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Abstract

We have recently found that our previously-developed atrial fibrillation (AF) detection algorithm 

for smartphones can give false positives when subjects’ fingers or hands move, as we rely on 

proper finger placement over the smartphone camera to collect the signal of interest. Specifically, 

smartphone camera pulsatile signals that are obtained from normal sinus rhythm (NSR) subjects 

but are corrupted by motion and noise artifacts (MNAs) are frequently detected as AF. AF and 

motion-corrupted episodes have the similar characteristic that pulse-to-pulse intervals (PPIs) are 

irregular. We have developed an MNA-resilient smartphone-based AF detection algorithm that 

first discriminates and eliminates MNA-corrupted episodes in smartphone camera recordings, and 

then detects AF in MNA-free recordings. We found that MNA-corrupted episodes have highly-

varying pulse slope, large turning point ratio, or large kurtosis values in smartphone signals 

compared to MNA-free AF and NSR episodes. We first use these three metrics for MNA 

discrimination and exclusion. Then, AF is detected in MNA-free signals using our previous 

algorithm. The capability to discriminate MNAs and AFs separately in smartphone signals 

increases the specificity of AF detection. To evaluate the performance of the proposed MNA-

resilient AF algorithm, 99 subjects, including 88 study participants with AF at baseline and in 

NSR after electrical cardioversion as well as 11 participants with MNA-corrupted NSR, were 

recruited. Using iPhone 4S, 5S, and 6S models, we collected 2-minute pulsatile time series from 

each subject. The clinical results show that the accuracy, sensitivity and specificity of the proposed 
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AF algorithm are 0.97, 0.98, 0.97, respectively, which are higher than those of the previous AF 

algorithm.

Index Terms

atrial fibrillation; motion and noise artifact; root mean square of successive RR differences 
(RMSSD); Shannon entropy; support vector machine (SVM)

I. Introduction

Recently, use of smartphones for atrial fibrillation (AF) detection has been gaining attention 

for clinical applications due to its convenience and efficiency in the prediagnosis and 

management of patients with, or at risk for, AF, given the paroxysmal, short-lived, and 

frequently asymptomatic nature of this arrhythmia [1–3]. AF monitoring is important 

because, despite often being paroxysmal and associated with minimal or no symptoms, AF 

is associated with severe adverse health consequences including stroke, heart failure, and 

death [4]. However, motion and noise artifact (MNA) that occurs during smartphone 

application operation may cause false positive AF since it mimics AF characteristics by 

generating irregular peaks in smartphone recordings. Hence, the accuracy of the AF 

detection can be noticeably decreased when MNAs occur frequently during the smartphone 

recording, e.g., normal sinus rhythm (NSR) signals corrupted by MNAs can be misclassified 

as AF.

MNAs in smartphone camera recordings can be induced by (1) the misplacement of the 

subject’s fingertip or (2) movement of the subject’s hand. Since a smartphone camera, unlike 

a pulse oximeter or Holter monitor device, is not mainly designed to measure physiological 

signals, the signals obtained from smartphone camera recordings of a finger are not as well 

protected from MNA. There have been hardware [5, 6] and software-based [7–15] MNA 

detection/reduction approaches proposed. However, they are not directly applicable to 

smartphone applications since these approaches are designed primarily for pulse oximeter 

signals. Moreover, these approaches do not have AF detection capability. Hence, an MNA 

discrimination algorithm which efficiently excludes MNA episodes in smartphone signals 

needs to be developed and to be incorporated into AF detection algorithms.

Our previous smartphone-based AF detection application was able to detect AF, with 96% 

accuracy, from 120-second segments of smartphone recordings [1, 2]. This high accuracy 

was in part due to controls in the study that minimized MNA. However, we discovered that 

this previous AF detection algorithm misclassifies NSR signals as AF if there are more than 

twelve MNA-corrupted beats present among sixty beats. Another limit of this algorithm is 

that it cannot be applied to a variety of lengths of smartphone recordings because a decision 

boundary distinguishing NSR from AF was derived optimally only for 120-second length 

signals. Thus, to further optimize the prior work, an enhanced and adaptive AF algorithm for 

smartphone signals was sought. The authors are not aware of any studies providing a 

smartphone-based AF detection method that is resilient to MNA and automatically sets its 

