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Abstract—We propose a framework employing stochastic dif-
ferential equations to facilitate the long-term stability analysis
of power grids with intermittent wind power generations. This
framework takes into account the discrete dynamics which play
a critical role in the long-term stability analysis, incorporates the
model of wind speed with different probability distributions, and
also develops an approximation methodology (by a deterministic
hybrid model) for the stochastic hybrid model to reduce the
computational burden brought about by the uncertainty of
wind power. The theoretical and numerical studies show that
a deterministic hybrid model can provide an accurate trajectory
approximation and stability assessments for the stochastic hybrid
model under mild conditions. In addition, we discuss the critical
cases that the deterministic hybrid model fails and discover
that these cases are caused by a violation of the proposed
sufficient conditions. Such discussion complements the proposed
framework and methodology and also reaffirms the importance
of the stochastic hybrid model when the system operates close to
its stability limit.

Index Terms—Wind energy, stochastic differential equations,
hybrid model, power system dynamics, power system stability

I. INTRODUCTION

Nowadays, many efforts have been devoted to producing the
electric power from renewable energy sources among which
the wind power is the most technically favorable and eco-
nomically attractive [1]. However, volatile and uncontrollable
characteristics of the wind power generation lead to stability
concerns for the secure and economic operation of modern
smart grids. As the wind penetration grows continuously,
it is imperative to investigate the impacts of wind power
generations on the system stability.

In the literature, the impacts of the wind power generation
have been studied concerning different types of stabilities [2]-
[8]. Specifically, [2]- [4] investigated the impacts of different
parameters (e.g., the reactive power compensation, distance
to the fault, and rotor inertia) on the transient and frequency
stabilities of a power system; [5] addressed the influence of
different wind generators on the transient stability; [1] and
[6] studied the detrimental and beneficial influences of wind
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generators on transient and small-signal stabilities by convert-
ing wind generators to conventional synchronous generators;
[7] [8] analyzed the impacts of various control algorithms of
wind generators on the long-term stability. In those studies, the
variable nature of wind power is not considered and the wind
speed is oversimplified as constant. To address this concern,
[9]- [11] adopted an approach that describes the uncertainty of
the wind power by stochastic differential equations (SDEs) and
investigated the impacts of the wind generation on rotor-angle
and small-signal stabilities, in which, however, the wind power
was simply modeled as a Gaussian white noise perturbation
on the power injection.

Regarding the long-term stability analysis that focuses on
the time scale when fast dynamics damp out and control
devices start working, however, a comprehensive framework
is still missing in the literature to characterize the wind power
with various stochastic properties, lay down a theoretical foun-
dation for the stability assessment of these stochastic systems,
and develop efficient numerical tools for such stability anal-
ysis. To address these issues, the Weibull model of the wind
speed has been incorporated into the dynamic model of the
power system to perform the long-term stability analysis [12],
where SDEs are applied to describe the dynamics of the wind
speed. By this SDE-based model, a theoretical approach that
approximates the stochastic model by a deterministic model
has been developed to reduce the computational burden caused
by an accurate quantification of the uncertainty. Nevertheless,
the proposed model and methodology are only applicable to
continuous power system models. On the other hand, the
discrete events induced by control and protective devices
occur frequently in a long time scale after contingencies [13].
For instance, load tap changers are to restore the load-side
voltages; shunt compensation switchings act to increase the
transmission capability; and OvereXcitation Limiters may be
activated to protect the generators from overheating. These
discrete dynamics are generally designed to act after the fast
dynamics damp out so as to avoid unnecessary interactions
with the fast dynamics [13]- [15], and they require accurate
representation by discrete models in time-domain simulation
[16]. As a result, it is imperative to integrate discrete models
to perform the comprehensive long-term stability analysis for
realistic power systems.

The paper begins by showing that a power grid integrating
wind power generations can be modeled as a stochastic
hybrid model (SHM), with discrete dynamics, in a SDE-
based framework in which the wind speed model that captures
various stochastic properties can be integrated. In particular,
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it is analytically shown in this framework that SHM can be
approximated by a deterministic hybrid model (DHM) which
offers an accurate trajectory approximation (for SHM) and
stability assessments with high computational efficiency if
some mild sufficient conditions are satisfied. A numerical ex-
ample is presented to demonstrate the accuracy and efficiency
of DHM. It is noteworthy that SHM must be implemented
whenever any proposed sufficient conditions are violated. To
show this necessity, we present several numerical examples
in which DHM fails to capture the instabilities of SHM. The
causes for the failure are investigated and shown to correspond
to a violation of the sufficient conditions. This discussion
complements the proposed SDE-based framework, shows the
application scope of the approximation methodology, and also
emphasizes the largely-neglected necessity of the stochastic
model in the long-term stability analysis.

As the modern smart grids endeavor to incorporate high
penetration of intermittent renewable energy, integrate plug-in
vehicles, and encourage opportunistic users, the operation and
control of power grids are required to account for the resulting
high variability and uncertainty. We believe that the proposed
SDE-based framework and approximation methodology can
be readily generalized to conduct stability assessments for
power systems with the uncertainties brought about by various
renewable energy sources, plug-in vehicles, smart appliances,
opportunistic users, and so forth.

The remainder of the paper is organized as follows. Section
II introduces the SDE-based framework of power system
models integrating the stochastic dynamics of the wind speed.
Section III develops an approximation methodology for SHM
in the SDE-based framework, which provides an accurate
trajectory approximation and correct stability assessments with
a high simulation speed. In particular, a diagram is summarized
at the end of Section III-A to illustrate the relationships among
the proposed models and theoretical results. Furthermore,
Section IV presents some critical cases in which some suffi-
cient conditions of the proposed methodology are violated, to
explain the necessity of implementing SHM to obtain correct
stability assessments.

