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Abstract— Deep Neural Networks (DNNs) have shown
significant advantages in many domains, such as pattern recog-
nition, prediction, and control optimization. The edge computing
demand in the Internet-of-Things (IoTs) era has motivated many
kinds of computing platforms to accelerate DNN operations.
However, due to the massive parallel processing, the performance
of the current large-scale artificial neural network is often limited
by the huge communication overheads and storage requirements.
As a result, efficient interconnection and data movement mech-
anisms for future on-chip artificial intelligence (AI) accelerators
are worthy of study. Currently, a large body of research aims to
find an efficient on-chip interconnection to achieve low-power and
high-bandwidth DNN computing. This paper provides a compre-
hensive investigation of the recent advances in efficient on-chip
interconnection and design methodology of the DNN accelerator
design. First, we provide an overview of the different interconnec-
tion methods on the DNN accelerator. Then, the interconnection
methods on the non-ASIC DNN accelerator will be discussed.
On the other hand, with the flexible interconnection, the DNN
accelerator can support different computing flow, which increases
the computing flexibility. With this motivation, reconfigurable
DNN computing with flexible on-chip interconnection will be
investigated in this paper. Finally, we investigate the emerging
interconnection technologies (e.g., in/near-memory processing)
for the DNN accelerator design. This paper systematically inves-
tigates the interconnection networks in modern DNN accelerator
designs. With this article, the readers are able to: 1) understand
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the interconnection design for DNN accelerators; 2) evaluate
DNNs with different on-chip interconnection; 3) familiarize with
the trade-offs under different interconnections.

Index Terms— On-chip interconnection, reconfigurable inter-
connection, artificial neural network, network on chip,
in/near-memory processing.

I. INTRODUCTION

THE Internet of Things (IoT) trend drives AI technology.
The notable benefits of AI have led to the advancement

in many real-world applications, such as speech recognition
and image classification [1]. The accuracy in several of these
applications has reached the human-level accuracies when
applying artificial neural networks (ANN), and thus, ANN
has received much attention in recent years [2]. Among the
contemporary ANN methods, DNNs have shown enormous
advantages in various domains. DNN is composed of a large
number of neurons which are arranged in layers, called
input layer, hidden layers, and output layer. In Convolu-
tional Neural Networks (CNNs), currently among the most
widely used DNNs, a neuron essentially performs a simple
multiply-accumulation (MAC) operation, and it is connected
to all or part of the neurons in the next layer. Through these
connections, the outputs of one layer become the inputs of the
next layer, until the result is obtained in the output layer.

DNNs have two phases: training and inference. In training
phase, the DNN model is created using some training data.
In the inference phase, the trained model is used to make
a prediction. The training and inference phases have several
shared functionalities, but there are key architectural differ-
ences between them. The main goal of training is to minimize
the time needed to converge to a specific accuracy, which is
related to the throughput of the system. For inference, however,
latency is as important as the throughput. While accuracy is
important for inference too, it is a common practice in some
applications to trade-off accuracy for more throughput or lower
latency [3], [4]. Memory requirement is another difference
between training and inference. inference only saves the last
layer of activations, while training needs to store almost all
the activations of all the layers for computing the gradients in
its back-propagation flow. Finally, training is usually scaled-
up and scaled-out to several nodes or even several clusters to
achieve higher throughput [5].

In order to process the massive deployment of DNN-enabled
applications efficiently, the DNN computing devices, such as
the High-Performance Servers (HPSs) or the modern edge
devices, require powerful hardware platforms to execute exten-
sive DNN operations. Current large-scale DNNs, however,
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involve complex communication, extensive computations, and
storage requirements, which are beyond the capability of cur-
rent resource-constraint embedded devices based on general-
purpose CPU and GPU processing elements. This has led
to recent growing popularity in developing domain-specific
resource-constraint platforms with dedicated processing, mem-
ory, and communication resources for DNN computation [6].

Due to the intrinsic characteristic of parallel computation in
DNN operations, it is intuitive to exploit parallelized multicore
hardware to accelerate the operations. Therefore, Application
Specific Integrated Circuits (ASICs) design is a popular way
to accelerate DNN computing on edge devices. Because of
the regular dataflow in the DNN operations, array-based inter-
connection is usually used in most modern DNN accelerators
[7]–[9]. With the array-level operation, the computing data,
such as partial sum and weights, can be reused efficiently.
On the other hand, because of the regular and scalable struc-
ture, the mesh-based interconnection is an attractive alternative
to connect neurons in DNN accelerators [10]–[14]. In recent
years, some non-mesh-based interconnections (e.g., tree and
Clos) were proposed to improve the performance of certain
targets, such as efficient memory accesses or low-cost multi-
cast communications [15]–[19]. Therefore, according to the
ASIC-based DNN designs, an efficient interconnection not
only improves the performance of DNNs but also increases
DNN computing flexibility.

Although ASIC-based DNN designs provide high through-
put with power efficiency, they suffer from expensive man-
ufacturing cost in advanced technology processes. Besides,
the verification and test become more challenging as the
DNN model gets deeper. Consequently, many developers con-
sider to employ FPGA [20]–[23], GPU [24]–[26], or many-
core CPU [27]–[30] to compute large-scale DNN operations.
Benefiting from the programmable attribute, FPGA reduces
the design time and power consumption while enabling a
fast prototype of the DNN accelerator. Since the interconnect
interface between on-board DRAM and FPGA chip dominates
the overall performance, the FPGA-based DNN designs still
suffer from long memory access latency. To solve the problem,
some researchers proposed to replace the crossbar circuit in
the memory interface with wire shifter unit [31], which will
be reviewed in this article. In order to further maximize
computing flexibility, it is a popular way to employ the
general-purpose GPU (GPGPU) or manycore CPU to compute
DNNs because their intrinsic parallel computing features are
well-matched with the parallel operations in DNN computing.
To communicate each processing core in CPU or GPU effi-
ciently, different kinds of core interconnections were proposed
in [32]–[35], which helps to improve the system performance
significantly.

In recent years, the new interconnection techniques, such as
3D vertical on-chip interconnection [36]–[41], wireless inter-
connection [42]–[44], and optical interconnection [45], [46],
etc., brought the performance revolution to DNN comput-
ing. As mentioned before, memory access latency dominates
the overall DNN performance, which promotes the research
about in/near-memory processing techniques. Through the
3D vertical interconnection, the memory can be stacked
on top of logic layer, which reduces the memory access
latency significantly [36], [37], [47]. On the other hand, some
advanced memory technologies (e.g., ReRAM and Memristor)
were proposed to improve the efficiency of memory accesses
with different kinds of interconnections, which will be

TABLE I

LIST OF ACRONYMS USED IN THE PAPER

investigated in this paper. In addition to the conventional
electric wire interconnection, on-chip interconnection through
optical or wireless signal is emerging interconnection tech-
nologies and applied to the DNN computing in recent
years [48]–[56]. We will discuss these kinds of novel on-chip
interconnection technologies in this article as well.

