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Design of Robust Higher Order Sliding Mode
Control for Microgrids

Michele Cucuzzella, Gian Paolo Incremona, and Antonella Ferrara

Abstract—This paper deals with the design of advanced control
strategies of sliding mode type for microgrids. Each distributed
generation unit (DGu), constituting the considered microgrid,
can work in both grid-connected operation mode (GCOM) and
islanded operation mode (IOM). The DGu is affected by load
variations, nonlinearities and unavoidable modelling uncertain-
ties. This makes sliding mode control particularly suitable as a
solution methodology for the considered problem. In particular, a
second order sliding mode (SOSM) control algorithm, belonging
to the class of Suboptimal SOSM control, is proposed for both
GCOM and IOM, while a third-order sliding mode (3-SM)
algorithm is designed only for IOM, in order to achieve, also
in this case, satisfactory chattering alleviation. The microgrid
system controlled via the proposed sliding mode control laws
exhibits appreciable stability properties, which are formally
analyzed in the paper. Simulation results also confirm that
the obtained closed-loop performances comply with the IEEE
recommendations for power systems.

Index Terms—Sliding modes, power systems, uncertain sys-
tems.

I. INTRODUCTION

In recent years, the increasing of renewable energy sources
has given rise to a new paradigm in power generation. There is
a clear trend towards the realization of smaller DGus [1], which
enables to achieve economical and environmental benefits, in
terms of energy efficiency and reduced carbon emissions [2].
DGus also improve the service continuity [3], by supplying
a portion of the load, even after being disconnected from the
main grid [4].

In the literature, a set of interconnected DGus, which are
usually strictly close to the energy consumers, is identified as a
“microgrid” [5]–[7]. The latter, characterized by some intelligent
computation and metering capability, can be considered as the
basic unit of the so-called “smart grid" [8]. Because of the
intermittence and the uncertainty caused by meteorological
factors, it is difficult to integrate renewable energy sources
directly into the main grid. This is the reason why voltage
control, power control, fault detection, reliability enforcement,
and power losses minimization are among the issues to solve in
order to integrate DGus into the distribution network [9], [10].
In recent years, several control strategies have been proposed
to deal with DGus. Many of them are based on PI controllers
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and consider the microgrid in IOM (see [11]–[15]). Others
adopt more advanced control methodologies such as droop
mode control [16], [17], predictive control [18], [19], adaptive
control [20], [21], H∞ control [22], and Plug-and-Play (PnP)
decentralized algorithms [23].

One of the crucial problems in microgrids is the presence of
the voltage-sourced-converter (VSC) as interface element with
the main grid. The VSC can be viewed as a source of modelling
uncertainty and disturbances. This fact makes the adoption of
a robust control design methodology mandatory. Sliding mode
(SM) control [24], [25] is a well-known control approach partic-
ularly appreciated for its robustness properties. Specifically, it is
able to reject the so-called matched uncertainties, i.e., unknown
terms which act on the same channel of the control variable,
and not to amplify unmatched disturbances [26]. SM control
is easy to implement, yet, it requires the use of discontinuous
control laws, which can enforce the chattering effect, i.e., high
frequency oscillations of the controlled variable due to the
discontinuities of the control law, [27]–[29]. In the literature,
several methods to alleviate chattering, such as boundary layer
control or filtered control, have been proposed. Yet, in these
cases the robustness properties typical of SM control could
be lost. An effective way to perform chattering alleviation is
instead to increase the order of the sliding mode. For this
reason Higher Order Sliding Mode (HOSM) control laws [30],
in particular of the second order, have been studied.

In this paper, a master-slave scheme with advanced control
strategies, which belong to the class of Suboptimal SOSM
algorithms [31]–[34] and of min−max Time-optimal third-
order SM (3-SM) algorithms [30], is proposed. First, the use
of SOSM control is investigated, observing how this approach
can provide satisfactory chattering alleviation only in case of
GCOM, since in that case the controlled system relative degree
is unitary, while in IOM it is equal to 2. Then, to attain a
chattering attenuation effect also in IOM, a 3-SM control law
is designed for that case. So, on the whole, it is possible to
devise a control policy which switches from a SOSM control
law to a 3-SM control law, i.e., changes the order of the sliding
modes which are generated, whenever a transition from GCOM
to IOM occurs.

Note that, preliminary and partial versions of this work, not
reporting the proofs of stability and robustness, have been
published in [35], [36].

II. PRELIMINARY ISSUES

Consider the schematic electric single-line diagram of two
interconnected DGus in Fig. 1. The basic element of a DGu
is usually an energy source of renewable type, which can
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Figure 1. Representation of the master-slave system with HOSM controllers.

be represented by a direct current (DC) voltage source. This
is interfaced with the main grid through two components: a
voltage-sourced-converter (VSC) and a filter. In our case the
first component is a pulse width modulation (PWM) inverter,
while the second component is a resistive-inductive filter. The
electric connection point of the DGu to the main grid is the
so-called point of common coupling (PCC) where a local three-
phase parallel resistive-inductive-capacitive load is connected.