II. SDE-BASED FRAMEWORK OF HYBRID MODELS

The conventional long-term stability model (i.e., the com-
plete dynamic model) without stochasticity for simulating the
system dynamic response to a disturbance in the τ time scale
can be described as follows (see (22)-(25) [12] and (15) [17]):

zd(k) = hd(zc, x, y, zd(k − 1)) (1)
z′c = hc(zc, x, y, zd) (2)
εx′ = f(zc, x, y, zd) (3)

0 = g(zc, x, y, zd) (4)

where τ = tε and ′ refers to d
dτ . Here, (1) accounts for the

long-term discrete events, such as shunt capacitors and load tap
changers (LTCs); (2) depicts the slow dynamics, including self
restorative loads, turbine governors (TGs), and OvereXcitation
Limiters (OXLs); (3) describes the fast dynamics of compo-
nents, such as synchronous machines, doubly-fed induction
generators (DFIGs), induction motors, and exciters; and (4)

describes the power flow relation and internal relationships
between variables. In addition, hd are discrete functions; zd
are slow discrete variables whose changing from zd(k−1) to
zd(k) relies on (1) and occurs at times tk, 1 ≤ k ≤ N . The
functions hc, f , and g are continuous; zc, x, and y are the
vectors of slow state variables, fast state variables, and alge-
braic variables, respectively; and ε is deemed as the reciprocal
of the maximum time constant among all components.

A. Stochastic Model of Wind Speed

The impacts of the wind power on the system stability have
been addressed [2]- [8] in which the wind speed is termed as a
constant and an entry of the vector y—algebraic variables. In
this paper, we characterize the randomness of the wind speed
by a stochastic model.

Specifically, given nw independent wind energy sources that
each energy source follows a certain probability distribution,
the wind speeds of the nw sources are collectively denoted by
a vector yw in the following model (see [12] and [18]):

εη′w = −Aηw + σξ = fw(ηw) + σξ, (5)

yw = F̂−1
w

(
Φ̂
(

ηw

σ/
√
2α

))
= gw(ηw), (6)

where ηw,yw ∈ Rnw , the matrix

A = diag(α) = diag[α1, . . . , αnw ] ∈ Rnw×nw

determines the autocorrelation property of yw (see below for
more details), and

∫ t
0
ξ(s)ds is an nw-dimensional Wiener pro-

cess. In addition, F̂w = [F1(ηw1
), F2(ηw2

), ...Fnw(ηwnw )]T ,
Φ̂ = [Φ(ηw1

),Φ(ηw2
), ...Φ(ηwnw )]T , and gw : Rnw 7→ Rnw ,

where Fi is the cumulative distribution function of the corre-
sponding wind speed ywi , and Φ is the cumulative distribution
function of a Gaussian distribution.

In model (5)-(6) of the wind speed, ηw is a vector Ornstein-
Uhlenbeck process, and each ywi matches the distribution of
Fi by the property of the memoryless transformation [18]. For
example, if the wind speed of source nwi is governed by the
Weibull distribution with a shape parameter ki > 0 and a scale
parameter λi > 0, then

Fwi(u) = 1− e(u/λi)
ki for all u > 0, (7)

and ywi has the following statistical properties (see (26)-(28)
[18]):

(i) E[ywi(t)] = λiΓ(1 + 1
ki

) = µwi .
(ii) Var[ywi(t)] = λi

2Γ(1 + 2
ki

)− µ2
wi .

(iii) Aut[ywi(tk), ywi(tj)] ≈ e−αi|tj−tk|.

Note that λi, ki, and αi are the parameters that determine
the statistical properties of wind speed ywi , but σ does not.
So σ can be arbitrarily selected [12] [18]. Indeed, σ is only
an intermediate parameter to generate the Ornstein-Uhlenbeck
process ηw. The readers are referred to [18] for more details.
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B. Hybrid Models

When integrating the stochastic model (5)-(6) of the wind
speed into the long-term stability model (1)-(4), the stochastic
hybrid model (SHM) takes the following form:

zd(k) = h̄d(zc, x̄, ȳ, zd(k − 1)), (8)
z′c = h̄c(zc, x̄, ȳ, zd), (9)
εx̄′ = f̄(zc, x̄, ȳ, zd) + σBξ̄, (10)

0 = ḡ(zc, x̄, ȳ, zd), (11)

where x̄ .
= [ xηw ], ȳ .

= [ yyw ], and B
.
=
[

0
Inw

]
, nonzero

entries of which correspond to nw independent wind sources.
In addition, f̄ .

=
[
f
fw

]
, ḡ .

= [ gp ] with p .
= yw − gw(ηw),

and ξ̄ =
[
0
ξ

]
∈ Rnx×nw . Here, (8) and (9) are directly derived

from (1) and (2), respectively, such that h̄d(zc, x̄, ȳ, zd(k −
1)) = hd(zc, x, y, zd(k − 1)) and h̄c(zc, x̄, ȳ, zd) =
hc(zc, x, y, zd); (10) is obtained from a combination of (3)
and (5), whereas (11) is derived by combining (4) and (6).

Recall that discrete dynamics described by (8) play impor-
tant roles in the long-term stability because many protective
and control devices may take effect in the long-term time scale
to restore the load-sided power, protect generators, and so on.

This study aims to show that the SHM (8)-(11) can be well
approximated by a deterministic hybrid model (DHM), say,

zd(k) = h̄d(zc, x̄, ȳ, zd(k − 1)), (12)
z′c = h̄c(zc, x̄, ȳ, zd), (13)
εx̄′ = f̄(zc, x̄, ȳ, zd), (14)

0 = ḡ(zc, x̄, ȳ, zd). (15)

Note that the vector of algebraic variables ȳ in (11) and
(15) can be eliminated under Assumption 1 which is a generic
property satisfied in normal operating conditions [13] [19].

