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Abstract—Recent advances in the scope of wearable devices and
networks make body area sensor networks (BASNs) an extremely
attractive tool to the fields of mobile and tele-health, owing to the
range of medical applications they can serve and the diagnostic
richness of patient data they can offer. However, for BASNs to
achieve true ubiquity, they must be scalable in their support of
automated patient data collection, making usability and reliability
key considerations. Its designers must wrestle with the tradeoff be-
tween usability, hindered by device intrusiveness into the behav-
iors it measures, and lifetime, enhanced by large power supplies
and expensive, sturdy components. Furthermore, the validity and
reliability of the collected data are paramount. In this paper, we
consider these issues in the context of localizedmulti-sensory wear-
able networks and present a method to generate low-power sam-
pling schedules that are resilient to sensor faults while achieving
high diagnostic fidelity. We jointly formulate this as a power-con-
strained sampling problem wherein the number of sensors sam-
pled per epoch are limited, and, a fault tolerant scheduling problem
wherein the sampling scheme offers enough redundancy to endure
up to a predefined number of sensor faults while maintaining diag-
nostic accuracy. This formulation is based on, 1) the localized scope
of BASNs that engenders strong spatio-temporal interactions in the
samples, and, 2) the periodic nature of human behaviorsmeasured.
We present our algorithm in the context of gait diagnostics derived
from a foot plantar pressure measurement platform and illustrate
its performance based on real datasets collected by it.

Index Terms—Body area sensor networks, energy-efficient sam-
pling, fault-tolerant sampling, power-constrained sampling.

I. INTRODUCTION

T HE DEMAND for sensor-embedded devices in the med-
ical domain has spawned a promising new subclass of

wireless sensor networks (WSNs) known as wearable or body
area sensor networks (BASNs). Comprised of networks/arrays
of physiological and/or behavioral sensors, they collect detailed
and diagnostically rich data which, when used in conjunction
with data from patient interviews, on-site observations and
tests, enhance diagnostic accuracy, shorten time to detection,
and propel preventative healthcare. They also allow medical
researchers access to an abundance of high quality data so they
may better understand the causes and symptoms of illnesses.
With rising maturity, BASNs will be capable of automati-

cally collecting, processing, and sharing patient medical diag-
nostic metrics with authorized patient and research databases,
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Fig. 1. Pedar plantar pressure map [9] (left), and the Hermes smart shoe plat-
form [16] (right).

and other data sinks in a minimally invasive and unsupervised
manner, resulting in devices as inconspicuous and mundane as
pacemakers or hearing aids. Therefore, on adoption, they are ex-
pected to have enormous impacts on the accessibility, efficiency
and quality of care for convalescing patients, geriatric patients,
and those with chronic conditions through computer-assisted re-
habilitation and continuous health monitoring. However, this in-
tegration of mobile healthcare (mHealth) and tele-healthcare re-
quires significant improvements to the reliability and lifetime of
these devices, with no compromise to diagnostic integrity or us-
ability.
Currently, BASN usability is stymied by their intrusiveness

and lifetime issues. For example, a system comprised of a lo-
calized multi-sensory array that monitors foot plantar pressure
in elderly adults, such as the Hermes platform [16] (Fig. 1),
must be energy-efficient so it may function unattended for ex-
tended periods, and light-weight with a small form factor so as
not to hinder/disrupt normal activity of the subject wearing the
system. Given that such devices are usually battery operated,
wherein the rate of power consumption determines the time be-
tween recharges, and that power consumption affects the battery
size and therefore the form factor, power consumption is crucial
to adoptability.
On the other hand, reliability issues are a by-product of phys-

ical and economic constraints. Medical sensors can be quite
expensive, and over-deploying them towards redundancy and
fault-tolerance on space constrained wearable platforms, such
as Hermes, is infeasible.
We aim to address these issues with a sampling paradigm that

is fault-tolerant and low-power, yet affords high quality med-
ical diagnostic measurements. Our sampling paradigm abides
by pre-specified power thresholds by procuring at most sam-
ples at a time so that the maximum total power drawn by the
sensor array is less than this threshold. Furthermore, sensing
fault tolerance is realized by ensuring that up to a predefined
number of the sampled sensors are allowed to fail, before all
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the information deduced from their samples is no longer re-
coverable by other means. We call this number the redundancy
factor, or redFactor. The former constraint enables device de-
signers to customize power usage based on requisite diagnostic
performance, while the latter lets them cater to requisite device
lifetime guarantees based on the sensor fault rates, while main-
taining diagnostic accuracy throughout the device lifetime.
Our approach strives to maximize the information available