In GCOM, the PCC voltage magnitude and frequency are
dictated by the main grid. Thus, the system is forced to operate
in stiff synchronization with the grid by using the so-called
phase-locked-loop (PLL), which provides the reference angle θ

for the Park’s transformation [37]. Let Vd , Vq, Itd and Itq denote
the direct and quadrature components of the load voltage vabc
and of the delivered current it,abc, respectively. In order to
achieve the lock with the main grid, a proportional-integral
(PI) controller is used to keep the PCC quadrature voltage
component Vq as close as possible to zero. In such a case,
the active and reactive power are equal to P = 3/2VdItd and
Q = −3/2VdItq. Hence, the DGu works in the so-called dq
current control mode in order to supply the desired active and
reactive power.

When an islanding event occurs, i.e., when the circuit breaker
SW2 in Fig. 1 opens, the PCC voltage and frequency could
deviate significantly from the nominal values, due to the power
mismatch between the DGu and the load. Therefore, in IOM
the DGu has to provide the voltage control in order to keep the
load voltage magnitude and frequency constant with respect to
the reference values. In IOM, the Park’s transformation angle θ

is provided by an internal oscillator set to the nominal angular
frequency, namely ω0 = 2π f0.

The transition from GCOM to IOM has to be smooth to
avoid system performance degradation. Thus, when the voltage
control is activated, the phase angle, provided by the PLL,
must be used as the initial condition for the internal oscillator.
To avoid hard transients, also before the reconnection to the
main grid, the PCC voltage must be resynchronized with the

grid voltage, for instance as proposed in [38], [39].
In Fig. 1, the proposed control scheme with two DGus

is illustrated. It has a master-slave structure, which can be
extended to the case with several DGus. In GCOM, all the
DGus regulate their own active and reactive power. When
an islanding event occurs, the Master DGuM switches to the
voltage control mode and becomes responsible to keep the
voltage amplitude and frequency constant with respect to their
references for the Slave DGus of the microgrid.

III. PROBLEM FORMULATION

Consider the scheme of a single DGu and assume the system
to be symmetric and balanced. According to the stationary abc-
frame, the governing equations for the DGu in IOM, are

it,abc =
1
R vabc + iL,abc +C dvabc

dt

vt,abc = Lt
dit,abc

dt +Rt it,abc + vabc

vabc = L diL,abc
dt +Rl iL,abc

(1)

where it,abc, vabc, iL,abc and vt,abc represent the currents
delivered by the DGu, the load voltages, the currents fed
into the inductance load (L) and the VSC output voltages,
respectively. Each three-phase variable of (1) can be transferred
to the rotating dq-frame by applying the Clarke’s and Park’s
transformations. Then, the so-called state-space representation
of (1) results in being

ẋ1(t) =− 1
RC x1(t)+ω0x2(t)+ 1

C x3(t)− 1
C x5(t)

ẋ2(t) =−ω0x1(t)− 1
RC x2(t)+ 1

C x4(t)− 1
C x6(t)

ẋ3(t) =− 1
Lt

x1(t)− Rt
Lt

x3(t)+ω0x4(t)+ 1
Lt

u1(t)
ẋ4(t) =− 1

Lt
x2(t)−ω0x3(t)− Rt

Lt
x4(t)+ 1

Lt
u2(t)

ẋ5(t) = 1
L x1(t)− Rl

L x5(t)+ω0x6(t)
ẋ6(t) = 1

L x2(t)−ω0x5(t)− Rl
L x6(t)

yd IOM (t) = x1(t)
yq IOM (t) = x2(t)

(2)

where x= [Vd Vq Itd Itq ILd ILq]
T ∈X ⊂R6 is the state variables

vector, u = [Vtd Vtq]
T ∈ U ⊂R2 is the input vector, and yIOM =
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[Vd Vq]
T ∈R2 is the output vector. Analogously, the state-space

model of the DGu in GCOM is

ẋ1(t) =− 1
RC x1(t)+ωx2(t)+ 1

C x3(t)− 1
C x5(t)− 1

C x7(t)
ẋ2(t) =−ωx1(t)− 1

RC x2(t)+ 1
C x4(t)− 1

C x6(t)− 1
C x8(t)

ẋ3(t) =− 1
Lt

x1(t)− Rt
Lt

x3(t)+ωx4(t)+ 1
Lt

u1(t)
ẋ4(t) =− 1

Lt
x2(t)−ωx3(t)− Rt

Lt
x4(t)+ 1

Lt
u2(t)

ẋ5(t) = 1
L x1(t)− Rl

L x5(t)+ωx6(t)
ẋ6(t) = 1

L x2(t)−ωx5(t)− Rl
L x6(t)

ẋ7(t) = 1
Ls

x1(t)− Rs
Ls

x7(t)+ωx8(t)− 1
Ls

u3(t)
ẋ8(t) = 1

Ls
x2(t)−ωx7(t)− Rs

Ls
x8(t)− 1

Ls
u4(t)

yd GCOM (t) = x3(t)
yqGCOM (t) = x4(t)

(3)

where x = [Vd Vq Itd Itq ILd ILq Igd Igq]
T ∈ X ⊂R8 is the state

variables vector, u = [Vtd Vtq Vgd Vgq]
T ∈ U ⊂ R4 is the input

vector, and yGCOM = [Itd Itq]T ∈R2 is the output vector, Igd , Igq,
Vgd , Vgq being the dq-components of the currents exchanged
with the grid and the grid voltages.