Assumption 1. The DHM (12)-(15) does not encounter
singularity, i.e., ∂ḡ

∂y is nonsingular along the trajectory.

Under Assumption 1, ȳ can be represented in terms of zc,
x̄, and zd using (15), namely ȳ = m(zc, x̄, zd). Then, the
SHM (8)-(11) can be written as:

zd(k) = Hd(zc, x̄, zd(k − 1)), (16)
z′c = Hc(zc, x̄, zd), (17)
εx̄′ = F (zc, x̄, zd) + σBξ̄. (18)

By analogy, the DHM (12)-(15) is equivalently converted to:

zd(k) = Hd(zc, x̄, zd(k − 1)), (19)
z′c = Hc(zc, x̄, zd), (20)
εx̄′ = F (zc, x̄, zd). (21)

In section III, a theoretical foundation is to be developed
to ensure the effectiveness of the approach that approximates
the SHM (16)-(18) by the DHM (19)-(21) in the long-term
stability study. The key is to show that if some mild con-
ditions are satisfied, then the DHM (19)-(21) is theoretically
ensured to provide an accurate trajectory approximation and
stability assessments for the SHM (16)-(18). Clearly, the DHM

consumes much less computational resources in the simulation
compared with the SHM and may serve as an efficient stability
assessment tool for power grids with significant wind power
generations.

III. AN APPROXIMATION METHODOLOGY FOR STOCHASTIC
HYBRID MODEL

The singular perturbation method for SDEs [20]- [22] and
sufficient conditions for the quasi steady-state (QSS) model
[17] [23] are employed here to develop a theoretical foundation
for an approximation of the SHM (16)-(18) by the DHM (19)-
(21). A numerical example using a 145-bus system is presented
to demonstrate the accuracy and efficiency of the DHM.

A. Theoretical Foundation

In the SHM, when the discrete jumping is initiated, discrete
variables zd are updated first by (16), and then the system
acts according to (17)-(18) with constant zd. In this regard,
one can treat the SHM (16)-(18) as a series of continuous
systems (17)-(18) with constant zd [13]. Similarly, the DHM
(19)-(21) can be considered as a series of continuous systems
(20)-(21) with constant zd. It is reasonable to assume that
the SHM and the DHM are governed by the same sequence
of parameter values zd given the same initial condition. So,
the hybrid models (i.e., SHM and DHM) can be analyzed by
comparing the corresponding continuous systems in the series.
Additionally, we suppose that each deterministic continuous
system (20)-(21) satisfies some generic differentiability and
non-degeneracy conditions (see Assumption 2.1 [12]), which
are reasonable assumptions for real-life physical systems.

If x̄ = m1(zc, zd) is an asymptotically stable equilibrium
point of the short-term stability model 0 = F (zc, x̄, zd) for
all zc and zd, i.e., x̄ = m1(zc, zd) is a stable component of
the constraint manifold, then there exists an invariant manifold
of system (19)-(21): x̄ = m?

1(zc, zd, ε) = m1(zc, zd)+O(ε)
for sufficiently small ε [12] [24] [25], where m1(zc, zd) and
m?

1(zc, zd, ε) can be not smooth. An ellipsoidal layer M(h)
around m?

1(zc, zd, ε) is defined as follows:

M(h)
.
= {(zc, x̄, zd) : 〈(x̄−m?

1(zc, zd, ε)),

M?
1 (zc, zd, ε)

−1(x̄−m?
1(zc, zd, ε))〉 < h2}.

Here, the matrix M?
1 (zc, zd, ε) that represents the cross sec-

tion of M(h) is properly defined (see Appendix B in [12]),
and an illustration for M(h) is shown in Fig. 1.

Fig. 1. An illustrtion of M(h) in the DHM. Here, nzc = 1, nx̄ = 2, and
M(h) is an ellipsoidal layer around m?

1(zc,zd, ε).

Given the well-defined initial condition for each continuous
system (17)-(18) with constant zd (of the SHM), the following
theorem shows that the trajectories of the SHM (16)-(18) are
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confined in M(h) despite the changes of discrete variables,
provided that the slow manifold is stable.

Theorem 1 (Sample-Path Concentration for SHM):
Consider the SHM (16)-(18) in the study region Dzd ×Dzc ×
Dx, for some fixed ε0 > 0, h0 > 0, there exist δ0 > 0, a time
τ̃k of order ε|logh|, and τk > τ̃k for each continuous system
(17)-(18) with 0 ≤ k ≤ N such that if the following conditions
(i) and (ii) are satisfied:

(i) The slow manifold x̄ = m1(zc, zd) is a stable com-
ponent of the constraint manifold, where zc ∈ Dzc
and zd ∈ Dzd ;

(ii) The initial condition (zkc (0), x̄k(0), zd(k)) for each
continuous system (17)-(18) of the SHM satisfies that
(zkc (0), x̄k(0), zd(k)) ∈M(δ0), where zkc (0) ∈ Dzc
and zd(k) ∈ Dzd for k ∈ [0, 1, ...N ],

then, for all τ ∈ Π = ∪N−1i=1 [τ̃i, τi) ∪ [τ̃N ,∞], the sample
path (zc(τ), x̄(τ), zd(τ)) of the SHM (16)-(18) satisfies the
following probability property:

P{∃ τ ∈ Π : (zc(τ), x̄(τ), zd(τ)) /∈M(h)}

≤ Cnzc ,nx(τ, ε)e
−h2

2σ2
(1−O(h)−O(ε)), (22)

for all ε ≤ ε0, h ≤ h0, where the coefficient Cnzc ,nx(τ, ε) =
[Cnzc + h−nx ](1 + τ

ε2 ) is linear in τ .