for diagnostic extraction under the fault-tolerance and power
constraints, by 1) sampling sensors with the most contextually
relevant information at the sampled time step, or epoch, 2) uti-
lizing domain-specific spatio-temporal relationships for a given
epoch, to infer measurements at un-sampled sensors with high
fidelity, 3) sampling/inferring a sensor’s measurement only if
it can also be inferred by at least redFactor other sensors, in
case the sampled sensor fails, and 4) covering sensors, via mea-
surement or inference, over the majority of epochs when their
measurements are most relevant. This last approach affords us
the added advantage of improving energy-efficiency by sam-
pling no sensors at epochs deemed irrelevant. We also demon-
strate that our algorithm is capable of abiding by the fault-tol-
erance and power threshold constraints in the context of multi-
modal/diagnostic sensing, effectively distributing sensor sam-
ples across epochs and among the multiple modalities/diagnos-
tics.
Although we present our algorithm in the context of plantar

pressure monitoring systems, it is easily generalized to the mon-
itoring of periodic behaviors, such as those common to BASNs,
with devices that wield localized multi-sensory arrays to collect
data with strong spatio-temporal dependencies. Also, we limit
ourselves to a binary fault model with out-of-band fault detec-
tion.

II. RELATED WORK

WSNs have emerged as a new class of systems that leverage
the power of distributed computation, sensing, and actuation to-
wards a host of scientific, military, and engineering applications.
However, engineering these systems is not without challenges,
a topic surveyed excellently in [13]. As described therein, from
the get go, energy has been identified as the single most im-
portant resource for this class. Furthermore, communication is
recognized as the most demanding operation on this resource,
and a number of designs have been proposed to curtail it [18].
The demand for similar sensor-embedded devices in the med-

ical domain has spawned a new subclass of WSNs known as
wearable or body area sensor networks (BASNs), the challenges
and opportunities for which are surveyed in [2]. BASNs have
been applied to host of medical problems from geriatric assis-
tance [10] to emotional health monitoring [24]. Given that it
is possible to build systems that can interpret medical diagnos-
tics from electrical signals, attention has also been paid to the
energy-efficiency and power consumption of BASNs and their
effects on system longevity [3].
Fault tolerance is also a key performance criterion in WSNs.

Solutions in this space include self-diagnosis techniques, as well
as, co-operative fault recovery techniques. Often, fault-tolerant
designs involve redundancy, which, when considered simulta-
neously with the need for lifetime maximizing/energy-efficient

operation, uncovers a tradeoff. For example, redundant sensor
node deployment is usually accompanied by energy-efficient
area coverage [20]. Here, the monitored area is covered, in the
sensing and communication domains, by multiple distinct and
minimally-sized subsets of the over-deployed set that are oper-
ated one-at-a-time, thereby achieving high sensing fidelity and
redundancy, at low energy costs.
Similar ideas have migrated to the context of BASNs to

resolve the tradeoff between sensing fidelity and energy-effi-
ciency, yielding sensor selection approaches wherein a subset
of sensors, selected for their ability to jointly predict the mea-
surements at all sensors, are sampled at each epoch [4]. In [14]
and [19] the authors proposed an algorithm to further relax
the tradeoff between sensing fidelity and “covering” sensor
subset size by defining the fidelity only in terms of diagnostic
accuracy. However, extending these solutions to provide fault
tolerance by constructing multiple distinct sensor subsets is
hindered by multiple factors. For one, a BASN sensor’s cov-
erage area rapidly changes with time. Also, a BASN designer’s
ability to overpopulate the wearable platform with sensors is
severely limited by the wearable platform size, sensor size,
and cost. Under these considerations, we exploit the highly
localized nature of body area networks that engenders strong
spatio-temporal relationships in the sensed data. This allows
us to tackle the problem from the perspective of sample se-
lection, instead of sensor selection, which not only motivates
high-fidelity sample inference, but also enables the substitution
a sample from a faulty sensor with a sample from an accurate
one, yielding low-power, fault-tolerant, and high-fidelity diag-
nostic metric estimation.