AF decision boundary adaptively to different lengths of recordings.
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In this paper, we propose an MNA-tolerant AF detection algorithm for iPhone 4S/5S/6S, 

which first discriminates MNA-corrupted from MNA-free (or clean) beats, and then detects 

AF beats from only the clean beats as shown in Fig. 1. To achieve this MNA-resilient AF 

detection algorithm, we introduce time-domain parameters that are used to quantify MNAs 

in the smartphone signals: signal slope changes, turning point ratio (TPR) changes, and 

kurtosis changes. To detect AF beats among MNA-free segments, we use Root Mean Square 

of Successive RR Differences (RMSSD) and Shannon Entropy (ShE) which have been 

shown to be accurate in separating between NSR and AF patterns [1, 2, 16–21]. We set a 

decision boundary between MNA-corrupted and MNA-free signals, or between NSR and 

AF, using a support vector machine (SVM) concept. The SVM, which is widely used in 

various fields due to its low computational complexity, is trained, and then tests unknown 

input segments [22]. We evaluated the performance of our proposed algorithm using the 

smartphone camera signals obtained from subjects having MNA-free NSR, MNA-free AF, 

MNA- corrupted NSR, and MNA-corrupted AF. The main contributions of this paper are 

summarized as follows:

• Finding of Distinctive Features between MNA-free and MNA-corrupted 
smartphone-based pulsatile time series: We analyze MNA-free and MNA-

corrupted pulsatile time series obtained from smartphones to characterize their 

features. Here, both MNA-free and MNA-corrupted signals include NSR and AF 

signals. We consider i) slope changes, ii) Kurtosis changes, and iii) TPR changes 

in a pulsatile times series. A paired t -test is performed to evaluate differences in 

these features between MNA-free and MNA-corrupted signals.

• Classification of types of MNA: We further specify the types of MNA, e.g. either 

finger misplacement or hand movement. The algorithm classifies finger 

misplacement from hand movement and notifies users of specific corrective 

actions, e.g. correct finger placement or minimal movement of the smartphone 

during measurements.

• Adjustable AF Detection Algorithm Implementation: Among identified MNA-

free segments, AF beats are detected based on the RMSSD and ShE of pulse 

intervals. The algorithm operates in an adjustable and adaptive way so that it can 

be applied to the remained segments that are the subset of a pulsatile time series 

from which MNA segments are removed. It has a decision function which 

provides the start and end of MNA data segments to be removed. Moreover, the 

algorithm automatically extends the recording time when the length of the 

remaining segments is less than 2 minutes.

II. Materials

A. Experimental Protocol

Smartphone signals were obtained from a fingertip using the video camera of an iPhone 4S, 

5S or 6S. Smartphone data were collected respectively from MNA-free NSR, MNA-free AF, 

MNA-corrupted NSR, and MNA-corrupted AF segments of data taken from subjects 

recruited from the patients enrolled at the University of Massachusetts Medical Center 

(UMMC), the student communities of Worcester Polytechnic Institute (WPI), and the 
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University of Connecticut (UConn). Specifically, MNA-free and MNA-corrupted AF 

recordings were obtained from 88 patients before cardioversion while MNA-free or MNA-

corrupted NSR recordings were obtained from 88 patients after cardioversion as well as 11 

healthy subjects. The 88 UMMC subjects who were enrolled were all confirmed to have AF 

pre- and non-AF or normal sinus rhythm post-cardioversion procedure. We have 88 MNA-

free NSR, 88 MNA-free AF, and 11 MNA-corrupted recordings. The subjects all gave their 

informed consent (H-14490) (IRB numbers for the studies). During smartphone recording, 

all the subjects were asked to sit quietly and place their index or middle finger of their left or 

right hand on the smartphone’s camera lens.

For the evaluation of MNA discrimination performance, we tested our algorithm on MNA-

corrupted data obtained from the 11 healthy subjects. We considered two types of MNA: 

hand movements and fingertip misplacement. These subjects did not have any known 

cardiovascular diseases. To induce the MNAs, healthy subjects were instructed to generate 

MNAs for 30 seconds within a 2-minute segment. For example, hand movement MNAs 

were controlled to be induced during 45–75 second period by moving a hand in up/down or 

left/right directions while holding smartphones. MNA amplitude varied for each subject as 

shown in Fig. 2. Finger misplacement MNA data, on the other hand, was collected by having 

the subject move their finger away from the smartphone’s lens 1–5 times within a 2-minute 

segment. Note the significant differences, e.g., slopes, amplitudes, and shapes, between 

corrupted and clean segments, or between hand movement MNA and fingertip misplacement 

MNA segments, as shown in Fig. 2.