The aim of this paper consists in designing a control scheme
capable of guaranteeing that the tracking error between any
controlled variable and the corresponding reference is steered
to zero in a finite time in spite of the uncertainties.

IV. THE PROPOSED SOLUTION: HIGHER ORDER SLIDING
MODE CONTROL SCHEME

In this section, the use of HOSM control to solve the
aforementioned control problem is discussed.

A. Suboptimal SOSM Controller
Consider the IOM state-space model (2) and select the so-

called “sliding variables” as

σdIOM (t) = ydIOM ,re f − ydIOM (t) (4)
σqIOM (t) = yqIOM ,re f − yqIOM (t) (5)

where yiIOM ,re f , i = d,q are assumed to be of class C2 and with
second time derivative Lipschitz continuous. Denote with r
the relative degree of the system, i.e., the minimum order r
of the time derivative σ (r) of the sliding variable in which
the control u explicitly appears. With reference to (4)-(5), it
appears that r is equal to 2. This implies that a SOSM control
naturally applies [31], [32]. According to the SOSM control
theory, we need to define the so-called auxiliary variables
ξd,1IOM =σdIOM and ξq,1IOM =σqIOM such that the corresponding
auxiliary systems can be expressed as{

ξ̇i,1IOM (t) = ξi,2IOM (t)
ξ̇i,2IOM (t) = fiIOM (x(t))+giIOM uiIOM (t)

i = d,q (6)

where uiIOM are the dq-components of the VSC output voltages,
ξi,2IOM are assumed to be unmeasurable, and

fdIOM (x(t)) = (ω2
0 −

1
(RC)2 +

1
LtC + 1

LC )x1(t)+
2ω0
RC x2(t)

+( 1
RC2 +

Rt
LtC )x3(t)− 2ω0

C x4(t)
−( 1

RC2 +
Rl
LC )x5(t)+

2ω0
C x6(t)+ ẍ1,re f (t)

fqIOM (x(t)) =− 2ω0
RC x1(t)+(ω2

0 −
1

(RC)2 +
1

LtC + 1
LC )x2(t)

+ 2ω0
C x3(t)+( 1

RC2 +
Rt

LtC )x4(t)
− 2ω0

C x5(t)− ( 1
RC2 +

Rl
LC )x6(t)+ ẍ2,re f (t)

giIOM =− 1
LtC , i = d,q

(7)

are allowed to be uncertain with known bounds

| fiIOM (·)| ≤ FiIOM , Gi,mIOM ≤ |giIOM | ≤ Gi,MIOM (8)

FiIOM , Gi,mIOM and Gi,MIOM being positive constants. Note that,
the existence of these bounds is true in practice due to the
fact that fiIOM (·), i = d,q, depend on electric signals related to
the finite power of the system and giIOM , i = d,q, are constant
values. The control laws, which are proposed to steer ξi,1IOM (t)
and ξi,2IOM (t), i = d,q, to zero in a finite time in spite of the
uncertainties, in analogy with [31], can be expressed as follows

uiIOM (t) =−αiIOMUiIOM,max sgn
(

ξi,1IOM (t)−
1
2 ξi,1IOM,max

)
(9)

with bounds

UiIOM,max > max

(
FiIOM

α∗iIOM
Gi,mIOM

;
4FiIOM

3Gi,mIOM −α∗iIOM
Gi,MIOM

)
(10)

α
∗
iIOM
∈ (0,1]∩

(
0,

3Gi,mIOM

Gi,MIOM

)
(11)

Analogously, in GCOM, the sliding variables are selected as

σdGCOM (t) = ydGCOM ,re f − ydGCOM (t) (12)
σqGCOM (t) = yqGCOM ,re f − yqGCOM (t) (13)

where yiGCOM ,re f , i = d,q are assumed to be of class C and
with first time derivative Lipschitz continuous. In this second
case, the natural relative degree of the system is equal to 1.
So, a first order sliding mode controller would be adequate.
Yet, in order to alleviate the chattering phenomenon [27]–[29],
[40], [41], which can be dangerous in terms of harmonics
affecting the electric signals, SOSM control is used also in this
case, by artificially increasing the relative degree of the system.
Specifically, by defining the auxiliary variables ξd,1GCOM =
σdGCOM and ξq,1GCOM = σqGCOM , one hasξ̇i,1GCOM (t) = ξi,2GCOM (t)

ξ̇i,2GCOM (t) = fiGCOM (x(t),u(t))+giGCOM wiGCOM (t)
u̇iGCOM (t) = wiGCOM (t)

i = d,q

(14)

where uiGCOM , are the dq-components of the VSC output
voltages, ξi,2GCOM are assumed to be unmeasurable, and

fdGCOM (x(t),u(t)) =−( 1
RLtC + Rt

L2
t
)x1(t)+ 2ω

Lt
x2(t)

+(ω2 + 1
LtC −

R2
t

L2
t
)x3(t)+

2ωRt
Lt

x4(t)

− 1
LtC x5(t)− 1

LtC x7(t)+
Rt
L2

t
udGCOM (t)