In summary, a proper on-chip interconnection for the DNN
operations depends on the target applications and design goals.
Therefore, this article aims to provide an overview of different
interconnection methods on DNN operations according to
different design scenarios. The main contributions of this
article are as follows:

1) Highlight the importance of the interconnection for the
DNN accelerator design in addition to the processing
elements (PEs) design.

2) Evaluate the DNN performance under different inter-
connections according to diverse design goals and
applications.

3) Suggest promising research directions in the future DNN
design paradigm after thoroughly investigating the state-
of-the-art designs.

The organization of the article is shown in Figure 1.
Section II investigates the ASIC-based DNN design and eval-
uates different interconnections such as array-based, mesh-
based, and reconfigurable ones and tries to explain the
design trade-offs. Section III discusses the interconnection of
the non-ASIC DNN computing platforms including FPGAs,
GPGPUs, Manycores, and embedded processors and ana-
lyzes the performance impact according to various intercon-
nections. Section IV describes interconnection in emerging
in/near-memory processing paradigm and also discusses some
emerging interconnection technologies (i.e., wireless and opti-
cal interconnects) to further improve the performance of DNN
operations. Finally, we outline directions for future research
on interconnections for NN accelerators in Section V and
conclude the summary in Section VI. We have introduced all
the acronyms used in the paper in Table I.

II. INTERCONNECTS IN ASIC NN ACCELERATORS

In this section, we review the most common interconnection
architectures for ASIC-based NN accelerators, including array-
based, mesh-based, custom and reconfigurable communication
fabrics. First, we describe the conventional and prevailing
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Fig. 1. Classification of interconnects mechanisms discussed in this paper.

array-based and mesh-based interconnections employed in
NN accelerators. Then, we discuss the custom interconnec-
tions proposed to address the shortages of conventional ones.
Finally, we review the more recent reconfigurable interconnec-
tions that are emerged to address the flexibility issue of fixed
interconnections, and hence, improve the performance of NN
accelerators in the presence of DNNs with various structures.

A. Array-Based Interconnection in NN Accelerators

The dominant computation in a DNN is the MAC operation,
which consists of four memory accesses; three memory reads
(for filter weight, fmap activation, and partial sum) and one
memory write (for the updated partial sum). It is conceivable
that in the worst case, all of the memory accesses must pass
through the high-energy-cost off-chip DRAM, which has a
severely detrimental impact on both energy efficiency and
throughput. Therefore, in the computation of DNNs, memory
access is the main bottleneck for data processing. By utilizing
data reuse through the multi-level memory hierarchy, the data
movement is majorly reduced. In fact, by maximizing the
local reuse of data in lower-level memory, and consequently
minimizing the number of references to higher-level mem-
ory units, the power and throughput will be significantly
boosted [1], [1], [14].

To this end, spatial architectures, which have multiple levels
of local memory hierarchy and provide high parallelism in
computation, seem to be the right choice for implement-
ing DNNs [7], [57]–[60]. Unlike commonly used tempo-
ral architectures such as CPUs (SIMD) and GPUs (SIMT),
spatial architectures exploit decentralized control logic for
the array of PEs. In temporal architectures, data delivery is
handled through a memory hierarchy without the possibility
of direct communications between PEs. In contrast, in spa-
tial architectures, there is an array of ALU-style PEs with
the facility of direct inter PE communication (i.e., dataflow
processing), which drastically reduces the frequent accesses
to the costly level of the memory hierarchy. The inter PE
communication is carried out through an on-chip network
whose structure depends on dataflow requirements so it can
have a regular topology such as bus and mesh or irregular
ones. To maximize the local data-reuse in spatial architectures,
four levels of the memory hierarchy are supported; Off-chip
DRAM, global buffer, PE array (inter PE communication), and
register file [57], [61]. Also, there are input- and output-FIFO
(iFIFO/oFIFO), and also, a PE-FIFO (pFIFO). The DRAM,
global buffer, and PE array could communicate through the
iFIFO/oFIFO, while pFIFO provides the I/O communication
facility for ALU in PEs. The typical structure of spatial and
temporal architecture is depicted in Figure 2.

Fig. 2. Massively parallel compute computing models.

Authors in [59] claim that the state-of-the-art accelerators
fail to capture all types of fine-grained parallelism that exist
in CNN models, so they are not the ideal solution for CNNs.
Indeed, they have revealed that the combination of three
types of parallelism (i.e., neuron, synapse, and feature map
parallelism) leads to eight dataflow styles of which only three
of them are supported by the state-of-the-art architectures.
To mitigate this problem they introduce an array-based archi-
tecture called FlexFlow which supports all types of parallelism
to boost resource utilization. To support complementary par-
allelism (i.e., mixed parallelisms), in addition to removing
most of the redundant interconnections among PEs they also
modify the microarchitecture of PEs. In their modifications,
data can be derived from on-chip buffers via devised vertical
and horizontal buses to each PE and also can be stored in
local storage. In this way, not only the local reuse of data is
maximized but also various types of data paths for different
types of parallelism are supported which leads to a substantial
acceleration in both training and inference procedures.

B. Mesh-Based Interconnection in NN Accelerators

Scalability, power efficiency, fault-tolerant, and parallelism
of NoC, are the reasons why it has been hailed as a de facto on-
chip communication fabric for multi/many core platforms [62].
Due to these characteristics of NoC, it seems to be a proper
infrastructure to support low latency, low power, and paral-
lel communications for hardware implementation of DNNs
through multi/many core chip. The inter-layer communications
in DNNs manifest complex and distinct patterns (e.g., one-to-
many and many-to-one inter-layer communication). Because
of these facts, the task of designing NoC becomes chal-
lenging in terms of choosing the fitting topology and also
mapping paradigm to reduce the communication bottleneck.
Among various proposed topologies, mesh and concentrated-
mesh (C-Mesh) are shown to be fitting options [10], [11],
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as they provide easy layout, high path diversity, fault-tolerant
communication, and proper bisection bandwidth. Mesh-based
interconnection can also help design area and energy opti-
mized DNN accelerators using emerging computing paradigms
such as in-memory processing [63], which we will discuss in
future sections.

