Abstract:
Sleep stage estimation is crucial to the evaluation of sleep quality and is a proven biometric in diagnosing cardiovascular diseases. In this paper, we design a continuou...Show MoreMetadata
Abstract:
Sleep stage estimation is crucial to the evaluation of sleep quality and is a proven biometric in diagnosing cardiovascular diseases. In this paper, we design a continuous wave (CW) Doppler radar to accurately measure sleep-related signals, including respiration, heartbeat, and body movement. Body movement index, respiration per minute (RPM), variance of RPM, amplitude difference accumulation (ADA) of respiration, rapid eye movement parameter, sample entropy, heartbeat per minute (HPM), variance of HPM, ADA of heartbeat, deep parameter, and time feature have been extracted and fed into different machine learning classifiers. A total of 11 all night polysomnography recordings from 13 healthy examinees were used to validate the proposed CW Doppler radar system and the ability to detect sleep stage information from it. Comparative studies and statistical results have shown that the subspace K-nearest neighbor algorithm outperforms the other classifiers with the highest accuracy of up to 86.6%. With the Relief F algorithm, features have been ranked, and the selected feature subsets have been preliminary tested to identify the optimal feature subset. Meanwhile, comparative analysis of our classification performance under different sleep stage patterns with prior works has been carried out to show the significant improvements over state-of-the-art solutions. These results suggest that the proposed scheme is suitable for long-term sleep monitoring.
Published in: IEEE Journal on Emerging and Selected Topics in Circuits and Systems ( Volume: 8, Issue: 2, June 2018)