Proof: See Appendix A.

Theorem 1 shows that if conditions (i)-(ii) are satisfied, then
the probability that the sample path leaves M(h) is less than
the right hand side (RHS) of (22). Specifically, if h � σ,
i.e., the deepness of the layer h is far larger than σ related
with wind speeds, then the RHS of (22) becomes very small,
which suggests that the sample pathes of the SHM do not
leave M(h) almost surely [12] [20]. So, there is no need to
worry about the probability when investigating the relations
between the trajectory of the SHM (16)-(18) and that of the
DHM (19)-(21). On the other hand, σ does not influence the
stochastic properties of wind speed yw as stated in Section
II-A or Section III-A in [12] (where σ is only an intermediate
parameter to generate the Ornstein-Uhlenbeck process ηw). In
this regard, σ can be selected as small as needed such that any
adequate h satisfies h � σ. In other words, the requirement
h� σ can be readily fulfilled in this SDE-based framework.
In addition, Theorem 2.4 [21] has commented that for h �
σ, the first exit time that the solution zc of the (continuous)
stochastic system (17) leaves the region Dzc is very large
(exponentially in h2/σ2), that is, zc still stays within Dzc
almost for sure right before the (discrete) change of zd occurs
at tk. Note that, for adequately controlled systems, discrete
devices generally do not result in severe perturbations to the
system dynamics. So, these facts suggest that condition (ii)
in Theorem 1 is generally satisfied under normal operating
conditions.

Under the condition h � σ, we next investigate the
relationship between the trajectory of the SHM (16)-(18) and
that of the DHM (19)-(21). If (a) the trajectory of the SHM
remains in M(h) which is an ε neighborhood of the invariant

manifold m?
1(zc, zd, ε), and (b) the trajectory of the DHM

evolves along m?
1(zc, zd, ε), then we show that the distance

between the trajectory of the SHM and that of the DHM can
be readily obtained. Note that Theorem 1 provides sufficient
conditions for (a). So, the remaining question is about how
to ensure (b). Incidentally, the theoretical foundation for
the quasi steady-state (QSS) model in [17] has provided
sufficient conditions for (b). In particular, one of the sufficient
conditions for (b) is the condition of consistent attraction
defined below and illustrated in Fig. 2.

Definition 1. Consistent Attraction [17]: By fixing zc and
zd as the parameters, the short-term stability model refers to
(21). We say that the DHM (19)-(21) satisfies the condition
of consistent attraction if the initial condition is contained in
the stability region of the initial short-term stability model
and whenever discrete variables jump from zd(k − 1) to
zd(k), k = 1, 2, ..., N , the point on trajectory of the DHM
immediately after zd jump still stays within the stability region
of the corresponding short-term stability model.

the slow manifold

the deterministic 

long-term stability 

model

family of short-term stability models

Fig. 2. The situation when the DHM satisfies the condition of consistent
attraction.

The condition of consistent attraction ensures that the
trajectory of the DHM is always close to the slow manifold
m1(zc, zd) despite the changing of discrete variables (if the
slow manifold is also stable), then the trajectory of the DHM
always evolves along the invariant manifold m?

1(zc, zd, ε).
Let (zc(τ), x̄(τ), zd(τ)) be the trajectory of the SHM
(16)-(18), and let (zcD(τ), x̄D(τ), zd(τ)) be that of the
DHM (19)-(21). Then, the following theorem reveals the
relationship between the trajectories of the two models.

Theorem 2 (Trajectory Relationship for Hybrid Models):
Given h � σ, consider the SHM (16)-(18) and the DHM
(19)-(21) in the study region Dzd ×Dzc ×Dx, for some fixed
ε0 ∈ (0, h), there exist δ0 > 0, a time τ̃k of order ε|logh|
and τ̄k > τ̃k for each continuous system (17)-(18) where k =
0, 1, ..., N , such that if the following conditions (i), (ii) and
(iii) are satisfied:

(i) The slow manifold x̄ = m1(zc, zd) is a stable com-
ponent of the constraint manifold, where zc ∈ Dzc
and zd ∈ Dzd ;

(ii) The initial condition (zkc (0), x̄k(0), zd(k)) for each
continuous system (16)-(18) of the SHM satisfies
(zkc (0), x̄k(0), zd(k)) ∈M(δ0), where zkc (0) ∈ Dzc
and zd(k) ∈ Dzd for k ∈ [0, 1, ...N ];
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(iii) The DHM (19)-(21) satisfies the condition of con-
sistent attraction,

then, for τ ∈ ∪Ni=1[τ̃i, τ̄i], the following relations hold:

|x̄(τ)− x̄D(τ)| = O(σ), (23)
|zc(τ)− zcD(τ)| = O(σ

√
ε), (24)

for all ε ∈ (0, ε0).

Proof: See Appendix B.

By Theorem 2 we observe that if the proposed sufficient
conditions are satisfied, the trajectory of the SHM can be
approximated by that of the DHM as illustrated in Fig. 3.

the long term SEP

family of short-term stability models

stability regions of the  

short-term stability models

Fig. 3. The trajectory φs(τ, zc(0), x̄(0),zd) of SHM is bounded in M(σ),
and can be estimated by the trajectory φl(τ,zc(0), x̄D(0),zd) of DHM.

Generally speaking, sufficient conditions (i)-(iii) in Theorem
2 are moderate and satisfied when the system operates away
from the stability boundary, and thus the DHM can substitute
the SHM and typically offer correct stability assessments with
less simulation time. But, as detailed in Section IV, the SHM
must be applied if any of the sufficient conditions is violated.