Authors in [11] proposed DNN pruning and dataflow map-
ping on mesh-based on-chip networks. In this study, weight
and neuron pruning schemes have been proposed to improve
performance and energy-efficiency of DNNs based on the
constraint of inference accuracy. Also, they have introduced a
dataflow mapping scheme based on the row-weight stationery
(RWS) to support multicast traffic distribution in the mesh-
based NoC. The proposed technique leads to a significant
improvement in delay and energy consumption of training and
inference phases.

As it was declared earlier, due to the scalability and paral-
lelism properties of NoC, it can provide high-performance and
energy-efficient communication infrastructure for processing
DNN in multi/many-core platforms [12]. On the other hand,
by increasing the size and density of DNN, the inter-core
data transmissions have been proliferated, which offer a better
energy efficiency than intra-core communications. This issue
complicates the NoC design process, especially in terms of
topology selection and the mapping strategy. To overcome
this problem, Reza et al. [10] has proposed an efficient
concentrated-mesh (CMesh) topology and an architecture-
neuron-aware mapping scheme to implement DNNs. As in
CMesh topology, more than one core is connected to each
router, it (CMesh topology) provides the possibility of inte-
grating more neurons of one or two DNN layers at the
cores connected to a router. This localization process reduces
the data transmissions across the network and consequently
enhances the energy efficiency and execution performance
of DNNs in both training and inference phases. Also,
the architecture-neuron-aware mapping classifies the neurons
as latency-intensive (communication) or throughput-intensive
(computation), and then by considering the heterogeneous
resource capacity of the chip, tries to map the neurons close
together to reduce the communications’ delay in NoC.

To improve the bandwidth and energy efficiency of the
on-chip network for accelerating NoC-based DNNs, authors
in [13] have proposed a method for distributing traffic in a
mesh-based NoC through considering memory access mecha-
nism in the AlexNet, VggNet, and GoogleNet trained models.
Indeed, in this study, multiple distributor nodes have been
designed to support multicast data transmission between PEs
based on weight reuse. Furthermore, to improve the perfor-
mance and energy efficiency, a flow mapping approach based
on the row-node stationary (RNS) has been devised that can
reduce the number of memory accesses and hop counts with
the aid of distributor nodes.

By reaching the DNN applications to resource constraint
devices, e.g., mobile devices, (DNNs) have become more
compact and sparse and exhibit much more variation in their
size and shapes. For improving the performance of such DNN
models, customized hardware platforms must be incorporated
to capture emerging characteristics of DNNs (e.g., sparsity) in
a way that the sources of inefficiency, i.e., low PE and array
utilization, are eliminated. To this end, Eyeriss v2 [14] has
been proposed as an efficient DNN accelerator architecture that
targets inference phase of DNNs. In this customized hardware
platform, to provide highly flexible on-chip communications,

a hierarchical mesh topology has been exploited to cope with
the various bandwidth requirements and different amounts
of data reuse, which arose from different data types. The
structure of the hierarchical mesh NoC has two levels; the
all-to-all network at the lower level to connecting the PEs
and a mesh topology at the top level for connecting clusters
of PEs. In this study, the cost and scalability issues of
the all-to-all network are restricted by confining it within a
cluster such that there are only 12 PEs in each cluster. The
proposed hierarchical mesh can flexibly benefit from unicast
and broadcast communications when data reuse opportunity is
low and high, respectively. In this way, the performance and
energy efficiency of DNNs are enhanced when facing a wide
range of bandwidth requirements.

C. Non-Mesh-Based Interconnects

Current NN accelerators mostly employ variations of mesh
for the topology of NoC. Since there is no direct path among
remote PEs or memory chips, the latency of mesh-based NoC
increases as the size of NoC increases. Moreover, a NoC
should be able to efficiently handle multicast communica-
tions, as it is the prevailing traffic pattern in DNN models.
To tackle this challenge, Custom Parallel Architecture for
Neural networks (CuPAN) is proposed [15] that targets both
training and inference phase of NNs. CuPAN leverages Clos
topology, which is a low-cost multistage network, to connect
PEs together. Clos belongs to Multi-stage interconnection
networks (MINs) family that leverages multi-layer network
architecture to efficiently connect any pair of inputs/outputs.
It is in contrast to crossbar switches which impose significant
cost.

In the machine learning era, memory-augmented neural
networks (MANNs) are quickly emerging to tackle the chal-
lenges of traditional DNNs in areas such as one-shot learning
[64], [65]. MANNs rely on differentiable external memory
to decouple the dynamic state from the neural network. This
differentiable external memory is accessed by soft reads and
writes, which results in access to the entire memory locations
for each operation. This makes the MANNs memory-bound,
unlike the DNNs that are compute-bound [16]. Therefore,
the design of current DNN accelerators that allocate the major-
ity of die area to compute units (multiply-and-accumulate,
MACs) is inefficient for MANNs. Moreover, the current
accelerators mostly focus on dot product operations; however,
MANNs rely on all the operations equally.

To address the shortcomings of current DNN accelerators
for MANNs, Stevens et al. [16] has proposed Manna. Manna is
a memory-centric CMOS-based inference accelerator that aims
to improve the memory access in MANNs through maximizing
on-chip memory capacity and bandwidth. It allocates the die
area to compute resources such that they can match the band-
width while avoiding underutilized resources. Manna contains
an ISA and compiler to map MANNs in order to minimize
the data-transfer and maximize the on-chip bandwidth. In NoC
design of Manna, only reduced and broadcast communication
patterns are required between tiles. So, the H-tree topology
with fixed-routing is selected for Manna to simplify the design
and reduce the number of steps needed for a communication
pattern (reduced or broadcast).

The crucial requirement of SNN applications for reli-
able operation is preserving the integrity of spike timing.
Although the NoC paradigm offers a scalable communication
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infrastructure for SNN’s hardware architectures, it can result
in undesired jitter in spike transfer timing. To solve the timing
constraint of spike delivery in the NoC-based SNNs’ hardware,
Pande et al. [17] has proposed a ring topology with fixed spike
communication latency. This work suggests a novel broadcast
dataflow control based on the timestamping technique.