III. PRELIMINARIES

A. Human Balance Monitoring via Hermes

We present our algorithm in the context of a human balance
monitoring system known as Hermes [16], a smart shoe aimed
at extending instability analysis outside of the lab environment.
The Hermes platformmeasures foot plantar pressure via amulti-
sensory array comprised of 99 passive resistive pressure sensor
purposefully placed at locations specified by the Pedar plantar
mapping [9]. Fig. 1 shows the Hermes platform alongside this
mapping. The sampling unit for the platform samples each of
the sensors at 60 Hz.
While Hermes is capable of continuous measurement, med-

ical professionals are interested in a set of diagnostic metrics for
each stride taken by the subject, which do not require all samples
for the stride. For example, the GARS-M scale [8], a reliable and
valid measure for documenting gait features associated with an
increased risk of falling among community-dwelling, frail older
persons, relies on guardedness as one of its variables. Measured
as the time between heel and toe strikes during a stride, guarded-
ness has also been identified as an indicator of repetitive stress
injuries in runners [24]. However, this metric only requires that
each sensor be sampled until the detection of foot strike at its
respective location, but not after. Similarly, elevated levels of
plantar pressure, measured as the average maximum pressure
over all sensors for a stride, has been identified as a causative
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factor in the development of many plantar ulcers in diabetic pa-
tients [12]. Again, the only relevant sample for each sensor is
the one that provides the maximum pressure for a stride. In this
paper, we focus on guardedness, average maximum pressure (or
maximum amplitude), and lateral pressure difference. The last
diagnostic metric is an indicator of staggering in the GARS-M.
We note that each of these diagnostics is an aggregate over the
respective individual sensor metric measurements.

B. Human Gait

Gait is defined as the way in which movement is achieved by
humans with their limbs, such as walking, running, hopping, etc.
The gait cycle, or stride, is a functional unit of gait defined as a
single sequence of functions of one limb. It is divided into two
phases: the stance phase, when the limb is in contact with the
ground, and the swing phase, when the limb is in the air for ad-
vancement. In order to construct a repeatable sampling scheme,
we first define the period of repetition based on the phases of a
gait cycle. Given that it is possible to orthogonally detect these
phases with a small fixed number of sensors with the method
proposed in [15] or via a single large plantar pressure sensor
covering the heel as outlined in [14], the sampling scheme pro-
duced by our algorithm is defined vis-à-vis the start and end of
each of the two phases. Without loss of generality, we note that
our selected diagnostics of guardedness, maximum amplitude
and lateral pressure difference are all related to samples in the
stance phase.

C. Energy Consumption and Lifetime

While communication is the most demanding operation in
WSNs, our work with BASNs focuses on energy consumed is
sensor sampling. This is becausemany BASNs, such as Hermes,
are comprised of multi-sensory arrays wherein each node must
power significantly more sensors than a WSN node, signifi-
cantly increasing the energy demands of sampling. For example,
the Hermes shoe, built on the MicroLEAP platform, consumes
a total of 182.85 mW in active mode, with 72.74 mW con-
sumed by the radio while transmitting at 115.2 kb/s [21] and
100.24 mW consumed in powering the 99 pressure sensors,
where sampling power draw is derived from the maximum cir-
cuit voltage and force resistance curve for the underlying Flexi-
force sensor [11]. Clearly, reducing the number of samples in an
epoch from 99 to 1, yields upwards of 54% in power consump-
tion reduction. Furthermore, the resulting reduction in battery
discharge rate leads to an increase in the battery capacity [6],
and hence its lifetime.
As we shall see, in comparison to the CICA-based algorithm

that selects a fixed subset of sensors of cardinality, , to be sam-
pled at every epoch [14], our approach offers the added advan-
tage that fewer than sensors may be sampled at some epochs.
This translates to a further savings in energy over this algorithm.
Although it is not considered in our objective function, these
savings are measured by the energy savings factor, calculated
as the ratio of the maximum number of samples that may be
taken to the actual number of samples that are taken.

Fig. 2. Spatio-temporal correlations of plantar pressure measurements between
a single sensor and all others on a Hermes shoe, over all epochs of the stance
phase for a subject.