To evaluate AF detection performance, we tested our algorithm on AF data collected from 

88 subjects having AF pre-cardioversion but who reverted to NSR after electrical 

cardioversion. AF rhythms have different features compared to NSR, as expected. Note also 

marked differences between AF and hand movement MNA data or between AF and fingertip 

misplacement MNA data, as shown in Fig. 2.

B. Preprocessing

Using iPhone 4S, 5S and 6S models, videos of fingertip blood flow intensity values were 

taken with 640×480 pixel resolution at a sampling rate of 30 frames per second and 

processed after 2 minutes of recording. Only the green band from the RGB video was used, 

as our recent results indicate this gives the best signal fidelity [23]. The intensity values of 

the upper 320×480 pixels in each frame were averaged, as our systematic analysis showed 

this region provided the best signal quality [1, 2]. Our approach first involves selection of 

only the MNA-free data from the 2-minute signal from which the AF detection is made. 

From these MNA-free segments, pulse beat-to-beat detection and pulse slope detection was 

performed after preprocessing including interpolation, sudden DC change elimination and 

two stages of a bandpass filter [2, 24]. These preprocessing steps are implemented by 

MATLAB.

III. Methods

Our algorithm includes AF and MNA discrimination capability that will further improve AF 

detection accuracy. The proposed AF detection algorithm for smartphone signals is fully 
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implemented in the smartphone and is detailed in our flowchart shown in Fig. 3. It first 

discriminates and discards segments with fingertip misplacement MNA, then does the same 

for segments with hand movement MNA, and finally detects any AF among the MNA-free 

signals.

A. Feature Extraction

Features discriminating between MNA-corrupted and clean data are described in Section III-

B while procedures for discriminating between AF and NSR are presented in Section III-C.

B. MNA Detection

1) Fingertip Misplacement MNA Detection—A frame from a video recording during 

NSR or an AF episode containing an entire fingertip image is shown in Fig. 4(a) and its 

successive corresponding time series is shown in Fig. 4(b). However, a frame from a video 

recording during a fingertip misplacement MNA episode containing a background image 

and without a fingertip image is shown in Fig. 4(c) and its successive corresponding time 

series is shown in Fig. 4(d). Based on this observation, we utilize the following metrics to 

detect finger misplacement MNA in smartphone recordings.

a) Color distribution changes: An iPhone provides YUV images recorded by a video 

camera. The YUV is a color space model consisting of one luma (or brightness), Y, and two 

chrominance components, U and V. We use the distribution of the Y of successive images to 

detect MNAs in smartphone signals. The gradient ΔSi, j at the pixel (i, j) is derived as:

ΔY = < Y i + 1, j − Y i, j, Y i, j + 1 − Y i, j > (1)

where Yi, j denotes the Y-luma at the pixel (i, j). The ΔY of a finger misplacement MNA is 

expected to be large at the pixels which are located at the boundary between background and 

fingertip images.

On the other hand, ΔY of NSR, AF, and hand movement MNA episodes are expected to be 

smaller at all the pixels.

b) Pulse amplitude changes: The pulse amplitude An,i at the ith pulse of the nth segment is 

defined by the difference between the ith peak and the next (i + 1)th trough amplitude values 

at the nth segment. The smartphone signal of a background image without a fingertip image, 

caused by moving the fingertip entirely away from the lens (a type of finger misplacement 

MNA, in addition to only partial misplacement of the finger), is expected to have smaller 

amplitude when compared to that of NSR, AF and hand movement MNAs.