− ω

Lt
uqGCOM (t)+ ẍ3,re f (t)

fqGCOM (x(t),u(t)) =− 2ω

Lt
x1(t)− ( 1

RLtC + Rt
L2

t
)x2(t)

− 2ωRt
Lt

x3(t)+(ω2 + 1
LtC −

R2
t

L2
t
)x4(t)

− 1
LtC x6(t)− 1

LtC x8(t)+ ω

Lt
udGCOM (t)

+ Rt
L2

t
uqGCOM (t)+ ẍ4,re f (t)

giGCOM =− 1
Lt
, i = d,q

(15)

are allowed to be uncertain with known bounds

| fiGCOM (·)| ≤ FiGCOM , Gi,mGCOM ≤ |giGCOM | ≤Gi,MGCOM (16)

FiGCOM , Gi,mGCOM and Gi,MGCOM being positive constants. The
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control laws, which are proposed to steer ξi,1GCOM (t) and
ξi,2GCOM (t), i = d,q, to zero in a finite time in spite of the
uncertainties, in this second case, can be expressed as follows

wiGCOM =−αiGCOMUiGCOM,max sgn
(

ξi,1GCOM −
1
2 ξi,1GCOM,max

)
(17)

with bounds

UiGCOM,max > max

(
FiGCOM

α∗iGCOM
Gi,mGCOM

;
4FiGCOM

3Gi,mGCOM −α∗iGCOM
Gi,MGCOM

)
(18)

α
∗
iGCOM

∈ (0,1]∩
(

0,
3Gi,mGCOM

Gi,MGCOM

)
(19)

Note that, the discontinuity of the SOSM control laws wiGCOM ,
i = d,q only affects σ̈iGCOM . The actual control variables uiGCOM ,
i = d,q, are continuous, so that the chattering is alleviated.

Moreover, in order to face some undesired overshoot on the
currents, due to the reconnection to the main grid, as well as
step variations of the current references, a constrained SOSM
(SOSMc) can be used in GCOM. According to [42], this is
able to fulfil the constraints imposed on ξi,1GCOM and ξi,2GCOM .

B. 3-SM Controller for chattering attenuation in IOM

To provide a chattering attenuation also in IOM, the
procedure suggested in [31], consisting in artificially increasing
the system relative degree, is applied. Inspired by [30], in this
paper we propose a 3-SM control law to solve the microgrid
voltage control problem in question with chattering attenuation.
Since the 3-SM is applied only in IOM, the subscript IOM is
omitted in this subsection.

By defining the auxiliary variables ξd,1 = σd and ξq,1 = σq,
one has

ξ̇i,1(t) = ξi,2(t)
ξ̇i,2(t) = ξi,3(t)
ξ̇i,3(t) = ϕi(x(t),u(t))+ γiwi(t)
u̇i(t) = wi(t)

i = d,q (20)

where ξi,2, ξi,3 are assumed to be unmeasurable, and

ϕd(x(t),u(t)) = (ω2
0 −

1
(RC)2 +

1
LtC

+ 1
LC )ẋ1(t)+

2ω0
RC ẋ2(t)

+( 1
RC2 +

Rt
LtC

)ẋ3(t)− 2ω0
C ẋ4(t)

−( 1
RC2 +

Rl
LC )ẋ5(t)+

2ω0
C ẋ6(t)+ x(3)1,re f (t)

ϕq(x(t),u(t)) = − 2ω0
RC ẋ1(t)+(ω2

0 −
1

(RC)2 +
1

LtC

+ 1
LC )ẋ2(t)+

2ω0
C ẋ3(t)+( 1

RC2 +
Rt

LtC
)ẋ4(t)

− 2ω0
C ẋ5(t)− ( 1

RC2 +
Rl
LC )ẋ6(t)+ x(3)2,re f (t)

γi =− 1
LtC

, i = d,q
(21)

are allowed to be uncertain with known bounds

|ϕi(·)| ≤Φi, Γi,m ≤ |γi| ≤ Γi,M (22)

Φi, Γi,m and Γi,M being positive known constants. The control
laws, proposed to steer ξi,1(t), ξi,2(t) and ξi,3(t), i = d,q,
to zero in a finite time in spite of the uncertainties, can be

expressed as follows

wi(σ̄i)=−αi


wi,1 = sgn(σ̈i), σ̄i ∈Mi,1/Mi,0

wi,2 = sgn(σ̇i +
σ̈2

i wi,1
2αi,r

), σ̄i ∈Mi,2/Mi,1

wi,3 = sgn(si(σ̄i)), else

(23)

where one has that σ̄i = (σi, σ̇i, σ̈i)
T and si(σ̄i) = σi +

σ̈3
i

3α2
i,r
+

wi,2

[
1√
αi,r

(
wi,2σ̇i +

σ̈2
i

2αi,r

) 3
2 + σ̇iσ̈i

αi,r

]
, αi,r being the reduced con-

trol amplitude, such that

αi,r = αiΓi,m−Φi > 0 (24)

In (23), (24) there are no parameters to be tuned, except
for the control amplitudes αi, i = d,q. In (23) the manifolds
Mi,0, Mi,1, Mi,2 are defined as

Mi,0 = {σ̄i ∈ R3 : σi = σ̇i = σ̈i = 0}

Mi,1 =

{
σ̄i ∈ R3 : σi−

σ̈3
i

6α2
i,r
= 0, σ̇i +

σ̈i|σ̈i|
2αi,r

= 0
}

Mi,2 = {σ̄i ∈ R3 : si(σ̄i) = 0}

(25)

Note that, in this case, the 3-SM algorithm requires that the
discontinuous controls are wi(t), i = d,q, which only affect
σ
(3)
i , but not σ̈i, so that the controls actually fed into the plant

are continuous and the chattering is alleviated.

