy
for the periodic core-level predictor compared to 83% for
the core-level version of the last-value predictor. The
benefit of core-level prediction of power is less pronounced
than for prediction of activity level. This is due to the
smaller dynamic range of power consumption compared to
activity level. Though activity levels regularly vary from

9	

	

0% to 100%, power levels remain in a much smaller range
of approximately 25% to 75%.

VIII. CONCLUSION

This paper presents the concept of core-level phase
prediction and its application to dynamic power
management. By observing changes in performance
demand and power consumption at the core-level, it is
possible to perceive predictable phase behavior. Prediction
of phases allows power management to avoid over or under
provisioning resources in response to workload changes.
Using this concept we develop the PPPP, a simple, table-
based prediction scheme for directing DVFS selection. We
apply the predictor to the SYSMark2007 benchmark suite
and attain simultaneous performance and power
improvements. Compared to the reactive DVFS algorithm
used by Windows Vista, performance is increased by 5.4%
and while power consumption is reduced by 3.8%. We
also present a power and temperature-aware core-level
model for processor power consumption. Using this
model, we show processor power can be predicted by PPPP
with accuracy 4.8% better than a last-value predictor.

APPENDIX - CPU POWER MODEL

To provide core-level power measurement we develop a
performance counter based power model for the AMD
Opteron processor. The model is similar to other models
[2][15][5][19] in that it is composed of a small set of
performance events that are highly correlated to processor
power consumption. The primary distinction is that our
model accounts for temperature and voltage effects. This
allows isolation of microarchitecture-independent power
consumption such as leakage current and DVFS states.

Using a real system instrumented for power measurement
we develop polynomial, regression models for power
consumption. The details of the model are given in Tables
VIII and IX. The model improves on existing on-line
models by accounting for power management and
temperature variation. All model coefficients are tuned
empirically using a real system instrumented for power
measurement. Like existing models ours contains a
workload dependent portion that is dominated by the
number of instructions completed per second. In this case
we use the number of fetched operations per second in lieu
of instructions completed. The fetched ops metric for is
preferred as it also accounts for speculative execution that
does not update the architected state.

TABLE VIII
AMD Quad-Core Opteron Power Model

Power
Models

Equation

Total
Power

	

Workloa

d
Depende
nt Power	

(FetchOpsN/Sec)·CoeffF+(FloatPointOpsN/Sec)
·CoeffFP+(DCAccessN/Sec) ·CoeffDC	

Gateable
Power	

(%HaltedN) ·CoeffGateable·(Voltage)2·FrequencyN	

Ungateab
le Power	

(%NonHaltedN) ·CoeffUngateable·(Voltage)2·FrequencyN	

Static
Power

(Temp2·CoeffT2+Temp·CoeffT1+·CoeffT2)Voltage

Average Error = 0.89%

TABLE IX
Model Parameter Descriptions

Quantity Description
N Core Number.

FetchOps Micro operations fetched. Includes speculative
operations.

FloatPointOps Floating point operations retired. Accounts for
difference in power between INT and FP.

DCAccess Data cache access. Accounts for power
consumed in caches.

%Halted % of cycles in which the core was halted.
%Not Halted % of cycles in which the core was not halted.

Voltage Maximum requested voltage for all cores. Due
to shared voltage plane.

Frequency Current core frequency. This can be read via
AMD model specific register.

Temperature Current processor temperature. This can be
read via AMD model specific register.

Coeffx Model coefficient. The values are determined
empirically using measurement/regression.

The primary distinction of our model is that is contains a
temperature dependent component. Using workloads with
constant utilization, we vary processor temperature and
voltage to observe the impact on static leakage power.
Temperature is controlled by adjusting the speed of the
processor’s fan. Temperature is observed with 0.125
degree Celsius resolution using an on-die temperature
sensor [3]. This sensor can be accessed by the system
under test through a built-in, on-chip register. Voltage is
controlled using the P-State control register. This allows
selection of one of five available voltage/frequency
combinations. Voltage is observed externally using our
power instrumentation. Like the workload dependent
model, we tune the coefficients of the polynomial model
using regression techniques. Note that the static power
model is highly process dependent. Processors

10	

	

manufactured with different semiconductor process
parameters require the model to be re-tuned.

The dominant power management effects
(voltage/frequency scaling, clock gating) are further
accounted for using the Gateable and Ungateable power
models. Gateable power is found by measuring the effect
of enabling/disabling idle core clock gating (Cache Flush
on Halt). Ungateable represents the portion of power
which cannot be gated. These components are also found
experimentally. The resultant, average error in the model
was 0.89%. The error distribution for SPEC CPU2006 and
SYSMark 2007 is provided in Fig. 8.

Fig. 8. Model Error Analysis – SPEC CPU 2006 and SYSMark 2007

REFERENCES

[1] Advanced Configuration & Power Interface. http://www.acpi.info
(November 2007).

[2] Bellosa, F. The Benefits of Event-Driven Energy Accounting in
Power-Sensitive Systems. In Proceedings of 9th ACM SIGOPS
European Workshop (September 2000), 37-42.

[3] BIOS and Kernel Developer’s Guide for AMD Family 10h
Processor. http://www.amd.com. (November 2007).

[4] Bircher, W. L. and John, L. Analysis of Dynamic Power
Management on Multi-Core Processors. In Proceedings of the 22nd
Annual International Conference on Supercomputing (Kos, Greece,
June 2008), 327-338.