2) Hand movement MNA Detection—Our algorithm uses the three following 

parameters to detect hand movement:

• Slope ratio (maximum-minimum, standard deviation of maximum, and standard 

deviation of minimum)

• Turning point ratio (TPR)

Chong et al. Page 5

IEEE J Emerg Sel Top Circuits Syst. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Kurtosis

NSR has a steeper slope in the systolic phase and a gradual slope in the diastolic phase. This 

is because a heart pumps blood out of the ventricles quickly but relaxes slowly. The heart of 

an AF subject pumps in an irregular way but maintains a higher speed of squeezing than that 

of relaxation. The steep slope in systole and the gradual slope in diastole have considerable 

similarities between NSR and AF episodes. Hand movement MNAs, in contrast, have 

different slope patterns as they may reflect blood intensity incurred not by spontaneous heart 

pumping but by hand movements. Moreover, finger misplacement MNAs have different 

patterns since they are mainly recording unwanted background images. The slope ΔCn,i 

between the ith sample and the next (i + 1)th of the nth segment can be calculated as follows:

ΔCn, i = Cn, i − Cn, i − 1 (2)

where Cn,i is the peak-to-peak interval at the ith sample of the nth segment. The positive 

maximal slope (Pn) and the negative minimal slope (Nn) in the nth segment are given by

Pn = ΔCn, i (3)

Nn = ΔCn, i (4)

where Sn is a set of sample indices in the nth segment. The max/min slope ratio Rn of the nth 

segment is defined as:

Rn = |Pn/Nn| (5)

where |x| denotes the absolute value of x. The Rn of NSRs and AFs is expected to be time-

invariant while MNAs are time-varying. Since we inverted smartphone signals to facilitate 

peak detections, Rn of NSRs and AFs is smaller than a predefined threshold value (i.e. Rn ≪ 
1) but the Rn values of MNAs are larger than the predefined threshold value.

The turning point ratio (TPR) is usually used to test the independency or count the number 

of magnitude changes in time series data. A turning point (TP) is defined as a local 

maximum or minimum point which is bigger or smaller than its two closest points. TPR is 

the number of TPs divided by the number of data points in a given segment. Hand movement 

MNA is expected to alter light intensity in video recordings at a higher frequency than the 

finger misplacement MNA does, due to the lens being rapidly covered and uncovered by the 

fingertip. This alteration in light intensity is expected to increase TPs or TPR in a time 

series. Hence, the TPR of hand movement MNA is expected to be larger than that of NSR 

and AF.
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Kurtosis is used to measure the peakedness of a random variable and the kurtosis κ of the 

random variable X is defined as

k = E X − μ
σ

4
(6)

where E [·] is expectation operator, μ denotes the expected value of X, and σ denotes 

standard deviation of X. The kurtosis of NSR and AF is expected to be small due to 

relatively even distribution coming from smooth and gradual changes in light intensity. On 

the other hand, the kurtosis of MNAs, which is calculated from the peaked and steep time 

series data, is expected to be larger than that of NSR and AF.

To determine a decision boundary between hand movement MNA-free and hand movement 

MNA-corrupted signals, a support vector machine (SVM) method is adopted [22].

C. AF Detection from MNA-Free Segments

We adopt our previous AF detection algorithm [16] which uses the statistics of pulse-to-

pulse intervals (PPIs). Since a combination of the RMSSD and ShE of the PPIs yielded AF 

detection accuracy of 95 % in MNA-free smartphone signals [16], we adopt the same 

algorithms under the expectation that they would also provide similarly high AF detection 

accuracy in our MNA-eliminated smartphone signal segments.

Specifically, the RMSSD and ShE of the PPI time series a are calculated as described in Eqs. 

(7) and (8), respectively.

RMSSD(ai, …, ai + L − 1) = 1
L ∑

j = 0

L − 1
{ai + j − ai + j − 1}2 . (7)

where L denotes the length of a PPI segment.

ShE(ai, …, ai + L − 1) = − ∑
k = 1

NBIN p(ai, …, ai + L − 1, k) log p(ai, …, ai + L − 1, k)
log (1/NBIN) , (8)

where NBIN denotes the number of bins which are equally spaced for the range of the PPI 

time series values in a disjointed way. In our experiment, we set NBIN to 16. Each bin has 

upper (BUP,k) and lower (BLOW,k) boundaries where k ∈ [1, NBIN]. p(ai, …, ai+L−1, k) is 

given in Eq. (9).