IV. DIAGNOSTIC DRIVEN SAMPLE SELECTION

A. Algorithmic Motivation

We now discuss the motivation behind our algorithmic deci-
sions. The stance phase of the gait cycle is divided into a number
of epochs at which we would like plantar pressure to be sampled
at various sensors. In order to support pre-specified constraints
on maximum power usage, we limit the maximum number of
samples, , which may be taken at an epoch. A sensor would
make a good choice for sampling at an epoch if it can be used
to derive the readings at multiple other sensors, or predict them.
This predictability of sensors may be determined by a model
between readings of sensors. As observed in [14], linear regres-
sion models do well to explain the plantar pressure readings of
one sensor from another, when the mutual information is high.
However, in the general case, our algorithm does not prevent
the usage of any other suitable model for this purpose.
Fig. 2 shows the Spearman rank-order correlation coefficients

between one sensor, , and all 99 others over all epochs of the
stance phase from a dataset collected by the Hermes platform.
The 99 sensors on the x-axis are ordered by their physical dis-
tance from sensor . In the spatial domain, we generally observe
that nearby sensors are well correlated with the sensor com-
pared to distant ones. In the temporal domain, we observe that
the level of correlation varies significantly across epochs, even
for nearby sensors. The explanation for this hinges on the real-
ization that the correlation between sensors varies by sub-phases
of the stance phase.
Although we describe this insight for sensor , we have ob-

served that it generalizes to most sensors in all our datasets.
Furthermore, each data point in Fig. 2 depicts the correlation
between measurements of two sensors at the same epoch. How-
ever, as observed in [4], relative time shifting of the signals from
two sensors greatly improves their correlation. As a result, we
capture the ability of a sensor’s measurement in one epoch to
predict others in senPred, which is defined in

(1)
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Here, the function modErr returns the model error, while pre-
dicting the measurements at sensor in epoch from those of
sensor in epoch , where may occur before or after e. Pre-
dictability is observed when the estimate is accurate to within

. In our case, modErr returns the root mean squared rel-
ative linear regression error.
Further, it is important that we place emphasis on sensors with

readings that are more relevant to the medical diagnostic being
computed. Given that the diagnostics of interest are aggregates
of the metric measurements at each sensor, sensors with a larger
spread, e.g., with high entropy, are more valuable when we at-
tempt to reconstruct the medical diagnostic with a partial sets
of readings. For example, assuming that we can use the max-
imum amplitude of some subset of sensors to estimate the av-
erage maximum amplitude over all sensors for each stride, the
maximum amplitude of sensors whose values tend to vary more
across strides is more valuable. For metric at sensor , this is
measured as , which in our case returns the entropy
of as measured at . While the variance or inter-quartile range
could be used instead of entropy, we observed superior results
with entropy for our datasets owing to the mostly unimodal dis-
tribution of sensor measurements.
In arriving at the value of a metric at a sensor , it is rea-

sonable to sample/predict the measurements of at only those
epochs when we would expect it to yield the value of . In other
words, to figure out the maximum amplitude at , we would like
to sample/predict ’s measurement only at the epochs when is
likely to observe maximum amplitude. Given a training dataset,
we construct a distribution over epochs, , of the likelihood
when a sensor observes its metric value and represent this as

. Sensors will then be sampled according to
allowing us to get away with not sampling any sensor in some
epochs. For example, if indicates that metric is
never seen by at epoch 30, rather that tends to occur around
epoch 5, we do not need to sample for at epoch 30 due to
its statistical improbability of occurrence at that epoch. This ef-
fect is further enhanced by the spatio-temporal correlations, as
a sensor may be sampled at one epoch to recreate the measure-
ments of other sensors at other epochs, vacating the necessity to
sample at these other epochs.
Finally, sensing fault-tolerance is provided by applying one

sensor’s sample towards prediction of another’s, only if the
latter’s sample is also predictable by redFactor samples from
sensors that are distinct each other and the original predictor.
For example, it order for it to be acceptable that ’s measure-
ment at epoch will infer ’s measurement at epoch , there
must exist a set of sensors distinct from
, each of which produce at least one sample capable of pre-
dicting ’s measurement at . It is important to note here that
the user-imposed power-constraints must simultaneously be
adhered to; with the premise that sensor ’s failure will result in
one of the redFactor samples being used to recover ’s reading
at epoch , it must be ensured that this replacement sample
must occur in an epoch when, in the replacement’s absence, at
most sensors are sampled.
In the following sections, we describe an offline learning ap-

proach that combines these considerations. The described ap-
proach produces a customized sampling schedule based on a

TABLE I
ALGORITHM 1 POWER CONSTRAINED SAMPLE SELECTION

training dataset of readings, at all sensors and over a few gait
cycles of the subject. The resulting schedule may then be ap-
plied towards fault-tolerant and power constrained diagnostic
estimation for the subject.