One problem in using hardware accelerators for Spiking
Neural Networks (SNNs) [18] is that the conventional bus-
topology (i.e., based on a direct connection of neurons to each
other) is hardly scalable due to non-linear proportionality of
required bus lines to the number of neurons in each layer.
So, it is hard to employ a point-to-point connectivity plan for
such a massive number of connections. Exploiting multicast
communication between neurons using combined star-mesh
topologies called hierarchical network-on-chip (H-NoC) is the
solution proposed in [19]. H-NoC addresses the challenge
by constructing modular arrays of clusters of neurons via a
hierarchical structure of routers. The cluster facility is the
essential building block of H-NoC, where a group of neurons
are connected using low and high routers in a hierarchical
structure. This hierarchical structure supports both local (intra
cluster) and global (inter cluster) communication between
neurons. It leverages a traffic compression technique for the
SNN traffic pattern and communication between neurons to
decrease the traffic overhead, and hence, improve throughput.
To maintain the throughput in the presence of bursting traffic,
it balances the local and global traffic between clusters using
adaptive routing.

D. Reconfigurable Interconnects

The spatial architecture-based accelerators that are emerged
for coping with massive computational requirements of DNNs,
consist of hundreds of PEs that can be used to achieve high
level of computational parallelism. The common problem with
these accelerators is the employment of conventional topolo-
gies such as bus and mesh, which are unable to efficiently
handle massive on-chip data movement that increases with the
degree of parallelism [66]. Moreover, most of the current DNN
accelerators consider the co-design of PEs and Network on
Chip (NoC) to optimize only internal communications within
one layer. Hence, they only support fixed dataflow patterns and
lead to under-utilization of computing resources when arbitrary
dataflows, aside from the ones considered in the design flow,
are mapped on them [67]. To address the aforementioned
drawbacks of conventional interconnect, recent works have
focused on designing reconfigurable interconnects which are
able to adapt themselves with dataflow and communication
patterns within NN accelerators.

To provide a reconfigurable, scalable, and low power
interconnection platform for developing dense synapse/neuron
interconnection patterns, Carrillo et al. [68] has proposed an
adaptive on-chip router. The adaptive router provides the inter-
neuron connectivity for EMBRACE architecture, an embedded
mixed-signal SNN. The adaptability of the proposed NoC
comes from the adoption of an adaptive routing scheme and
adaptive arbitration policy, which leads to improved network
throughput and congestion avoidance capability, respectively.
On the other hand, by incorporating adaptive routing and
arbitration schemes, fault-tolerant capability can be achieved,
which is one of the basic requirements of large-scale SNNs.

Kwon et al. [66] proposed a reconfigurable NoC that is
made of an array of micro-switches. By reconfiguring these
micro-switches cycle by cycle, this design is able to provide

light-weight interconnects, enabling single-cycle communi-
cation for three common communication traffic patterns in
CNNs, namely scatter (buffer to PEs), local (PEs to PEs),
and gather (PEs to buffer). This design can achieve a low area
usage, energy efficiency, and high performance compared with
conventional approaches. For scatter traffics, it constructs a
tree structure using micro-switches where the root of the tree
lies in one of the top switches, and leaves are in the bottom
switches, so it works like a bus topology. In gather traffics,
each PE has a dedicated path to top switches through bypass
links in lower-level switches. Finally, for local traffics, it uses
bottom switches to form a bi-directional linear network that
allows single-cycle communication between any two PEs.

MAERI [67], [69] is a DNN accelerator design with a set
of configurable building blocks consisting of multiply and
adder engines that can be configured with tiny switches. This
new modular design can support various dataflows of arbitrary
DNNs and map them successfully on accelerator elements.
MAERI can also support approaches such as Fused CNN [70]
that aim to improve the power efficiency of accelerators.
By changing the dataflow and creating unique ones. While cur-
rent design approaches cannot support such unique dataflows
on accelerators, the reconfigurable interconnect in MAERI can
support them. This modular design is in contrast with the
conventional monolithic design of DNN accelerators and can
successfully improve the performance/watt of DNN inference,
while improving the utilization of PEs from 8% to 459% for
various DNNs compared with baseline interconnection designs
with rigid NoCs.

In most deep learning workloads, general matrix-matrix
multiplications (GEMMs) is the primary computation pattern
that appears in both inference and training phases. GEMMs
consume about 70% of computing cycles in the training
phase of DNNs. Therefore DNN accelerators usually consider
GEMMs a candidate for acceleration, which has led to the
emergence of systolic architectures such as Google Tensor
Processing Units (TPU) [9]. The systolic arrays vary in size
from 4*4 to 128*128 engines. The emerging GEMMs in
new DNN models are irregular in dimension and varies in
levels and types of sparsity. So, it is hard to choose specific
dimensions or sparsity level to design an accelerator based on.

To address this challenge, a GEMM accelerator for DNN
training called SIGMA [71] is proposed that can handle
various irregular GEMMs dimension and different levels
of sparsity, while maximizing the utilization of computing
resources. The Flexible Dot Product Engine (Flex-DPE) maps
GEMMs of various dimension and sparsity levels to PEs using
scalable interconnects. For the distribution network (loading
the stationary matrix and streaming the other one), it uses the
Benes network [72], and for dot product reduction, the FAN
(Forwarding Adder Network) topology is proposed that places
the link between adders over a traditional binary adder tree.
SIMGA outperforms cutting-edge sparse accelerators by 3x
and performs better than systolic array architectures by 5.7x
for irregular sparse matrices.

III. INTERCONNECTS IN NON-ASIC NN ACCELERATORS

ASIC accelerators can significantly improve the
performance per watt of DNNs. However, their inherent
limitations such as poor scalability, difficult testing and
debugging, and extremely high monetary cost incentivize the
researchers to consider the alternatives. Therefore a large of
body research considered designing NN accelerators based on
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Fig. 3. Memory read and write transfer networks in Medusa [31].

FPGAs [20]–[23], GPGPUs [24]–[26], [73], [74], manycore
processors [27]–[30], and embedded processors [75]–[78].
In this section, we discuss the interconnects of NN accelerators
designed by employing such hardware architectures.

A. FPGA-Based NN Operation

To quench the thirst of DNNs for computational resources,
researchers from both academia and industry have consid-
ered FPGAs as a viable option. FPGAs promise remarkable
performance-energy trade-off, and hence, have been chosen
as a suitable candidate for DNN accelerator in prior works
[79]–[85]. In some FPGA-based DNN accelerators [86], [87],
the layer processors are designed and implemented to process
one or more layer of the DNN. DNN parameters, such as
weights, are stored in on-chip storage [88], [89] for small
DNNs or DRAM of FPGA for large ones. The DRAM
controller provides a wide interface, while each layer processor
needs a narrow read and write port (such as AXI stream ports)
to provide flexibility for implementing target DNN. While
layer processors can provide significant computing capacity,
the interconnect interface between DRAM and processors
dominates the critical path and limits the overall perfor-
mance. Using a crossbar to multiplex the wide interface to
several narrow ports leads to over-provisioning and logic
and wiring resource wastage. the conventional memory inter-
faces consume up to 20% of FPGA resources such (LUTs
and FFs) [31], [90].