V. STABILITY ANALYSIS

With reference to the proposed SOSM control approach, the
following results can be proved.

Theorem 1: Given system (2) in IOM and system (3) in
GCOM case, by applying the control laws (9)-(11) and (17)-
(19), respectively, the sliding variables σdν

(t) and σqν
(t) in (4)-

(5) and in (12)-(13), ν being the subscript IOM or GCOM,
depending on the case, are steered to zero in a finite time.

Proof: This result directly follows from [31, Theorem 1]
for the IOM and the GCOM case, by virtue of the choice of the
control laws (9)-(11) and (17)-(19). In brief, it can be proved
that, with the constraints (10)-(11) and (18)-(19), the control
laws (9) and (17) establish the generation of a sequence of
states with coordinates featuring a contraction of the extremal
values, i.e., |ξi,1ν ,max,k+1| < |ξi,1ν ,max,k|, where ξi,1ν ,max,k is the
k-th extremal value of variable ξi,1ν

(t). Moreover, it can be
proved that limk→∞ tiν ,max,k <

βiν
1−γiν

+ tiν ,max,1 where {tiν ,max,k},
i = d,q, denote the sequences of the time instants when an
extremal value of σdν

(t) and σqν
(t) occurs and γiν < 1, with

βiν =
√
|ξi,1ν ,max,1|

(Gi,mν
+α∗iν Gi,Mν

)Uiν ,max

(Gi,mν
Uiν ,max −Fiν )

√
α∗iν Gi,Mν

Uiν ,max +Fiν

This allows one to conclude about the finite time convergence
of the sliding variables in both the operation modes.

Remark 1: Note that, in GCOM, from [42, Lemma 3], it can
also be proved that the convergence occurs while complying
with state constraints.
Now, consider the IOM case. Let e = [e1, e2, e3, e4, e5, e6]

T

denote the state of the error system, with

e j = x j,re f − x j j = 1, . . . ,6 (26)

x j being the state variables of (2).
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Theorem 2: Consider system (2) in IOM and the sliding
variables (4)-(5), controlled via the SOSM algorithm in (9)-(11).
∀ t ≥ tr, tr being the time instant when σiIOM , σ̇iIOM , i = d,q,
are identically zero, ∀x(tr) ∈ X , the origin of the error system
state space is a finite time stable equilibrium point.

Proof: The auxiliary variables ξd,1IOM (t), ξq,1IOM (t) are
zero ∀ t ≥ tr, since they coincide with the sliding variables
σdIOM (t),σqIOM (t), respectively. By comparing (26) with (4)
and (5), taking into account system (2), one can conclude
that also e1 and e2 are zero ∀ t ≥ tr. Since, by virtue of the
generation of a SOSM, also σ̇dIOM (t) and σ̇qIOM (t) are zero
∀ t ≥ tr, it also follows that ė1(t) and ė2(t) are equal to zero
∀ t ≥ tr. Then, inspecting (2), one has that e3 = e5 and e4 = e6,
so that it yields{

−Rt
Lt

e3(t)+ 1
Lt

udIOM (t) =−
Rl
L e3(t)

−Rt
Lt

e4(t)+ 1
Lt

uqIOM (t) =−
Rl
L e4(t)

(27)

According to [34], one can compute the equivalent control in
case of SOSM, ∀ t ≥ tr, by posing in (6) that ξ̇i,2IOM (t), i = d,q,
are equal to zero, i.e.,

ueq,iIOM =−
fiIOM (x(t))

giIOM

i = d,q (28)

By substituting (28) into (27), one has that e j, j = 3, . . . ,6 are
zero ∀ t ≥ tr, which proves the theorem.

Theorem 3: Consider system (3) in GCOM and the sliding
variables (12)-(13), controlled via the SOSM algorithm in (17)-
(19). ∀ t ≥ tr, tr being the time instant when σiGCOM , σ̇iGCOM , i =
d,q, are identically zero, ∀x(tr) ∈ X , the origin of the error
system state space is a finite time stable equilibrium point.

Proof: The proof is analogous to that of Theorem 2.
By virtue of the use of the Suboptimal SOSM control approach,
the designed control system turns out to be naturally robust with
respect to any uncertainty included in fiIOM (·), fiGCOM (·), i =
d,q. It is furthermore interesting to analyze the robustness of the
proposed control approach versus disturbances or uncertainties,
gathered in a signal udV SC(t), due to the presence of the VSC.
Consider the system in IOM and in GCOM expressed as

ẋν(t) = Aν xν(t)+Bν uν(t)+udV SCν
(t) (29)

where, we assume udV SCν
(t) = Bν hV SC(t), ν being the sub-

script IOM or GCOM, depending on the case, and the
physical bound ‖hV SC(t)‖ ≤ hV SCmax , hV SCmax being a positive
constant. Note that, the associated auxiliary systems can
be rewritten as in (6) and (14), replacing fiIOM (·), fiGCOM (·)
with f̄iIOM (·), f̄iGCOM (·), i = d,q, to include the additive term
udV SCν

(t), with bounds | f̄iIOM (·)| ≤ F̄iIOM and | f̄iGCOM (·)| ≤
F̄iGCOM , F̄iIOM , F̄iGCOM , i = d,q, being positive constants.