B. Power Constrained Sample Selection

We now describe the power constrained sample selection
(PCSS) algorithm, in Table I, which determines the sensors to
be sampled at each epoch. The merit of a sensor ’s assignment
to an epoch is measured by a heuristic . The
inputs to the algorithm are senPred, , and that
are described in the previous subsection, and the maximum
samples per epoch, . The algorithm returns sensSamp, which
stores the sensors to be sampled at each epoch, and predMap
that maps each sensor that will be sampled at epoch , to
the sensor whose observation at epoch will be predicted
by it. For reasons that will be made clear in Subsection IV-D,
PCSS also takes sensSamp and predMap as inputs that can be
assumed to be empty for now. Note that we are only interested
in a sensor’s measurement at epochs when the metric obser-
vation likelihood matrix, , indicates that the likelihood
is nontrivial (lines 5–9), and when the measurement has not
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already been covered (lines 14–17). This latter point is note-
worthy as we do not want to value sensor at an epoch for its
ability to predict sensor ’s readings at an important epoch ,
if has already been covered by a different pair

that was selected into sensSamp. Furthermore, we are
not interested in sampling sensors at epochs when samples
have already been scheduled (line 6). Finally, sensor selection
is terminated when either no unassigned epochs remain in
sensSamp, or no merited assignments may be made (lines
10–11).
The valuation heuristic combines, for each

that it covers, the spread of sensor ’s readings via func-
tion , and, the metric observation likelihood at via function
, where the likelihood matrix is adjusted at each iteration based
on sampling assignments (line 16). The valuation also takes into
consideration, via function , the extent to which has been
covered at epochs with nontrivial metric observation likelihood,
the motivation for which will be discussed in Section IV-D. The
functions , and are used to assign relative importance to
their operands in the computation of the valuation heuristic. We
use power functions with different exponents to express the rel-
ative importance.

C. Optimal Fault Tolerant Coverage

Asdescribed thus far, thePCSSalgorithmattempts tocover the
most relevant samples under pre-specified power-constraints.
However, this coverage is not fault-tolerant. Towards this end,
we augment the algorithm with a call to a subroutine, outlined
in Table II, while determining the coverage of a sample (line
7 of PCSS). This subroutine, called optimal fault tolerant
coverage (OFTC), maximizes the value of the sample set
covered by each sample (line 5 of PCSS) under the
constraints that each of the covered samples is not only
well predicted by the model [by being part of ],
but also well predicted by redFactor distinct other sensors
that provide redundant coverage. Here, the value of each
covered sample is derived as described in the composition
of sampContr in the previous section (line 7 of PCSS and
line 20 of OFTC).
The maximum-valued sample set covered by a sample ,

or covSet, is a subset of all samples that could possibly be cov-
ered by , or senPred(e,s). Furthermore, it is a subset which
can simultaneously be covered by redFactor distinct other
sensors, while obeying the power constraints on the maximum
number of samples per epoch, , even if sensor faults occur. A
valuable observation is that each of the samples in covSet can
admit redundant coverage by a set of samples distinct from the
others, as long as the power-constraint is honored. A sample

selected into the covSet of sample could have
redundant coverage from that is already selected into
sensSamp, while the sample , which cannot be accu-
rately inferred from , could also be selected into covSet
of sample due to redundant coverage from a different
sample selected into sensSamp. This is the basis for computing
the redundant coverage from the samples in sensSamp for all
samples in (line 5). Note that there is no power
cost incurred by this form of collaborative redundant coverage.

TABLE II
ALGORITHM 2 OPTIMAL FAULT TOLERANT COVERAGE

If the redundant coverage obtained thusly does not sat-
isfy the redFactor cardinality constraint for some samples in

, backup samples must occur in epoch e, so they
may replace the faulty sensor ’s sample without incurring addi-
tional power costs. This type of redundant coverage is captured
in ftPred (lines 6–8). In order to then pick the maximum-valued
subset of that can be covered with redundancy
and under power constraints, all redFactor-combinations of
sensors that can provide redundant coverage for samples in

, while themselves being sampled in epoch , are
iterated over (lines 9–24). In doing so, it is ensured that each
covered sample admits redundant coverage from a distinct set
of sensors (line 14).
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Support for fault-tolerance, via a call to the OFTC algorithm,
involves related changes to the PCSS algorithm. These include
taking redFactor and redSet, the redundant covering set for each
sample covered in predMap, as additional inputs and returning
redSet as an additional output. Most importantly, the computa-
tion of sampContr (line 7 of PCSS) is replaced by a call to OFTC
with senPred, , sensSamp, , and redFactor
as inputs. is then represented by the value of
bestSetVal returned by OFTC. Finally, the set of samples ac-
counted for as covered (lines 14–17 of PCSS) are limited to the
OFTC return value of covSet for , while the return value
of redSet is merged into the corresponding structure of PCSS.