Our previous algorithm [16] compares the RMSSD and ShE values of 60 beat-to-beat PPI 

segments to their corresponding thresholds, respectively. As opposed to using a fixed length 

of 60 beat-to-beat segments, however, our new algorithm takes various ranges of PPI 

segment lengths as an input unless the length is less than a certain threshold, e.g., 20 beat-to-
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beats segments. If one of either the RMSSD and ShE values exceeds their thresholds, the 

pulsatile time series is classified as AF (see the third condition in the flowchart of Fig. 3).

IV. Results

We evaluated the performance of the MNA-tolerant arrhythmia discrimination algorithm 

with iPhone data. The baseline recording duration was two minutes. Our algorithm post-

processed the recorded signal and eliminated MNA-corrupted data points. The recording 

duration was extended if the number of MNA-free beats after MNA elimination was below a 

predefined threshold number of 20 beats. We compared our algorithm to the previous AF 

algorithm which does not have MNA removal capability. As performance metrics, the 

accuracy, sensitivity, and specificity are considered.

A. Detection of MNA

1) Fingertip misplacement MNA—Our algorithm first checks whether a subject’s 

fingertip is correctly placed on the camera lens or not. Fig. 4 shows the pulse amplitude 

variations derived from smartphone signals.

Note especially that the image having only a uniform background without a fingertip (see 

Fig. 4c) gives relatively more irregular pulse amplitudes when compared to smartphone 

signals obtained with correct fingertip placement (see Fig. 4a). Our proposed algorithm 

prescreens these finger misplacement MNAs by using 2-dimensional image data. This is 

much easier than using pulsatile time series signals since there is so much fluctuation in the 

finger-misplaced MNA pulsatile time series signals, which can be incorrectly classified as 

pulse peaks.

We evaluated our algorithm’s performance on finger misplacement MNA detection by 

applying it to smartphone signals containing MNA-free NSR, MNA-free AF, hand 

movement MNA, and fingertip misplacement MNA. Fig. 5 shows the color distributions of 

these signals among which only fingertip misplacement MNA signal gives recognizable 

difference. We further investigated three different types of fingertip misplacement MNAs in 

Fig. 6c–h in terms of distribution of ΔY: 1) the background is recorded more than the 

fingertip, 2) the background is recorded less than the fingertip, and 3) only the background 

without a fingertip at all is recorded in the image. Using the mean, summation, and 

distribution of ΔY, the detection accuracy of the fingertip misplacement MNA was found to 

be 100% by our proposed algorithm.

2) Hand movement MNA—Among the acquired smartphone data, after removal of 

fingertip misplacement MNA, we were left with 122 clean NSR segments, 100 clean AF 

segments, and 15 hand movement MNA-corrupted NSRs, each of which segments had a 

data length of 14 sec. The clean NSRs and clean AF have normal and regular pulse shapes 

during systole and diastole (see Figs. 2a and 2b) while the hand movement MNA-corrupted 

NSRs (see Fig. 7) contain abnormal and irregular pulse shapes as shown in Fig. 2c.

Fig. 8 compares maximum/minimum slope ratio, TPR, kurtosis, standard deviations of max 

and min slopes of NSR, AF, and hand movement MNA. Figs. 8a, 8c, 8e are two-dimensional 
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plots while Figs. 8b, 8d, 8f are three-dimensional plots of Figs. 8a, 8c, 8e, respectively. We 

adopted the SVM method to detect hand movement MNAs emanating from smartphone 

signals [22]. In Fig. 8, the training data consists of 1,200 sets of the parameters (maximum/

minimum slope ratio, TPR, kurtosis, standard deviations of max and min slopes) from each 

of the NSR, AF, and MNA categories. On the other hand, the remaining sets are used for 

validation. However, the implementation of the proposed algorithm actually consists of two 

stages as shown in Fig. 3: 1) MNA detection and 2) AF detection.

Hence, for MNA detection, we used the same number of training sets from MNA and non-

MNA training (NSR or AF). As discussed in Section II, max/min slope ratio, TPR, kurtosis, 

and standard deviation of maximum (or minimum) slope values are significantly different 

between hand movement MNA and the other categories (NSRs and AFs). Hence, the SVM 

boundaries between hand movement MNAs and the other categories using these statistical 

metrics are recognizable, as shown in Figs. 8a–d. However, kurtosis between MNA and the 

other categories are not significantly different, as shown in Figs. 8e–f. However, all three 

statistical values are similar for AF and NSR. Using SVM training, we derived the optimal 

boundary for distinguishing between hand movement MNA and the other types of 

smartphone signals via the segment lengths Lslope_max = 1s, Lslope_min = 1s, Ltpr = 1s, Lkur = 

1s, Lstd_dev_slope_max = 14s, and Lstd_dev_slope_min = 14 s.