Theorem 4: System (29) in IOM, controlled by applying (9)-
(11), with UiIOM,max in (10) replaced by ŪiIOM,max , i = d,q, and

ŪiIOM,max > max

(
F̄iIOM

α∗iIOM
Gi,mIOM

;
4F̄iIOM

3Gi,mIOM −α∗iIOM
Gi,MIOM

)
∀ t ≥ tr and ∀x(tr) ∈X , is robust with respect to the uncertain

term hV SC.

Proof: Consider the auxiliary systems (6) expressed as{
ξ̇i,1IOM (t) = ξi,2IOM (t)
ξ̇i,2IOM (t) = f̄iIOM (x(t))+giIOM uiIOM (t)

i = d,q (30)

According to [34], one can compute the equivalent control in
case of SOSM, ∀ t ≥ tr, by posing in (30) that ξ̇i,2IOM (t), i= d,q,
are equal to zero, i.e.,

ueq,iIOM =−
f̄iIOM (x(t))

giIOM

i = d,q (31)

Substituting (31) in (29), one can determine the equivalent
dynamics in Filippov’s sense [43] of the error system, which
does not depend on the uncertain term hV SC(t). So, in spite of
its presence, for Theorem 2, the origin of the error system state
space results in being a finite time stable equilibrium point.

Theorem 5: System (29) in GCOM, controlled by apply-
ing (17)-(19), with UiGCOM,max in (18) replaced by ŪiGCOM,max , i=
d,q, and

ŪiGCOM,max > max

(
F̄iGCOM

α∗iGCOM
Gi,mGCOM

;
4F̄iGCOM

3Gi,mGCOM −α∗iGCOM
Gi,MGCOM

)
∀ t ≥ tr and ∀x(tr) ∈X , is robust with respect to the uncertain

term hV SC.
Proof: The proof is analogous to that of Theorem 4.

Now, with reference to the proposed 3-SM control, the
following results can be proved. Since the 3-SM is applied
only in IOM, the subscript IOM is omitted in the following.

Theorem 6: Given system (2) in IOM, by applying the control
law (23) with the constraint (24), the sliding variables σd(t)
and σq(t) in (4)-(5), are steered to zero in a finite time.

Proof: In analogy with [30], the controlled system can be
expressed as a differential inclusion [44]

˙̄σi =

0 1 0
0 0 1
0 0 0

 σ̄i +

 0
0

ϕi + γiwi

 i = d,q (32)

with ϕi ∈ [−Φi,Φi] and γi ∈ [Γi,m,Γi,M], i = d,q. By applying
Theorem 2 in [30], it can be proved that the origin is an
uniformly global finite-time stable equilibrium point for (32),
controlled through (23). This allows one to conclude about the
finite time convergence of the sliding variables σd and σq.

Theorem 7: Consider system (2) in IOM and the sliding
variables (4)-(5), controlled via the 3-SM algorithm in (23).
∀ t ≥ tr, tr being the time instant when σi, σ̇i, σ̈i, i = d,q, are
identically zero, ∀x(tr) ∈ X , the origin of the error system
state space is a finite time stable equilibrium point.

Proof: As explained in the proof of Theorem 2, by virtue
of the generation of a 3-SM, system (27) is obtained. According
to the so-called “equivalent control” concept [24], [34], one
can compute the continuous control equivalent in terms of
effects to the discontinuous one, in case of 3-SM, ∀ t ≥ tr, by
posing in (20) that ξ̇i,3(t), i = d,q, are equal to zero, i.e.,

weq,i(t) =−
ϕi(x(t))

γi
i = d,q (33)

Since the relative degree of the system is increased by virtue
of the 3-SM algorithm, the control input fed into the plant is
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ui. Its equivalent version can be determined from (33) as

ueq,i(t) =
∫ t

tr
weq,i(ζ )dζ =− fi(x(t))

γi
i = d,q (34)

By substituting (34) into (27), it yields that e j, j = 3, . . . ,6
are zero ∀ t ≥ tr, which proves the theorem.

By using the 3-SM control approach, the designed control
system turns out to be naturally robust with respect to any
uncertainty included in ϕi(·), i = d,q, while guaranteeing
chattering alleviation. As for the SOSM case, it is worth
analyzing the robustness of the 3-SM control approach with
respect to matched disturbances or uncertainties captured by
signal udV SC(t) which acts on the same channel of the control
variable. To this end, let us consider the perturbed system
version (29) in IOM. Note that, the term hV SC,i(t), hV SC,i(t)
being the i-th component of vector hV SC(t), can be included
into ϕi in the auxiliary system (20). Then ϕi(·) is replaced with
ϕ̄i(·), i = d,q, with known bounds |ϕ̄i(·)| ≤ Φ̄i, Φ̄i, i = d,q
being positive constants.