D. Coverage Improving Iterative Refinement

While the PCSS algorithm is driven by the ability of sam-
ples to predict others, the metric observation likelihood of the
covered sensors, and, their metric spreads, it does not ensure
that the selected sensors are well covered. Put differently, each
sensor that we decide to cover must be covered in most, if not
all, epochs when they are likely to observe the metric, barring
which we increase the likelihood of using erroneous values in
the composition of the diagnostic and increase its error. This is
precisely why, once the PCSS algorithm has decided to cover
a sensor, function increases its contribution to the valuation
of sensors that predict it; the lower the sum of likelihood of
metric observation over epochs that have not been covered, the
more we would like to ensure that it gets covered. is particu-
larly helpful in breaking ties when multiple sensors with similar
spreads and are vying for an epoch where their metric observa-
tion likelihood is similar.
However, if the PCSS algorithm chooses to cover too many

distinct sensors in the first few iterations, it is likely that it will
be difficult to ensure high coverage of all these sensors in the
end, due to an increase in competition among the covered sen-
sors for each epoch. This effect is exacerbated as increases; as
more samples may be scheduled per epoch, PCSS’s initial focus
is to choose to cover sensors with high entropy at epochs where
the metric observations likelihood is high. By the time the algo-
rithm alters course to increase coverage, the competition may
be too high. We resolve this by running the PCSS algorithm in
the context of an iteratively refinement strategy for sensor cov-
erage, that we call the Coverage Improving Iterative Refinement
(CIIR) algorithm and outline in Table III.
The CIIR algorithm eliminates those sensors from considera-

tion for coverage at each successive run of the PCSS algorithm,
which have failed to meet a coverage threshold, , over pre-
vious runs (lines 12–14). This is achieved by removing them
from the senPred structure and a corresponding cleanup of the
predMap, redSet, and sensSamp structures. This reduces com-
petition and subsequently improves coverage for the shortlisted
sensors. Note that the PCSS algorithm uses the senPred struc-
ture to determine valuation and assign coverage in lines 7 and
14–17, respectively, of the PCSS algorithm. In lieu of iterative
improvement of coverage, the CIIR algorithm introduces two
parameters and that provide the range of cov-
erage threshold values to be iterated over. Here, serves
as a tuning knob between accuracy via coverage of more sen-
sors, versus, accuracy via improved precision of metric esti-

TABLE III
ALGORITHM 3 COVERAGE IMPROVING ITERATIVE REFINEMENT

mates at the covered sensors. Also, supplies the starting
point for iterative improvement and may be set to the minimum
coverage value observed, in coverage (line 11), after the first it-
eration.
To further improve coverage quality when multiple samples

may be taken in an epoch, the CIIR algorithm calls the PCSS al-
gorithm with stepwise increments, , of the maximum number
of samples per epoch, (lines 7 and 10). Between such incre-
ments, sensors selected for coverage must be covered satisfacto-
rily. Consequently, the covered sensors and sampling schedule
constructed for one value of must be maintained as a subset
of the covered sensors and sampling schedule for subsequent
values of (lines 10 and 18). In addition to improving cov-
erage, this approach allows us the opportunity to keep from si-
multaneous covering sensors that are well correlated or equiva-
lent. The structure maps each sensor to the set of sensors
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TABLE IV
SENSOR SELECTION PERFORMANCE FOR MAXIMUM AMP

that it is equivalent to. For our application, we define equiva-
lency of sensors and by a low root mean squared relative
linear regression error for the metric values at and . To avoid
concurrent coverage of equivalent sensors, senPred is updated,
between increments of , by filtering out all sensors that are
equivalent to each covered sensor (line 17). Lastly, the point of
having the PCSS algorithm make sampling decisions for any
value up to (line 6 of the PCSS algorithm), is that epochs left
empty by PCSS when run with one value of may come in
handy at a subsequent value of .
The CIIR algorithm terminates to produce the sampling