To address this challenge Medusa [31] completely changes
the architecture of memory interconnect interface. It replaces
the crossbar, FIFOs, and data-width converters in the conven-
tional design with the transposition unit. In this unit, the data-
width converters and crossbar are removed, and a shifter is
added. The FIFOs per port are also replaced with a deep
shared buffer. Transposition unit helps to divide the DRAM
bandwidth to each narrow port by transposing the data instead
of using a multiplexer. Hence, the resource usage of FPGA
decreases, and routing becomes simpler, while the DRAM

bandwidth utilization remains intact. The only drawback of
this new architecture is a negligible constant increase in
latency of memory access. Medusa can be effective for both
training and inference phases. Compared to a traditional inter-
connection, it can decrease the usage of LUTs and FFs by 4.7x
and 6x, while increasing the frequency by 1.8x. The memory
read and write transfer networks introduced by Medusa are
depicted in Figure 3.

DNNs usually have various convolutional layers with dif-
ferent input/output/kernel size features. Hence, it is hard
and complex to propose an architecture that is efficient
for all these heterogeneous layers. To tackle this problem,
Rahman et al. [91] proposed an FPGA-based flexible and
efficient architecture suitable for different kinds of convolu-
tional layers in DNNs. To address the problem of complex
wiring inside the architecture and input reuse patterns, it has
employed a 2D mesh-like interconnect.

B. NN Operations on GPGPU

Programmability and scalability of GPUs have made them
a favorable choice as NN accelerator, even in the presence
of customized ASICs. Researchers from both academia and
industry has focused on GPU and multi-GPU accelerators
as a promising solution for training and inference of NNs.
GPUs can provide significant computing resources for NN
operations. However, the bandwidth deficiency between PEs
and memory in a single GPU or the inter-GPU communication
in multi-GPU configurations (which is widely used for training
large and complex NNs) has always been challenging, which
counteracts the advantage of the parallel computing capabili-
ties for accelerating NN operations. Significant communication
overhead of training on multi-GPU clusters originates from
1) the fast increase in the computing capacity of GPUs,
which leads to a widening gap between computation and
communication capacity, 2) the emergence of larger and more
complex DNNs with lots of layers and nodes, which leads
to millions of parameters that need to be distributed over the



274 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2020

Fig. 4. GPUs connected to each other by NVLink.

network, and 3) underutilization of communication resources
by communication mechanisms [92].

To overcome the communication bottleneck on GPU,
advanced PCIe interconnection and novel NVLink intercon-
nection interface are two well-known solutions.

• PCIe: To address the shortcomings of communica-
tion in multi-GPU clusters, GradientFlow [92] proposes
three mechanism based on Peripheral-Component-
Interconnect-Express-Bus (PCIe): ring-based allReduce,
mixed-precision training, and overlapping the allReduce
communication of upper layers with computation of
lower layers. PCIe is a high-speed serial interconnect
that enables the integration of one or more GPU with
CPU and is widely used in GPU accelerators [93]–[95].
However, studies [96], [97] show that PCIe might
become a bottleneck for accelerators because it is slower
than interconnect between CPU and DRAM. Moreover,
the detrimental impact of PCIe on the performance of NN
accelerators becomes more significant when is adapted
for point to point communication between GPUs in
multi-GPU clusters. To address this challenge, NVLink
interconnect is introduced for multi-GPU clusters.

• NVLink: NVLink is one of the well-known intercon-
nect interfaces proposed for multi-GPU computing. This
wired-base bidirectional interface supports point-to-point
GPU-GPU and GPU-CPU communication and is based
on High-Speed-Signaling-Interconnect (NVHS). NVLink
facilitates the clustering of GPUs or GPUs and CPUs
to employ them as a larger computing unit [32], [33].
Figure 4 shows how GPGPUs can be interconnected using
NVLink.

Training large DNNs on GPU platforms is challenging
without explicitly moving the GPU buffers’ data by CPU
memory, which degrades the productivity and portability.
One alternative is employing the newly introduced feature of
Unified Memory (UM) [98] in CUDA. The Out-of-Core DNN
training framework (OC-DNN) [99] utilizes the UM along
with NVLink to improve the performance of DNN training
on single GPU and multi-GPU clusters and can provide 5x
faster training compared with CPU-based platform for out-
of-core workloads. The NVLink helps to gain significant
bandwidth between GPUs that host the DNN for training.
PipeDream [100] also employs NVLink to design a NN
accelerator that enables inter-batch pipelining, in addition to
common intra-batch parallelism in current accelerators. This
improves the throughput of DNN training.

C. NN Operations on Manycore

Spiking Neural Network Architecture (SpiNNaker) [34]
is a manycore system containing a large number of nodes
each of which is equipped with ARM9 processors and huge

amount of RAM and SDRAM. It has a system NoC that
enables application processors to access the SDRAM and
a communication NoC that is used for transferring packets
among processors. For selecting the topology of SpiNNaker,
the main goal is to minimize the length of routing, and hence,
they have used a torus for this matter.

BiNMAC (Binarized neural Network Manycore Acceler-
ator) [35] is a manycore system architecture proposed for
binary neural networks to improve the performance of both
inference and training phases. Binary NNs have a structure
similar to conventional ones (e.g., convolution layers and fully-
connected layers) but with weights constrained to −1 and +1
that replaces the multiply-accumulate operations with addi-
tions and subtractions. The instructions added to the ISA
of BiNMAC can significantly reduce the number of clocks
needed for execution of a few, but prevailing, specific functions
of BNNs. The cores in each cluster communicate with each
other through a low-latency bus interconnect. A hierarchical
routing structure is also designed for inter-cluster commu-
nications. Compared to a non-binarized implementation of
ResNeet-20 on the same platform, BiNMAC can reduce the
energy consumption by 30x. In addition to aforementioned
architectures, previous approaches such as CHIPPER [101]
(a bufferless router for CMPs) that are proposed for gen-
eral manycore systems, can be explored for possible use in
manycore-based DNN accelerators to improve their power
consumption and performance.

D. NN Operations on Embedded Processors
Most of the current works address the challenges related

to DNN specialized accelerators. However, there is a lack
of study on DNN inference acceleration on embedded mul-
tiprocessors that are employed in many real-time applications
for energy-efficiency and scalability.