For clarity, we summarize in Fig. 4 the proposed SDE-
based framework, relationship between different models, and
importance of derived theoretical results. In the SDE-based
framework, the stochastic model (5)-(6) of the wind speed
is incorporated into the conventional power system model
(1)-(4), and the resulting hybrid model (8)-(11) is equivalent
to the SHM (16)-(18) under normal operating condition.
Specifically, Theorem 1-2 shows that the DHM (19)-(21) can
well approximate the SHM (16)-(18). In particular, Theorem 1
suggests that the sample paths of (16)-(18) are concentrated in
a neighborhood M(h) of the invariant manifoldm?

1(zc, zd, ε),
while Theorem 2 asserts that the DHM (19)-(21) can provide
an accurate trajectory approximation and stability assessments
for the SHM (16)-(18) under some mild conditions. So, under
normal operating conditions and the proposed mild conditions,
the DHM (12)-(15) can well approximate the SHM (8)-(11)
in terms of the trajectory and stability assessments.

B. Numerical Illustration
Numerical studies using a 145-bus test case [26] are con-

ducted in PSAT-2.1.8 [27] to show the accuracy and efficiency
of the derived results. The test system has 6 doubly-fed in-
duction generators (DFIGs) driven by 6 independent Weibull-
distributed wind sources. The parameters of Weibull distri-
butions are referred from [18] which fit the 1-h wind speed

data of the Cape St. James and Victoria Airport. The readers
are referred to Table 1 [18] for more details. In addition, there
are 50 synchronous generators (GENs) with automatic voltage
regulators (AVRs). Turbine governors (TGs) are equipped for
GEN 10-GEN 20, and OvereXcitation Limiters (OXLs) are
also equipped for GEN 1-GEN 6. The initial time delays of
OXLs are 50s. Moreover, 5 discrete load tap changers (LTCs)
are installed at Bus 79-95, Bus 1-33, Bus 79-92, Bus 1-5,
and Bus 60-95, respectively. Particularly, the discrete model
of LTCs is shown below [15]:

n(k+1) =

 n(k) +4n, if v > v0 + d and n(k) < nmax;
n(k)−4n, if v < v0 − d and n(k) > nmin;
n(k), otherwise;

(25)
where n is the tap changer ratio, v is the controlled voltage, v0
is the reference voltage, d is half of the LTC dead-band, nmax

and nmin are the upper and lower tap limits, respectively. All
LTCs have initial time delays of 50s and fixed tapping delays
of 10s. At 0.5s, three lines at Bus 95-138, Bus 94-138, Bus
94-95 trip.

Note that the dynamic models for synchronous generators
and DFIGs used in this and subsequent numerical examples
are all detailed in Ch. 17 and Ch. 21 [28]. Specifically, the
order II and order IV models of GENs are employed for the
simulation of this 145-bus system.

Fig. 5 presents a comparison of the trajectory of the SHM
and that of the DHM for which the quasi steady-state (QSS)
model [13] is implemented to obtain the slow manifolds of the
DHM. Observe that the trajectories of the SHM always keep
close to those of the DHM despite the changing of discrete
variables, and both models give the same stability assessments
that the system is stable in the long-term time scale. Clearly,
all sufficient conditions of Theorem 2 are satisfied, then the
conclusions of Theorem 2 hold. Particularly, Fig. 5 shows that
the DHM does not encounter the singularity and its slow
manifold is stable. In addition, the trajectory of the DHM
evolves along m?

1(zc, zd, ε) which is an ε-neighborhood of
the slow manifold. This illustrates the results of Theorem 2.

Concerning the computational efficiency, the SHM takes
137.118s to complete the simulation, whereas the DHM only
consumes 57.913s. Note that several trajectories of the SHM
may be required to evaluate the stability in critical cases. But,
the time needed to simulate one trajectory (of the SHM) can
be more than twice as that required by the DHM.

From this example, we observe that the DHM can provide
an accurate trajectory approximation and stability assessments
for the SHM with far less simulation time, provided that the
proposed mild conditions are satisfied.

IV. NECESSITY OF STOCHASTIC MODEL

A comprehensive theoretical framework has been developed
to approximate the SHM by the DHM. Specifically, if all
sufficient conditions of Theorem 2 are satisfied, then the DHM
can provide an accurate trajectory approximation and stability
assessments for the SHM with much less simulation time. In
the section, we further present several examples in critical
cases that the DHM fails to provide a satisfactory approx-
imation. The causes for such failure are investigated in the
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The conventional power system model:

𝑧𝑑 𝑘 = ℎ𝑑 𝑧𝑐 , 𝑥, 𝑦, 𝑧𝑑 𝑘 − 1 (1) 

𝑧𝑐
′ = ℎ𝑐 𝑧𝑐, 𝑥, 𝑦, 𝑧𝑑 (2)

𝜖𝑥′ = 𝑓 𝑧𝑐, 𝑥, 𝑦, 𝑧𝑑 (3)

0 = 𝑔(𝑧𝑐, 𝑥, 𝑦, 𝑧𝑑) (4)

The stochastic hybrid model:

𝑧𝑑 𝑘 =  ℎ𝑑 𝑧𝑐 ,  𝑥,  𝑦, 𝑧𝑑 𝑘 − 1 (8)

𝑧𝑐
′ =  ℎ𝑐 𝑧𝑐,  𝑥,  𝑦, 𝑧𝑑 (9)

𝜖  𝑥′ =  𝑓 𝑧𝑐,  𝑥,  𝑦, 𝑧𝑑 + 𝜎𝐵  𝜉 (10)

0 =  𝑔(𝑧𝑐,  𝑥,  𝑦, 𝑧𝑑) (11)

The deterministic hybrid model:

𝑧𝑑 𝑘 =  ℎ𝑑 𝑧𝑐 ,  𝑥,  𝑦, 𝑧𝑑 𝑘 − 1 (12)