scheme, in sensSamp, the resulting map of sensor measure-
ments to predict, in predMap, and a multimap of redFactor
backup samples from distinct sensors for each predicted mea-
surement, in redSet. By sampling measurements at each stride
based on the schedule in sensSamp, the diagnostic metric is
composed, based on a model, from the metric values at the
sensors covered in predMap. In our case, similar to [14], we
use multiple linear regression as the model as it provides a
good fit. In the case of sensor faults, redSet is consulted to alter
predMap, and possibly sensSamp, so that diagnostic metric
composition can be continued at the same level of accuracy.
The individual metric value at each covered sensor is de-

rived from its sampled/predicted measurements, in a manner
identical to the case when its measurements are available for
all epochs. Note that, by construction, we expect these sparsely
sampled/predicted values to have high accuracy, since the map-
ping in predMap derives from the strongly linked samples in
senPred. Consequently, and given that our coverage of the rel-
evant epochs for these sensors is near complete, we expect the
predicted metric values at these sensors to be accurate as well.

E. Power Constrained Multi-Modal/Diagnostic Sampling

Our algorithm may easily be extended to the multi-modal
or multiple diagnostic metric cases, such as the composition

TABLE V
SENSOR SELECTION PERFORMANCE FOR GUARDEDNESS

Fig. 3. Coefficient of determination ( ) for predicted sensors.

of guardedness and average maximum amplitude from plantar
pressure readings. In order to accomplish this, we first note
that there must be one set each, of the following structures,
per metric: senPred, sensSamp, predMap, redSet, sampContr,
and coverage. We construct a vector of metric weights that will
be used to switch between the metrics in the main while loop
of the PCSS algorithm (lines 3–18). A weight, , for max-
imum amplitude and, , for guardedness will assign up to

of the assigned epochs to samples for the max-
imum amplitude metric and up to of the assigned
epochs to samples for guardedness. However, fewer epochsmay
be assigned to a metric, if only those many valuable samples
may be obtained. The weights are derived from the width of the
likelihood curves for each metric; if a metric requires
samples from more epochs, it deserves a higher weight. The as-
signments of epochs to samples for individual metrics are made
in tandem. In addition, PCSS is modified to allow for the same
sensor to be sampled at a given epoch for multiple diagnostic
metrics. In this case, the construction of the redundant covering
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Fig. 4. RMSE of max amplitude, guardedness, and lateral pressure difference diagnostics for PCSS CIIR versus CICA [14].

Fig. 5. Sensor coverage and energy savings factors for different k.

set, in redSet, to replace such a sample must consider the pre-
dicted measurements for each such diagnostic metrics.

V. RESULTS

We discuss the performance of our algorithm in the context
of five plantar pressure datasets obtained from distinct subjects
with distinct gait profiles, wearing the Hermes shoe while
walking. The number of strides per dataset varies from seven
to a couple hundred. We divide each dataset into two subsets,
ascribing 80% for training and 20% for testing. All the results
discussed here are for the testing subsets. Also, note that each
dataset includes data for the left and right feet which are treated
independently.

A. Sensor Selection and Prediction

We assess performance from the perspectives of the quality
of sensors selected, energy-efficiency of the proposed sampling

Fig. 6. Energy savings factors for different levels of fault-tolerance.

schemes and the accuracy in metric prediction. The presented
summaries are for and , wherein sepa-
rate sampling schemes were constructed for each of the metrics.
Tables IV and V summarize the performance for the maximum
amplitude and guardedness metrics, respectively.
We also observe that we are predicting sensors with a lot of

information—the average entropy of the predicted sensors as
a percentage of maximum entropy is fairly high, especially in
the case of the maximum amplitude metric. This bias is owed
to the fact that the weight, in sampContr, placed on the spread
in function is much higher, relative to and , in the case of
maximum amplitude. These weights were selected to achieve
better diagnostic accuracy.
Perhaps most importantly, we observe that despite us being

able to predict many sensors, the proposed sampling schemes
are able to provide energy savings up to a factor of 5.55 with
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Fig. 7. RMSE of max amplitude, guardedness, and lateral pressure difference diagnostics for different levels of fault-tolerance.

the mean savings hovering around 2 and 1.5 for each of the met-
rics, when compared to CICA [14]. The energy savings factor
is calculated based on the number of epochs during which no
samples are taken. Note here, that the CICA-based algorithm
samples the same sensor(s) at every epoch. So, it is clear, in
that case, that only a single sensor’s metric would have been
available, given the power constraint. While the quality of the
metric for this sensor would be perfect, Fig. 3 shows that in a
majority of the datasets, our algorithm’s accuracy of prediction,
as described by the coefficient of determination, is high (close
to 1.0) for all predicted sensors. Low accuracy is observed for
the first dataset due to the fact that it is small, comprised of five
training strides and two testing strides.