Theorem 8: System (29) in IOM, controlled by applying (23),
with the reduced control amplitude ᾱi,r =αiΓi,m−Φ̄i > 0, ∀ t ≥
tr and ∀x(tr) ∈ X , is robust with respect to the uncertain term
hV SC.

Proof: Consider the auxiliary systems (20) expressed as
ξ̇i,1(t) = ξi,2(t)
ξ̇i,2(t) = ξi,3(t) = fi(x(t))+giui(t)+gihV SC,i(t)
ξ̇i,3(t) = ϕ̄i(x(t))+ γiwi(t)

(35)

where γi = gi = 1/(LtC) and fi(·), i = d,q, as in (7). At this
point, one can compute that

ϕ̄i(x(t)) = ϕi(x(t))+giḣV SC,i(t) = ḟi(x(t))+giḣV SC,i(t) (36)

According to the so-called “equivalent control” concept [24],
[34], one can compute the continuous equivalent control in
case of 3-SM, ∀ t ≥ tr, by posing in (35) that ξ̇i,3(t), i = d,q,
are equal to zero, i.e.,

weq,i(t) =−
ϕi(x(t))

gi
− ḣV SC,i(t) i = d,q (37)

Since the relative degree of the system is increased by virtue
of the 3-SM algorithm, the control input fed into the plant is
ui. Its equivalent version can be determined from (37) as

ueq,i(t) =
∫ t

tr
weq,i(ζ )dζ =− fi(x(t))

gi
−hV SC,i(t) (38)

Substituting (38) in (29), one can determine the equivalent
dynamics in Filippov’s sense [43] of the error system, which
does not depend on the uncertain term hV SC(t). So, in spite of
its presence, for Theorem 7, the origin of the error system state
space results in being a finite time stable equilibrium point.

VI. SIMULATION RESULTS

In this section the proposed HOSM control strategies, are
verified in simulation by implementing the master-slave model
of a microgrid composed of three DGus. The electric parameters
of the single DGu are reported in Table I. Note that, when three
DGus are considered, an additional load, which absorbs an
active and reactive power equal to P= 25 kW and Q= 1.5 kvar,

Table I
ELECTRIC PARAMETERS OF THE SINGLE DGU

Quantity Value Description

VDC 1000 V DC voltage source
fc 10 kHz PWM carrier frequency
Rt 40 mΩ VSC filter resistance
Lt 10 mH VSC filter inductance
R 4.33 Ω Load resistance
L 100 mH Load inductance
C 1 pF Load capacity
Rs 0.1 Ω Grid resistance
f0 60 Hz Nominal grid frequency
Vn 120 V Nominal grid phase-voltage (RMS)

respectively, is introduced. For the GCOM case, the SOSM
control parameters Ui,max = 5.0×107 and α∗i = 0.9, have been
selected taking into account (18)-(19) and the upperbounds in
(16), i.e., F̄d = 4.5×109, F̄q = 2.5×107 and Gi = 1.0×102,
i = d,q. For the IOM case, the 3-SM control parameters αi =
5.0×107, αrd = 1.0×1015 and αrq = 5.0×1015 have been
chosen taking into account (24) and the upperbounds in (22),
i.e., Φ̄d = 4.0×1015, Φ̄q = 5.0×1013, and Γi = 1.0×108,
i = d,q. For all the simulation tests the sampling time is Ts =
1×10−6 s.

A. Transition To and From an Islanding Event

The transition time instants are imposed equal to tisl = 0.1 s
and tgrid = 0.3 s, in which the microgrid is islanded from
and reconnected to the grid. Fig. 2 illustrates the currents
exchanged with the main grid, by applying both SOSM and
SOSMc control, and it is apparent that the SOSMc algorithm
better tracks the reference. Fig. 3 shows the three-phase load
voltage and the resynchronization of the PCC voltage to the
grid voltage before reconnecting. Finally, the bottom of Fig.
3 shows the currents exchanged with the main grid when both
the synchronization and resynchronization tools are inactive.

B. Unknown Load Dynamics

Consider the microgrid in IOM and in presence of balanced
load condition. Then, from t = 0.15 s to t = 0.25 s a resistive
load, which absorbs an active power of 3 kW, is equally added
in the three phases, such that the resulting load is still balanced.
Fig. 4 shows that during the load variation, the DGuM increases
the delivered currents to supply the added load, while keeping
the load voltage equal to its reference value. Consider now
that at t = 0.15 s the resulting load becomes unbalanced, i.e.,
Ra = 5R, Rb = 4R, Rc = 2R and Lc = L are added in phases
a, b and c, respectively. In order to verify that the proposed
controllers comply with the IEEE recommendations [45] for
power systems, the voltage imbalance ratio VN/VP (where VN
and VP are the magnitudes of negative and positive sequence
components of load voltage) is calculated with the empirical
formula proposed in [46]. Fig. 5 shows that, when the 3-
SM is applied, the voltage imbalance ratio settles to a value
approximately equal to 2.5%, which is less than the maximum
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Figure 2. Performance evaluation of SOSM and SOSMc control algorithms,
comparing the instantaneous currents exchanged with the main grid.
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Figure 3. Load voltages in IOM, resynchronization of the load voltages to
the grid voltage and currents exchanged with the grid when both synchronizer
and resynchronizer are inactive.
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Figure 4. Instantaneous currents delivered by DGuM and load voltages in
presence of parameter uncertainties (balanced load conditions).
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Figure 5. Unbalanced load condition. Instantaneous currents delivered by
DGuM , load voltages and VN/VP value by applying PI and 3-SM controllers.
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Figure 6. Nonlinear load conditions. Instantaneous load currents, load voltages
and Total Harmonic Distortion (THD) value by applying PI and 3-SM
controllers.