𝑧𝑐
′ =  ℎ𝑐 𝑧𝑐,  𝑥,  𝑦, 𝑧𝑑 (13)

𝜖  𝑥′ =  𝑓 𝑧𝑐,  𝑥,  𝑦, 𝑧𝑑 (14)

0 =  𝑔(𝑧𝑐,  𝑥,  𝑦, 𝑧𝑑) (15)

The stochastic wind speed model:

𝜖𝜂𝑤
′ = −𝐴𝜂𝑤 + 𝜎𝜉 (5)

𝑦𝑤 =  𝐹𝑤
−1(  𝜙(

𝜂𝑤

𝜎/√2𝛼
)) (6)

The stochastic hybrid model (SHM):

𝑧𝑑 𝑘 = 𝐻𝑑 𝑧𝑐 ,  𝑥, 𝑧𝑑 𝑘 − 1 (16)

𝑧𝑐
′ = 𝐻𝑐 𝑧𝑐,  𝑥, 𝑧𝑑 (17)

𝜖  𝑥′ = 𝐹 𝑧𝑐 ,  𝑥,  𝑦, 𝑧𝑑 + 𝜎𝐵  𝜉 (18)

The deterministic hybrid model (DHM):

𝑧𝑑 𝑘 = 𝐻𝑑 𝑧𝑐 ,  𝑥, 𝑧𝑑 𝑘 − 1 (19)

𝑧𝑐
′ = 𝐻𝑐 𝑧𝑐,  𝑥, 𝑧𝑑 (20)

𝜖  𝑥′ = 𝐹 𝑧𝑐 ,  𝑥,  𝑦, 𝑧𝑑 (21)

under normal

operating condition

under normal

operating condition

approximate approximate

Theorem 1: the trajectory of 
SHM is concentrated in 𝑴(𝒉)

Theorem 2: the trajectory of DHM can 

approximate that of SHM 

Fig. 4. The proposed SDE-based framework and the approximation methodology.
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Fig. 5. A comparison of the trajectory of the SHM and that of the DHM by
simulating the 145-bus system.

nonlinear system framework and are shown to correspond to a
violation of the proposed sufficient conditions. This discussion
complements the proposed framework and methodology and
also highlights the necessity of the stochastic model when
performing the stability analysis for the power system with
significant wind power generations, especially for the system
that operates close to the stability boundary. Given the impor-
tance of such sufficient conditions, it is imperative to develop
efficient numerical algorithms to check these conditions in the
near future.

A. Numerical Example I

This example is a modified IEEE 14-bus system. The order
V and order VI models of GENs are employed. A Weibull-
distributed wind source drives a DFIG at Bus 2, and 3 GENs
are equipped with AVRs and TGs. In addition, 3 exponential
recovery loads (ERLs) are at Bus 9, 10, and 14, respectively.
An OXL is installed for GEN 1, and 3 discrete LTCs are at
Bus 4-9, Bus 12-13 and Bus 2-4, respectively, the initial time
delays of which are 30s and fixed tapping delays are 10s. At
1s, three lines at Bus 6-13, Bus 7-9, and Bus 6-11 trip. We
refer the reader to Appendix C for the parameter values.

A comparison between the trajectory of the DHM and that
of the SHM is shown in Fig. 6. The slow manifold of the
DHM acquired from the QSS model is also illustrated. The
DHM converges to a long-term stable equilibrium point (SEP)
with all voltages in the nominal range, which shows that the
DHM is long-term stable. But, the sample path of the SHM
suffers from a voltage collapse. So, the DHM fails to provide
a stability assessment agreeing with the SHM.

The failure of the DHM is caused by a violation of condition
(iii), i.e., the condition of consistent attraction, in Theorem 2.
When the discrete variables (i.e., the ratios of LTCs) change at
120s, the state of the DHM lies outside the stability region of
the corresponding short-term stability model. To show this, the
following simulations are conducted similar to the approach
in [17]. When discrete variables jump at 110s, the trajectories
of two fast variables of the corresponding short-term stability
model starting from the state of the DHM are shown in Fig.
7. Observe that the trajectories converge to the SEP of the
corresponding short-term stability model which shows that the
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Fig. 6. A comparison between the trajectory of the SHM and that of the
DHM using the 14-bus system. The DHM fails to capture the instability of
the SHM.

condition of consistent attraction is satisfied at this time.
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Fig. 7. The trajectories of two fast variables in the short-term stability model
when zd change at 110s. The trajectory starting from the state of DHM
converges to the SEP of the corresponding short-term stability model which
shows that the condition of consistent attraction is satisfied.

But, if the discrete variables jump at 120s, the trajectories
of the same two fast variables of the corresponding short-
term stability model are shown in Fig. 8. Note that trajectories
starting from the state of the DHM no longer converge to the
SEP of the corresponding short-term stability model, and thus
the state of the DHM lies outside the stability region of the
short-term stability model. So, condition (iii) in Theorem 2
is violated, and the DHM can fail to provide a satisfactory
approximation for the SHM, which is true in this case. Note
that the condition of consistent attraction is a sufficient but
unnecessary condition to ensure the stability of the DHM
(Theorem 5-6 [17]). So, the DHM is stable in this case even
though the condition of consistent contraction is violated.

From the viewpoint of physical mechanisms, the voltage
collapse is caused by an insufficient power support when LTCs
try to restore the load-side voltages in the long-term time scale.
Immediately after the contingency, the system can maintain
the short-term stability by the control of exciters. After that,
LTCs start to work at 30s and try to restore the load-side
voltages and then the corresponding load powers. At 112s,
the OXL at GEN 1 is activated to protect the generator from
overheating and thus restrict the power support from GEN 1.
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Fig. 8. The trajectories of two fast variables in the short-term stability model
when zd change at 120s. The trajectory starting from the state of the DHM
does not converge to the SEP of the corresponding short-term stability model.
So, the condition of consistent attraction is violated.