B. Accuracy of Diagnostic Composition

Next, we compared the energy-efficiency and diagnostic ac-
curacy of our algorithm for the average maximum amplitude,
guardedness and lateral pressure difference diagnostics, to the
CICA-based algorithm in [14], with redFactor set to 0. Here,
we measure accuracy in terms of the root mean square error
(RMSE) in each of the diagnostics metrics, where the RMSE is
taken jointly over all datasets. For both the algorithms, all met-
rics are predicted from a single sampling scheme that is distinct
for each dataset. Fig. 4 plots the observed RMSE of the two al-
gorithms, averaged over all datasets, for each of the diagnostic
metrics, and, for values of between 1 and 3. The improve-
ment over CICA ranges between 10% and 40%. Note that under
a linear battery discharge model, the studied values of trans-
late to a lifetime increase of between 53% and 54%. Further-
more, we observe significant improvements in energy savings
as well as sensor coverage for different values of over CICA
(Fig. 5). Here, the sensor coverage factor is just the ratio of the
total number of sensors sampled over all metrics, to . Both sav-
ings factors are a weighted average over all datasets, where the
weights are the number of strides per dataset. This helped adjust
for the large deviations observed in the first dataset (Tables IV
and V).

We are able infer metric values at over twice the number of
sensors sampled by CICA. The energy savings vary between
43% and 65% rising up to 74% for one of the datasets when is
2. However, despite being able to infer metric values for many
more sensors than we do not observe such large improve-
ments in diagnostic accuracy. Whereas CICA picks the most
orthogonal set of high-relevance sensors to construct the diag-
nostic metrics, our algorithm does not exert such fine grained
control on the relationship between sensors selected for cov-
erage. We also observe that our improvement over CICA for
different values of vary across diagnostics. This is due to the
difference in the way diagnostic metrics are balanced by the
two approaches while selecting a sensor for coverage. CICA is
directly data driven and bases its sensor selection, at each it-
eration, on the improvement in error seen for each diagnostic.
Based on our problem formulation, we have chosen instead to
weigh sample selection for different metrics based on their rel-
ative likelihood distribution across the epochs in a stride.

C. Performance Under Fault Tolerance

Finally, we compare the energy-efficiency and diagnostic ac-
curacy of our algorithm under different values of redFactor
for each of the diagnostic metrics. As before, accuracy is mea-
sured in terms of the RMSE over all datasets for each diag-
nostic metric, based on a single sampling scheme per dataset.
However, in order to determine the diagnostic accuracy in case
of sensor faults, we must measure the error under such condi-
tions. We accomplish this by removing a random sensor from
sensSamp and predMap, replacing its samples with those from
redSet and computing the error based on the resulting predMap.
If redFactor is greater than 1, this procedure is repeated red-
Factor times. Fig. 7 shows the resulting RMSE for each metric,
averaged over 100 such testing trials, for values of set to 1 and
2, and values of redFactor ranging from 0 to 2.
In all cases, we see that the error increases with redFactor. As

the need for fault-tolerance rises, there are fewer sensors that can
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be covered due to the increased standards of coverage under im-
mutable spatio-temporal redundancy. Fig. 6 provides further ev-
idence to this effect as we see a rise in the energy savings factor
(over CICA) with an increasing redFactor, owing to reduced
coverage. However, we also notice that the error decreases with
regardless of redFactor, thereby allowing the device designer

to cater to accuracy requirements under lifetime constraints by
relaxing the power constraints.

VI. CONCLUSION

We have presented an approach for sample selection under
fault-tolerance and power constraints in wearable BASNs. We
evaluate our approach for multiple validated diagnostics from
plantar pressure measurements, wherein we are able to produce
sensor fault-tolerant schedules with significant energy savings
and favorable diagnostic accuracy.
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