To address this challenge, Zou et al. [102] has investi-
gated the following parallelization techniques for decreas-
ing communication overhead and accelerating inference in
embedded CMPs: 1) Traditional Parallelization where each
layer is mapped to one core and each core broadcasts its
output values to other cores for synchronization. Inter-core
communication in this case can be significantly high, which
can have detrimental impact on performance. 2) Structure
Level Parallelization where the structure of the DNN model is
slightly modified such that some cores do not broadcast their
output, which leads to decreased inter-core communication
overhead. 3) Communication Aware Sparsified Parallelization
that leverages the concept of zero value weights/neurons which
do not affect the inference accuracy and are not required to be
transmitted to other cores. This method uses the sparsification
technique, so the network can learn to converge to an accurate
structure with low communication overhead in the training
phase. It uses a 2D mesh topology for its NoC and employs
sparsity mask matrices to identify the location of cores in the
mesh topology, and hence, is aware of communication costs
between cores in NoC.

Executing inference on IoT nodes can significantly improve
the performance compared to simply transmitting raw data to
a central computing facility. However, it is hard to deploy
the energy and compute-hungry CNN inference tasks on low-
power energy harvesting IoT devices. While conventional
ReRAM-based accelerators can significantly enhance the per-
formance of NN accelerators, their power consumption is too
much for energy harvesting nodes. Hence, ResiRCA [103]
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TABLE II

FEATURES OF REPRESENTATIVE NON-ASIC ACCELERATORS IN THE LITERATURE

Fig. 5. The interconnected bus used in the design of ResiRCA [103].

architecture is presented that combines an energy-efficient
configurable ReRAM-based DNN inference engine with a
battery-powered IoT node. It allows the accelerator to adapt to
a given amount of harvested energy and operate accordingly.
Moreover, the ResiSchedule designed by ResiRCA can achieve
high throughput by employing three techniques: 1) loop tiling,
2) ReRAM duplication, and 3) pipelining. It uses a simple
interconnected bus (can be seen in Figure 5) in the design
of its intelligent embedded system, which might degrade the
design’s resource efficiency. The list of selected non-ASIC
accelerators and their main features are presented in Table II.

IV. INTERCONNECTS AND EMERGING TECHNOLOGIES

In this section, we first review the interconnections
employed in NN accelerators that leverage in/near-memory
processing. This new computing concept can help mitigate
the impact of memory wall on the performance of computing
systems, including NN accelerators. However, the interconnec-
tion network might become the new bottleneck, and hence, this
issue should be considered and addressed when designing new
NN accelerators based on in/near-memory processing. Finally,
we discuss the interconnections that employ wireless and
optical technology to improve communication among different
parts of a NN accelerator.

A. In-Memory and Near-Memory Processing

With the increasing size and complexity of NNs, it is desir-
able to continue improving the performance and energy effi-
ciency of NN accelerators to match such an increase. Both the

Fig. 6. TSVs in 3D memory.

number of layers and size of each layer in NNs are enlarging,
and consequently, the memory subsystem is becoming the
bottleneck in NN accelerators. Traditional approaches such
as using larger on-chip SRAMs or increasing the number of
memory channels are both power-hungry and expensive [36].

The recent advances in technology such as the emergence of
through-silicon-via (TSV, see Figure 6) have led to the advent
of 3D memory that enables the placement of DRAM dies on
top of the logic chip to tackle the memory wall challenge.
3D memory can significantly improve both bandwidth and
energy efficiency compared with conventional 2D memory.
Considering the advantages of 3D memory, it is a promising
option for designing NN accelerators [36], and hence, has
been used in a wide variety of architectures proposed for NN
accelerators [37]–[41].

Another promising solution to conquer the memory wall
challenge is in-memory computing, where novel memory tech-
nologies are employed to integrate computation and memory
to avoid costly data transfer between PEs and off-chip storage.
Some of the current emerging memory technologies such
as PCM [104], STT-RAM [105], [106], Memristor [107],
and ReRAM [108], [109] can support logic and arithmetic
operations, in addition to storing data. Hence, they have been
studied in a large body of research to accelerate applications in
different areas such as graph processing [110]–[113], scientific
computing [114]–[116], and DNNs [117]–[119].

In this section, we review the NN accelerators that leverage
aforementioned memory technologies and discuss the design
of their interconnection networks.
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1) 3D Memory: The Neurocube [37] architecture is one of
the first works that leverages 3D memory to design an NN
accelerator for both training and inference. It aims to provide
programmability and scalability similar to GPU accelerators
and power efficiency and performance close to ASIC. Neu-
rocube is composed of clusters of PEs interconnected by a 2D
mesh NoC. The PEs are integrated with 3D DRAM chips and
access memory using parallel channels. To achieve the pro-
grammability and deploy different neural network topologies,
Neurocube employs a set of memory-based programmable
state machines as a programmable interface.

TETRIS [36] is another work that focuses on improving
the NN inference by employing 3D memory. Unlike other
works, TETRIS goes beyond simply combining 3D memory
with NN accelerators. First, it rebalances the design of NN
accelerator chips and allocates more area to PEs and less
area to SRAM buffers. It also moves accumulation operations,
which are simple ones, to DRAM banks to reduce memory
access. In TETRIS, the PEs are connected though a 2D-mesh
NoC. Compared to an accelerator designed with conventional
low-power DRAM memory systems, TETRIS can improve
the performance and reduce the energy by 4.1x and 1.5x,
respectively.

In 3D memory-based NN accelerators, managing the signif-
icant traffic between PEs and memory, and inter-PEs multicast
traffic is challenging. Moreover, the traffic varies significantly
over time, and from application to application. To address
this challenge, Firuzan et al. [47] has proposed an adaptive
cluster-based reconfigurable NoC that adapts its topology to
the chip’s traffic. This paper is focused on the traffic of
inference phase of NNs. To handle multicast inter-PEs and
memory-to-PE traffic, the proposed NoC can be configured as
a tree-like topology. The PEs are organized as clusters, and the
nodes inside each cluster are connected through a broadcast-
based topology. The clusters themselves are connected by a
reconfigurable network. Unlike conventional accelerators that
employ application-specific topologies, the proposed approach
is scalable and flexible and can handle varying traffic of
various applications over time. The topology construction
mechanism of the proposed approach uses a version of Dijkstra
for finding the shortest path for the communication task graph
(CTG) of the neural network.

2) Memristor: Memristor crossbars can perform analog
matrix-vector multiplications, and hence, they make it possible
to tackle the limitations of digital designs regarding energy
efficiency. Therefore, recent studies have considered them for
designing ML inference accelerators, where the matrix mul-
tiplication is the prominent operation. Programmable Ultra-
efficient Memristor-based Accelerator (PUMA) [48] is an
ML inference accelerator that takes advantage of Memristor
crossbars and aims to achieve programmability and generality.
It employs a chip-to-chip 2D mesh interconnect similar to
DaDianNao [8].