3) MNA Detection Performance among NSR signals with and without MNA—To 

verify our algorithm, we collected iPhone recordings from 7 healthy subjects without any 

history

p(ai, …, ai + L − 1, k) = ∑
j = 0

L − 1
U(ai + j, k)/(L − Noutliers)  for U(ai + j, k) =

1, BLOW, k < ai + j < BUP, k

0, otherwise

(9)

of cardiovascular disease. Each subject was asked not to move their measurement hand for 

the first 30 seconds. For the next 30 seconds, each subject was asked to move their hand. For 

the last 30 seconds, each subject was asked to misplace their fingertip.

Each data type was sequentially categorized into “MNA-free”, “MNA Type 1-corrupted”, 

and “MNA Type 2-corrupted.” MNA Type 2-corrupted NSR (hand misplacement) is 

correctly detected with an accuracy of 100%. Considering only MNA-free NSR and MNA 

Type 1-corrupted NSR, we found the accuracy, sensitivity, and specificity to be 0.9698, 

0.9812, and 0.9584.

Table I shows true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN) of AF detection before and after MNA elimination on seven non-AF subjects. 

In subject II, for example, an incorrect AF detection was reported 110 times out of 819 

segments before MNA removal, but with our MNA detection algorithm, it was determined 

that 69% of the segments were contaminated by MNA. Thus, when these segments were 

analyzed by our AF detection algorithm, there was a smaller number of false positives, e.g. 
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23 false positives, by removing MNA-corrupted segments beforehand. Similarly, for subjects 

I and III–VII, all false positives AF detection rates were reduced to zero because they were 

due to MNA and not AF. To reiterate, the concept is that if MNAs are detected in a data 

segment, then the algorithm will ignore the segment, thereby reducing false positives (FPs). 

In summary, inclusion of our MNA algorithm increased the specificity from 73% to 97%.

At the bottom of Table I, the overall sensitivity value was calculated to be N/A. The 

sensitivity is calculated by TP/(TP + FN) where TP and FN in the AF detection indicate AF 

subjects correctly identified as AF, and AF subjects incorrectly identified as NSR, 

respectively. Since we consider only NSR subjects in Table I, the number of AF subjects is 

zero, which results in the sensitivity value to be N/A.

B. Detection of AF from MNA-Free SmartPhone Data

Table II is a confusion matrix of our proposed algorithms on AF, NSR, MNA Type 1 and 

MNA Type 2 subjects. For the 91 NSR subjects, 6 false negatives (FNs) were changed to 1 

FN after the use of our algorithm; thus, specificity increased from 93.41% to 98.84%. Table 

III compares the AF detection performance of the conventional and proposed algorithms.

Using our proposed algorithm with SVM, the accuracy, sensitivity, and specificity increased 

from 0.9560, 0.7905, and 0.8673 to 0.9667, 0.9765, and 0.9714, respectively. For AF 

detection, we used the same number of training sets from NSR and AF.

C. Contactless Measurement of Heart Rhythm

We applied contactless method in detecting heart rhythm and evaluate the method by 

comparing it to the contact-based (fingertip-based) method described in Sections III–IV. 

Specifically, subjects are asked to show a palm side of their hand to a camera which is 

located on a desk while holding a smartphone while placing their index or middle finger on a 

camera lens as shown in Fig. 9. For the contactless method especially, the measurement was 

performed in the laboratory with its lights turned on and the distance between the palm and 

the camera is controlled to be 25cm.

The sampling rate of camera recording is set to 30 fps for both contactless and contact-based 

methods. Since the contactless and contact-based methods are applied at the same time, 

measured heart rhythm could be compared in a convenient way.

From the simultaneous 10 contactless and contact-based measurements, the mean and 

standard deviation values of the heart rate difference between two methods are 0.46 and 1.42 

and the correlation coefficient value is 0.98.