To make it even worse, the power output of DFIG at Bus
2 suddenly decreases as shown in Fig. 9 because of a sharp
drop in the wind speed. The power imbalance between the
loads and the generators finally leads to the voltage collapse
in the SHM. In the DHM, however, the wind power does not
change drastically as shown in Fig. 9, since the wind speed is
supposed to be invariable. So, the DFIG at Bus 2 can provide
enough power required by the action of LTCs to maintain the
voltage stability of the DHM.
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Fig. 9. A comparison of the real power output of DFIG in the SHM and that
in the DHM.

From this example, some important physical insights can
be obtained. If the wind power plays a significant role in
supporting power to maintain the stability, for example when
the penetration level is high (8.42% in this example), then the
stochastic properties of the wind may need to be considered
in the stability analysis, especially when the system operates
close to the stability boundary.

B. Numerical Example II

The second example using an IEEE 9-bus system is pre-
sented to reveal another cause for the failure of the DHM.
In the system, the classical model of GEN is employed. A
Weibull-distributed wind source drives a DFIG at Bus 3,
and three GENs are equipped with TGs, AVRs, and OXLs,
respectively, where the initial time delays of OXLs are 70s.
In addition, three ERLs are located at Bus 5, 6, and 8,
respectively; while three discrete LTCs are located at Bus 5-4,
Bus 9-6, and Bus 2-7, respectively, the initial time delays of
which are 60s and fixed tapping delays are 10s. At 1s, a fault
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occurs at Bus 6 and is cleared 5 cycles later. The parameter
values are detailed in Appendix D.
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Fig. 10. A comparisons between the trajectories of SHM and those of DHM.
The results of Theorem 2 do not apply in this case as condition (i) is violated.

In this case, the slow manifold m1(zc, zd) is unstable,
which implies that nearby dynamics will move away from the
slow manifold. As condition (i) in Theorem 1 and Theorem 2
is violated, neither the concentration of sample path stated in
Theorem 1 nor the trajectory relationship described in Theorem
2 holds. The trajectory of the SHM is not concentrated around
that of the DHM, i.e., the DHM cannot provide an accurate
trajectory approximation for the SHM, but both of them are
unstable in the long-term sense.

From the perspective of physical mechanisms, the instability
is caused by the poor control of LTCs which are originally
designed to help maintain the stability. The discrete switching
of LTCs makes the slow manifold jump from the stable compo-
nent of the constraint manifold to an unstable component such
that the nearby trajectories move away. The switching events,
such as LTCs and shunt compensation, are adopted commonly
as countermeasures against the voltage instability. But, this
example shows that great caution is necessary when executing
those control strategies, because unexpected stability issues
may arise, especially when more wind power is integrated into
the power grid.

V. CONCLUDING REMARKS

This paper proposes a comprehensive SDE-based frame-
work for conducting the long-term stability analysis for the
power grid with wind power generations. This framework
incorporates the discrete dynamics induced by various control
devices and the stochastic model of the wind speed with
different probability distributions. To relieve the computational
burden, a DHM is composed and can provide an accurate
trajectory approximation and correct stability assessments for
the SHM under some mild sufficient conditions. Numerical
examples are further discussed to show that the DHM can fail
in some critical cases because of a violation of the proposed

sufficient conditions, which complements the proposed SDE-
based framework and also highlights the necessity of the SHM
in the stability analysis, especially if the system operates close
to the stability boundary or experiences a high variability. For
the future work, we plan to extend the present framework
to the stability analysis of power grids with various other
uncertainties and further improve the computational efficiency
of the approximation methodology using the QSS model that
integrates uncertainties.

APPENDIX A
PROOF OF THEOREM 1

Proof: Conditions (i) and (ii) ensure that all conditions
of Theorem 1 [12] are satisfied for each fixed zd(k), k =
0, 1, ..., N . So, the conclusions of Theorem 1 [12] are valid for
each continuous system of the SHM with fixed zd(k). Then,
there exist εk0 > 0, hk0 > 0, δk0 > 0, and a time τ̃k of order
ε|logh| such that whenever δ ≤ δk0 , the following inequality

P{∃τ ∈ [τ̃k, τk) : (zkc (τ), x̄k(τ), zd(k)) /∈M(h)}

≤ Cnzc ,nx(τ, ε)e
−h2

2σ2
(1−O(h)−O(ε)) (26)

holds for all ε ≤ εk0 , h ≤ hk0 , k ∈ [0, 1...N ], on [τ̃k, τk+1)
for k ∈ [0, 1, ...N − 1] or on [τ̃k,∞] for k = N . Here,
(zkc (τ), x̄k(τ), zd(k)) is the solution of each continuous sys-
tem (17)-(18) of the SHM for fixed zd(k) with initial condition
(zkc (0), x̄k(0), zd(k)).