RENO [49] also employs memristor-based crossbar (MBC)
arrays to accelerate the training of ANNs. The MBCs are
arranged hierarchically in a centralized mesh manner to mini-
mize the interconnection network cost, and they can be config-
ured to various ANNs models with different topologies using
a customized and configurable mixed-signal interconnection
network (M-Net). Each four MBC arrays shape a group which
are connected via a group router for communication. The
group routers are then connected together through a central
router. Both digital and analog signal transmission is supported

in RENO. M-Net helps to perform both task mapping and data
migration over the MBC arrays.

ISAAC [50] explores in-situ processing, leveraging mem-
ristor crossbar arrays for speeding up analog execution of
dot-product operations in inference phase of NN accelerators.
To reduce the analog-to-digital conversion overheads, ISAAC
incorporates a novel encoding technique that is compliant with
analog computation. ISAAC has a hierarchical structure where
tiles that are the main building blocks contain various compo-
nents such as multiply-accumulate units, sigmoid, and max-
pool units. The tiles are connected using on-chip concentrated
mesh (c-mesh). Compared with DaDianNao [8], ISAAC can
improve the throughput, energy, and computational density by
14.8x, 5.5x, and 7.5x, respectively.

3) ReRAM: Among the aforementioned memory technolo-
gies, ReRAM (metal-oxide resistive RAM) is shown to be
able to execute matrix-vector multiplication efficiently, and
hence, has been widely used in the design of NN accelerators
[51]–[55], where matrix multiplication is the prevailing oper-
ation. PRIME [53] is one of the first works that employs
ReRAM to address the memory wall challenge in NN accel-
erators and improve the performance and energy efficiency of
inference phase. It does not employ independent processing
units for implementing the accelerator, and instead it leverages
the computing capabilities of ReRAM banks directly. PRIME
simply uses a memory bus in its architecture to manage
the inter-bank communication and realize the implementation
of large-scale NNs. The architecture of PRIME is shown
in Figure 7.

Deconvolution is an important component in today’s
NNs, especially GANs (generative adversarial networks).
Implementing deconvolution on current ReRAM-based NN
Accelerators, which are optimized for convolution, can signif-
icantly degrade performance and energy efficiency. RED [55],
a ReRAM-based inference accelerator customized for decon-
volution, is proposed to address this challenge. To eliminate
redundant zero-padding operations in deconvolution, RED
designs a pixel-wise mapping scheme. It also proposes a zero-
skipping dataflow to enhance execution efficiency. To facilitate
the zero-skipping, RED leverages a new input buffer design
which interconnects single-functional and multi-functional
buffers (SFBs and MFBs) alternatively using a memory bus.
The PEs also communicate through an on-chip data bus.

While ReRAM can provide significant efficiency and den-
sity, its advantages have not been fully utilized in current NN
accelerator designs due to restrictions such as high communi-
cation demand among PEs, which makes the communication
a bottleneck. Earlier works that have employed in-memory
processing for NN accelerators have either used memory
bus [53]–[55] or mesh-based NoC [48]–[50] for communi-
cation among PEs [52], [53]. Neither using memory bus nor
NoC can satisfy the huge communication demand among PEs
in ReRAM based NN accelerators. Therefore, FPSA [52] is
proposed to fill the gap between the capacity of current inter-
connections and requirement of ReRAM-based accelerators
and improve the performance of NN inference. FPSA suggests
a reconfigurable routing architecture that provides a huge
amount of communication capacity via its wiring resources.
These resources are used by the placement and routing tool
to enable various routes with high communication bandwidth
and to satisfy the communication demand of ReRAM-based
PEs. Instead of memory bus or NoC, this work proposes
the employment of the reconfigurable routing architecture
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Fig. 7. The architecture of PRIME [53].

TABLE III

SUMMARY OF DNN ACCELERATORS BASED

ON IN/NEAR-MEMORY PROCESSING

of FPGAs. Previous approaches reuse physical channels to
route traffic among PEs and provide runtime flexibility.
However, the topology of NN models such as DNNs is fixed,
and hence, the runtime flexibility is unnecessary. The routing
algorithm presented in FPSA assigns a physical channel to
each signal, and hence, the datapath has a fixed time, which
allows calculating the latency of critical path in advance.
The FPGA routing architecture used here is island-style. The
ReRAM-based PEs are connected via Connection Boxes (CB)
and Switch Boxes (SBs), which are constructed by ReRAM
themselves to reduce the area consumption and compensate
for the huge number of fan-in/outs of PEs. FPSA can improve
the computational density by 31x compared with PRIME [53].

There are other works that employ in-memory processing
such as AtomLayer [120] that uses atomic layer computation
for processing one DNN layer each time to achieve efficient
training and inference, simultaneously. But since their inter-
connection architecture is not well-described, we do not further
discuss them in our work. The approaches we discussed are
summarized in Table III.

B. Wireless Interconnects

In recent years, implementing DNN applications on het-
erogeneous (i.e., the combination of CPUs and GPUs) chip
multiprocessors (CMPs) has become an area of great interest.
In these hardware platforms, communications between CPUs
and GPUs carry out through an on-chip network, which leads
to a substantial reduction in the volume of expensive off-
chip communications. However, with such a massive level
of integration, and the emergence of data-intensive DNN
applications, the conventional on-chip networks are unable
to support low-latency and energy-efficient communications.

On the other hand, the NoC in heterogeneous CMPs must
deliver different QoS levels required for both GPU and CPU
communications.

To handle this challenge, Choi et al. [42] has proposed a
hybrid (wired+wirelss) NoC architecture for heterogeneous
CMPs which specifically targets the training phase of DNNs.
In the proposed architecture, as the CPU to the memory
controller (MC) communications are latency-sensitive, this
type of data exchange is carried out through the single-hop
wireless interconnects. On the other hand, with the combina-
tion of wireless and wired interconnects, throughput-sensitive
GPU-CPU data exchange is handled. Also, to further boost
the chip’s performance of the chip, the weight transmission
process to all PEs is done by broadcasting through wireless
links. The energy-efficient and high-performance weight trans-
missions prevent PEs from starvation.