0 0.002 0.004 0.006 0.008 0.01
−5

0

5

10

15

20

t ime (s)

e
I
t
d
M

(A
)

 

 

SOSM
P I

0.3 0.302 0.304 0.306 0.308
−5

0

5

10

15

20

t ime (s)

e
I
t
d
M

(A
)

 

 

SOSM
P I

0 0.002 0.004 0.006 0.008 0.01
−15

−10

−5

0

5

10

15

20

25

t ime (s)

e
I
t
q
M

(A
)

 

 

SOSM
P I

0.3 0.302 0.304 0.306 0.308
−15

−10

−5

0

5

10

15

20

25

t ime (s)

e
I
t
q
M

(A
)

 

 

SOSM
P I

Figure 7. Tracking performance evaluation of SOSM and PI control: dq
components error of the currents delivered by DGuM at t = t0 and at t = tgrid .
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Table II
RMS VALUES OF CURRENTS AND VOLTAGES ERROR

Configuration PI SOSM SOSMc 3-SM

GCOM standard 100% 65% 59% -

IOM
balanced 100% - - 22%
unbalanced 100% - - 23%
nonlinear 100% - - 27%

admissible value (3%) indicated by IEEE, while, by using PI
controllers the imbalance ratio reaches a value greater than the
maximum admissible. However, the proposed control strategies
cannot face arbitrarily large unbalanced load conditions, since
the convergence properties depend on the choice of the control
amplitude. Anyway, during all the tests that we run, they always
result more performant than PI control. Note that the gains of
PI controllers have been tuned relying on the standard Ziegler-
Nichols method [47] to obtain a satisfactory behaviour of the
controlled system, given the type of control law. This method,
which is an heuristic, does not produce an optimal tuning of
the control parameters but gives parameters which are normally
highly satisfactory.

C. Nonlinear Load Conditions

Consider again the microgrid in IOM. Then, from t =
0.1 s to t = 0.2 s a three-phase six-pulse diode-bridge rectifier,
feeding a purely resistive load with R = 80Ω, is connected
to the PCC. In order to verify that the proposed controllers
comply with the IEEE recommendations for power systems,
the Total Harmonic Distortion (THD) has been calculated.
Fig. 6 shows that, when the 3-SM is applied, the THD settles
to a value approximately equal to 1%, which is less than
the maximum admissible value (5%) recommended by IEEE,
while, by using PI controllers, the THD reaches values greater
than the maximum permissible during transients. As for the
case in Subsection VI.B, also in this case the proposed control
strategies cannot face arbitrarily large nonlinear load conditions,
since the convergence properties depend on the choice of
the control amplitude. Anyway, during all the tests that we
run, they always result more performant than the PI control,
especially during transients. Note that, the more conservative
the choice of the control amplitude is, the more likely it is that
the control system is able to counteract critical unbalanced and
nonlinear load conditions. Reasonably, a compromise choice of
the control amplitude has to be made, so as to avoid excessive
control energy expenditure, though guaranteeing robustness to
unforeseen load conditions. The same holds for the case of
unbalanced load condition.

D. Comparative Analysis

In this subsection the proposed control strategies and the
traditional PI control are compared in terms of tracking
performance. Fig.7 shows the time evolution of the direct and
quadrature components of the currents errors delivered by the
DGuM . Table II reports the root mean square error (expressed

in %) of the controlled variables ItdM , ItqM in GCOM, and
Vd and Vq in IOM, with respect to their references. Finally,
we compare the 3-SM with a filtered-SOSM (fSOSM), i.e., a
SOSM control law filtered via a first order filter. The use of a
3-SM allows to obtain a reduction of about 11% of the sign
changes of the sliding variables with respect to a fSOSM.

VII. CONCLUSIONS

In this paper, higher order sliding mode control strategies
for microgrids have been studied. More precisely, a second
order sliding mode control strategy, belonging to the class
of Suboptimal algorithms, and a third order sliding mode
control strategy have been proposed. The second order sliding
mode has been used both in grid-connected and islanded
operation mode. Then, by virtue of the fact that the natural
relative degree of the system, in islanded mode, is equal to
2, it is observed how a significant beneficial effect can be
obtained in terms of chattering alleviation by applying the
third-order algorithm. The proposed controllers are analyzed
theoretically in the paper. An extensive simulation analysis is
also provided, considering a three degree-of-freedom microgrid
with master-slave architecture. The proposed controllers show
satisfactory closed-loop performance, complying with the IEEE
recommendations for power systems and result in being more
robust than traditional PI controllers.
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