Let ε0 = min(ε00, ε
1
0, ...ε

N
0 ), h0 = min(h00, h

1
0, ...h

N
0 ), and

δ0 = min(δ00 , δ
1
0 , ...δ

N
0 ). Then, for τ ∈ Π = ∪N−1i=1 [τ̃i, τi) ∪

[τ̃N ,∞], the following inequality

P{∃τ ∈ Π : (zc(τ), x̄(τ), zd) /∈M(h)}

≤ Cnzc ,nx(τ, ε)e
−h2

2σ2
(1−O(h)−O(ε)) (27)

holds for all ε ≤ ε0, h ≤ h0. This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Conditions (i)-(iii) ensure that all conditions of Theorem 2
[12] are satisfied for each fixed zd(k), k = 0, 1, ..., N . So, the
conclusions of Theorem 2 [12] are valid for each continuous
system of the SHM with fixed zd(k). So, there exist εk0 > 0,
δk0 > 0, a time τ̃k of order ε|logh|, and τ̄k such that whenever
δ ≤ δk0 for all τ ∈ [τ̃k, τ̄k], the following estimates

|x̄k(τ)− x̄kD(τ)| = O(σ), (28)
|zkc (τ)− zkcD(τ)| = O(σ

√
ε), (29)

hold for all ε ∈ (0, εk0), 0 ≤ k ≤ N , Here, (zkc (τ), x̄k(τ),
zd(k)) is the solution of each continuous system (17)-(18) of
the SHM, and (zkcD(τ), x̄kD(τ), zd(k)) is the solution of each
continuous system (20)-(21) of the DHM for fixed zd(k).

Let ε0 = min(ε00, ε
1
0, · · · , εN0 ), h0 = min(h00, h

1
0, · · · , hN0 ),

and δ0 = min(δ00 , δ
1
0 , · · · , δN0 ). Similar to Theorem 1, one can

show that for all τ ∈ ∪Ni=1[τ̃i, τ̄i], the following estimates

|x̄(τ)− x̄D(τ)| = O(σ) (30)
|zc(τ)− zcD(τ)| = O(σ

√
ε) (31)

hold for all ε ∈ (0, ε0). The proof of the theorem is completed.
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APPENDIX C
PARAMETER VALUES OF NUMERICAL EXAMPLE I

The system is modified from the 14-bus test case in PSAT-
2.1.6. The GEN at Bus 2 is replaced by DFIG. The parameter
values are given in Table I-V.

TABLE I
DOUBLY-FED INDUCTION GENERATOR PARAMETER VALUES

Parameter Value
stator resistance rs 0.01p.u.
stator reactance xs 0.1p.u.
rotor resistance rr 0.01p.u.
rotor reactance xr 0.08p.u.

magnetizing reactance xµ 3p.u.
rotor inertia Hm 3KWs/KVA

pitch control gain Kp 10
pitch control time constant Tp 3s

voltage control gain Kv 10
power control time constant Tε 0.01s

rotor radius R 75m
number of poles np 4
number of blades nb 3
gear box ratio ηGB 0.0112

maximum active power pmax 2p.u.
minimum active power pmin −1p.u.

maximum reactive power qmax 2p.u.
minimum reactive power qmin −1p.u.

number of machines ng 1

TABLE II
TURBINE GOVERNOR PARAMETER VALUES

Parameter Value
reference speed ω0

ref 1p.u.
droop R 0.02p.u.

maximum turbine output pmax 1.2p.u.
minimum turbine output pmin 0p.u.

governor time constant Ts 0.1s
servo time constant Tc 0.45s

transient gain time constant T3 0s
power fraction time constant T4 12s

reheat time constant T5 50s

TABLE III
LOAD TAP CHANGER PARAMETER VALUES FOR THE ONES AT BUS 4-9, BUS

12-13 AND BUS 2-4

Parameter Value
the reference voltage v0 1.005, 1.01, 0.995
half of the deadband d 0.005, 0.1, 0.025 p.u.

tap step r 0.025
upper tap limit rmax 1.2
lower tap limit rmin 0.7

the initial time delay 4T0 30s
the sequential time delay 4Tk 10s

APPENDIX D
PARAMETER VALUES OF NUMERICAL EXAMPLE II

The system is modified from the 9-bus test system in PSAT-
2.1.6. There is a DIFG at Bus 3. The parameters of the DFIG
are the same as those for Numerical Example I in Table I. The
parameters of other devices are shown in Table VI-IX.

TABLE IV
EXPONENTIAL RECOVERY LOAD PARAMETER VALUES

Parameter Value
active power percentage kp 100%

reactive power percentage kq 100%
active power time constant Tp 10s

reactive power time constant Tq 10s
static active power exponent αs 1

dynamic active power exponent αt 1.5 for the load at Bus 9
5 for the others

static reactive power exponent βs 2
dynamic reactive power exponent βt 2.5 for the load at Bus 9

10 for the others

TABLE V
OVER EXCITATION LIMITER PARAMETER VALUES

Parameter Value
maximum field current ilimf 5.1p.u.
integrator time constant T0 12s

maximum output signal voxl 100p.u.

TABLE VI
TURBINE GOVERNOR PARAMETER VALUES

Parameter Value
reference speed ω0

ref 1p.u.
droop R 0.02p.u.

maximum turbine output pmax 2p.u.
minimum turbine output pmin 0.3p.u.

governor time constant Ts 0.1s
servo time constant Tc 0.45s

transient gain time constant T3 0s
power fraction time constant T4 12s

reheat time constant T5 50s

TABLE VII
EXPONENTIAL RECOVERY LOAD PARAMETER VALUES

Parameter Value
active power percentage kp 40%

reactive power percentage kq 40%
active power time constant Tp 10s

reactive power time constant Tq 10s
static active power exponent αs 1

dynamic active power exponent αt 10 for the load at Bus 4
5 for the others

static reactive power exponent βs 2
dynamic reactive power exponent βt 20 for the load at Bus 4

10 for the others

TABLE VIII
LOAD TAP CHANGER PARAMETER VALUES FOR THE ONES AT BUS 5-4, BUS

9-6, AND BUS 2-7

Parameter Value
the reference voltage v0 1.005, 1.005, 1.02
half of the deadband d 0.025, 0.025, 0.04 p.u.

tap step r 0.12
upper tap limit rmax 1.1
lower tap limit rmin 0.9

the initial time delay 4T0 60s
the sequential time delay 4Tk 10s
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