In order to boost the performance and power-efficiency of
communication in massive parallel accelerators platforms and
consequently speeding up the DNNs execution, a dual-layer
(i.e., data network and weight network) on-chip network has
been proposed in [43]. In this architecture, the input and
output neurons are transmitted through a modified wired mesh
network, and the kernel weights are transmitted through the
mm-wave wireless weight network, which incorporates small-
world topology [44]. In this study, reconfigurable dataflow
management and scheduling process is done based on the
data reuse pattern of applications, which leads to efficient
data movement through the wired and wireless network layers.
Moreover, among various emerging technologies, wireless
NoC proposes a promising perspective to address the perfor-
mance, power consumption, and routing problems of planar
metal interconnections [121].

C. Optical Interconnects

Machine learning models have became the dominant work-
load in data centers, and the size of these models is rapidly
growing. To meet the high accuracy demands, training these
models is challenging. Therefor, the compute-intensive train-
ing phase of DNNs needs to better utilize parallel computing
to accelerate the training process. However, as mentioned
before, the interconnection network plays a critical role, so its
bandwidth needs to be sufficiently scaled up to support the
high level of parallelism. To this end, the integrated optical
interconnects could deliver the required I/O and also memory
bandwidth [45].
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To reduce the cost of communication, and consequently
reach a power-efficient, thermal-aware, and scalable DNN
accelerator, Bernstein et al. [46], has proposed a digital opti-
cal neural network (DONN), which benefits from intra-layer
optical interconnects. In DONN, which focus on inference
tasks, thanks to the near path-length-independence of optical
energy consumption, the information locality is achieved as a
single transmitter that can deliver data to multiple arbitrarily
arranged receivers. This fast and energy-efficient data delivery
enables high design flexibility and hence bypass scalability
limitations.

V. FUTURE RESEARCH

While a large body of research has studied different aspects
of interconnects in NN accelerators, there are still several
challenges that need to be addressed in future research.

1) Designing Non-Mesh Topology for NN Accelerator
Interconnects: While mesh-based interconnects are a
common option for hardware accelerators, they impose
a high communication latency, especially on PEs that
are far from each other. This increased latency has a
detrimental impact on the performance of NN acceler-
ators, where a huge number of parameters need to be
transferred from one PE to others, usually in the form
of multicast traffic. Therefore designing new intercon-
nects based on a combination of topologies or propos-
ing new interconnect topologies is a fruitful future
research direction that can yield promising results.
Moreover, extending the use of reconfigurable intercon-
nects can also remarkably improve the performance of
NN accelerators.

2) More Sophisticated Interconnects for Non-ASIC Accel-
erators: While ASIC accelerators are believed to provide
more energy-efficiency than other accelerators, the non-
ASIC accelerators such as FPGAs and GPUs are widely
used because of their advantages such as easy pro-
gramming, scalability, and extreme parallelism. Hence,
more sophisticated interconnects that consider the spe-
cial features of such accelerators e.g., huge memory and
a large number of SMs in GPUs or reconfigurability
of FPGAs, is needed to be developed. These special
interconnects can help to improve the performance and
energy-efficiency of accelerators significantly by lever-
aging the aforementioned features.

3) Power/Energy-Aware Interconnects for Embedded
Processors: Embedded processors are the prevailing
option for designing hardware devices of emerging
computing paradigms such as IoT and Edge, and these
paradigms are widely used for NN-based applications
such as real-time image classification or object
detection. Due to special conditions of the working
environment, a large portion of IoT/Edge devices
are either battery-enabled or use energy harvesting.
Therefore, the power/energy consumption is a key
parameter in the design of such devices, even more
essential than performance. Literature review reveals
that previous works have not paid enough attention
to the design of embedded processors’ interconnect.
Moreover, the ones that considered such processors are
mostly interested in improving the performance and pay
little, if any, attention to power/energy efficiency. Future
works should consider the power/energy consumption
of interconnects when proposing new architectures for

embedded processors, instead of sole consideration of
performance.

4) Enabling High Bandwidth Interconnect for In/Near-
Memory Processing: In-memory processing and near-
memory processing are two emerging solutions for
mitigating the impact of memory wall on the perfor-
mance of hardware accelerators, including NN acceler-
ators, that have achieved promising results. They can
successfully narrow the gap between processing speed
of PEs and access speed of memory. However, recent
approaches devised for NN accelerators cannot take
full advantage of capabilities provided by processing in
memory technologies because the interconnect acts as
a bottleneck that renders the performance of entire NN
accelerators low. To leverage the potential of emerging
memory technologies and maximize the performance of
NN accelerators, the challenge of interconnects has to
be addressed properly in future works.

5) Leveraging approximate computing to boost the perfor-
mance and energy-efficiency of on-chip interconnects:
In computing systems, errors can be manifested due to
many reasons and can affect the quality of computation
results and consequently, the reliability of the system.
In order to find a solution to mitigate these prob-
lems, approximate computing has emerged as an attrac-
tive computation model by compromising accuracy for
gains in both performance and energy-efficiency [122].
Approximate computing relies on the ability of applica-
tions and systems to tolerate the imprecision of compu-
tation results [123]. Specifically, for DNNs, as a modern
state-of-the-art application, it has been shown that they
are inherently resilient to errors. Thanks to this feature,
a broad set of research studies have employed approx-
imate computing techniques to DNNs [124], [125].
By this way, the energy and performance of such sys-
tems can be effectively improved by running in the
presence of errors without sacrificing their classification
accuracy. By taking advantage of the error-resilient
characteristic of DNN models, most commonly-used
on-chip communication systems can be evaluated and
subsequently redesigned to achieve energy-efficiency
and performance gains. To provide high-performance
and energy-efficient data delivery, exploring hardware
approximation techniques for high-performance NoCs
is crucial. In this regard, emerging on-chip intercon-
nect technologies such as photonics, wireless, and 3D
interconnects have the potential of taking the advantage
of inherent error resilience of DNNs, thanks to their
higher bandwidth and power-efficiency. Besides, some
other characteristics of DNNs applications like repeated
data patterns and low accuracy requirement of input
data could reduce the communication traffic load in
NoCs [126].

VI. CONCLUSION

With the proliferation of NNs, and especially DNNs, design-
ing hardware accelerators for them are thriving. To improve
the performance and deploy DNNs flexibly, the reconfigurable
interconnect was proposed and considered with various topolo-
gies on the DNN design On the other hand, interconnection
design is also gaining more attention in emerging computing
paradigms such as near/in memory processing that aims to
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conquer the memory wall challenge. To prevent intercon-
nection from becoming the bottleneck in such computing
paradigms, there is need for more advanced designs that can
provide extremely high bandwidth for communication among
different elements of NN accelerators. Emerging technologies
such as wireless and optical interconnections can also be
employed to tackle the disadvantages of conventional wired
interconnections.
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