V. Conclusion

Finger misplacement and hand movement while using a smartphone application are 

inevitable, especially for elderly subjects as they may not be accustomed to using 

smartphones or may have uncontrollable tremors. Our algorithm was designed to detect if a 

subject’s finger is either misplaced or is subject to significant motion. To distinguish these 

features, we make use of image distributions and light intensity from the successive camera 
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images. If the intensity difference between neighboring pixels is larger than the pre-defined 

threshold, then our algorithm rejects the signal and notifies the user to place his or her finger 

back over the smartphone’s camera. On the other hand, if the pulse interval signal features 

such as max/min slope changes, TPR, or kurtosis obtained from the average of light intensity 

are out of the threshold ranges, then the algorithm decides that the segment is corrupted by 

motion and noise artifacts. As a result of these strategies, we have enhanced the AF 

detection performance compared to our earlier method, by reducing these types of MNAs 

before AF detection. Moreover, the limitation of the previous algorithm was that it cannot be 

applied to a variety of lengths of smartphone recordings because a decision boundary 

distinguishing NSR from AF was derived only from 120-second length signals. In this paper, 

we overcome this limitation of the previous algorithm by adapting its AF decision boundary 

to different lengths of recordings.

We have also studied on a contactless heart rate detection method which detects heart rate 

from a hand using a camera. We have evaluated the performance of the contactless method 

by comparing it to the contact-based (or fingertip-based) method. As a result, the heart rate 

difference between contactless and contact-based methods was observed to be 0.46±1.42, 

which shows the potentiality of the contactless method being used for the MNA-resilient AF 

detection, too.

Given the growing popularity of smartphones and their potential for medical diagnostic 

applications, our approach to AF detection using a smartphone has definite appeal to both 

physicians and patients. A smartphone application with embedded MNA detection 

algorithms as described in this paper will ultimately result in better sensitivity and 

specificity which will lead to return to better adoption of this technology for AF monitoring. 

A clinical trial testing the proposed technology for AF detection with more subjects is 

currently ongoing.
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Fig. 1. 
A smartphone application for acquiring heart rhythm information (the application gets heart 

rhythm using the camera lens and flash light).
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Fig. 2. 
Four raw sequences extracted from 60 beat-to-beat segments recorded by the smartphone 

camera. (a): MNA-free NSR, (b): MNA-free AF, (c) MNA-corrupted NSR (hand 

movement), (d) MNA-corrupted NSR (finger misplacement).

Chong et al. Page 14

IEEE J Emerg Sel Top Circuits Syst. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Flowchart of MNA discrimination and AF detection procedures
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Fig. 4. 
Different types of fingertip placement on a canera lens (left) with corresponding smartphone 

signals (right). (a)–(b) fingertip fully covers a lens: correct placement, (c)–(d) patially 

covered: misplacement

Chong et al. Page 16

IEEE J Emerg Sel Top Circuits Syst. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Representative smartphone camera images (left) with their corresponding luma distributions 

(Y). (a)–(b) MNA-free NSR, (c)–(d) hand movement MNA, and (e)–(f) finger misplacement 

MNA.
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Fig. 6. 
Examples of representative fingertip placements on a smartphone lens (left) with their 

corresponding distributions of luma differences (ΔY) (right). (a)–(b) lens fully covered by a 

fingertip: correct placement, (c)–(d) more than half covered: misplacement, (e)–(f) less than 

half covered: misplacement, and (g)–(h) uncovered: misplacement
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Fig. 7. 
Hand movement in recording pulsatile signal from a finger using smartphone’s camera.
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Fig. 8. 
Parameter value comparison between NSR, AF, and hand movement MNA signals. (a) 

Maximum-minimum ratio (x axis) and turning point ratio (y axis), (b) three dimension plot 

of (a), (c) standard deviation of maximum (x axis) and minimum (y axis) slope value, (d) 

three dimension plot of (c) in logarithmic scale, (e) kurtosis (x axis) and standard deviation 

of minimum slope value (y axis), and (f) three dimension plot of (e).
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Fig. 9. 
Contactless and contact-based (fingertip-based) methods for heart rhythm recordings.
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TABLE III

Comparison of AF Detection Performance between Conventional and Proposed Algorithms

AF Detection without
MNA Discrimination

[11]

AF Detection with
MNA Discrimination

Sensitivity 0.9560 0.9667

Specificity 0.7905 0.9765

Accuracy 0.8673 0.9714
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