[5] Bircher, W. L and John, L. Complete System Power Estimation: A
Trickle-Down Approach based on Performance Events. In
Proceedings of the 7th Annual International Symposium on
Performance Analysis of Systems and Software (April 2007), 158-
168.

[6] Bircher, W. L and John, L. Complete System Power Estimation
using Processor Performance Events. IEEE Transactions on
Computers, accepted for publication December 2010.

[7] Meisner, D., Gold, B. and Wenisch, T. PowerNap: Eliminating
Server Idle Power. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages
and Operating Systems (Washington, DC, March 2009), 205-216.

[8] Blade Server Technology Overview.
http://www.blade.org/techover.cfm (March 2007).

[9] Charles, J., Jassi, P., Narayan, A., Sadat, A. and Fedorova, A.
Evaluation of the Intel® Core™ i7 Turbo Boost Feature. In
Proceedings of the IEEE International Symposium on Workload
Characterization (October 2009).

[10] Diao, Q., Song, J. Prediction of CPU Idle-Busy Activity Pattern. In
Proceedings of the International Symposium on High-Performance
Computer Architecture (February 2008).

[11] Duesterwald, E., Cascaval, C., and Dwarkadas, S. Characterizing
and Predicting Program Behavior and its Variability. In Proceedings

of the 12th International Conference on Parallel Architectures and
Compilation Technique (September 2003), 220-231.

[12] Dynamic Power Capping TCO and Best Practices White Paper.
http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA2-3107ENW.pdf
(May 2010).

[13] Fan, X., Weber, W., and Barroso, L. A. Power provisioning for a
warehouse-sized computer. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (San Diego,
California, June 2007), 13-23.

[14] Isci, C., Contreras, G., and Martonosi, M. Live, Runtime Phase
Monitoring and Prediction on Real Systems with Application to
Dynamic Power Management. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture
(December 2006), 359-370.

[15] Isci, C. and Martonosi, M. Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data. In Proceedings of the
36th Annual ACM/IEEE International Symposium on
Microarchitecture (December 2003), 93.

[16] Kotla, R., Devgan, A., Ghiasi, S., Keller, T., and Rawson, F.
Characterizing the Impact of Different Memory-Intensity Levels. In
Proceedings of the 7th Annual IEEE Workshop on Workload
Characterization (Austin, Texas, October 2004).

[17] Lefurgy, C., Wang, X. and Ware, M. Server-level power control. In
Proceedings of the 4th IEEE International Conference on Autonomic
Computing (Jacksonville, Florida, June 2007).

[18] Li, J. and Martinez, J. Dynamic Power-Performance Adaptation of
Parallel Computation on Chip Multiprocessors. In Proceedings of
the 12th International Symposium on High-Performance Computer
Architecture (Austin, Texas, February 2006).

[19] Li, T. and John, L. Run-Time Modeling and Estimation of Operating
System Power Consumption. In Proceedings of ACM/SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems (San Diego, California, June 2003), 160-171.

[20] Li, Y., Brooks, D., Hu, Z., and Skadron, K. Performance, Energy,
and Thermal Considerations for SMT and CMP Architectures. In
Proceedings of the 11th International Symposium on High-
Performance Computer Architecture (San Francisco, California,
February 2005), 71-82.

[21] McGowen, R., Poirier, C., Bostak, C., Ignowski, J., Millican, M.,
Parks, W., and Naffziger, S. Temperature Control on a 90-nm
Itanium Family Processor. IEEE Journal of Solid State Circuits, 41,
1 (January 2006).

[22] Minerick, R. J., Freeh, V. W., and Kogge, P. M. Dynamic Power
Management Using Feedback. In Proceedings of the 3rd Workshop
on Compilers and Operating Systems for Low Power (COLP’02)
(Charlottesville, Virginia, September 2002).

[23] National Instruments Data Acquisition Hardware.
http://www.ni.com/dataacquisition/ (April 2008).

[24] Pallipadi,V. and Starikovskiy, A. The On Demand Governor: Past,
Present and Future. In Proceedings of the Linux Symposium (Ottawa,
Canada, July 2006).

[25] Processor Power Management in Windows Vista and Windows
Server 2008. http://www.microsoft.com (November 2007).

[26] Rajamani, K., Hanson, H., Rubio, J., Ghiasi, S., and Rawson, F.
Application-Aware Power Management. In Proceedings of the 2006
IEEE International Symposium on Workload Characterization (San
Jose, California, October 2006), 39-48.

[27] Ranganathan, P., Leech, P., Irwin, Y. and Chase, J. Ensemble-Level
Power Management for Dense Blade Servers. In Proceedings of the
33rd Annual International Symposium on Computer Architecture
(Boston, Massachusetts, June 2006), 66-77.

[28] Siddah, S., Pallipadi, V., and Van de Ven, A. Getting Maximum
Mileage Out of Tickless. In Proceedings of the Linux Symposium
(Ottawa, Canada, June 2007).

[29] Wang, X. and Chen, M. Cluster Level Feedback Power Control for
Performance Optimization. In Proceedings of the 14th International
Symposium on High-Performance Computer Architecture (Salt Lake
City, Utah, February 2008).

11	

	

[30] Windows Multimedia: timeEndPeriod().
http://msdn.microsoft.com/en-us/library/ms713415(VS.85).aspx
(November 2008).

[31] Wu, Q., Juang, P., Martonosi, M., Peh, L., and Clark, D. Formal
control techniques for power-performance management. IEEE
Micro, 25, 5 (September/October 2005).

