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Abstract— Mixed-signal machine-learning classification has
recently been demonstrated as an efficient alternative for clas-
sification with power expensive digital circuits. In this paper,
a single-MOSFET analog multiplier is proposed for classifying
high-dimensional input data into multi-class output space with
less power and higher accuracy than state-of-the-art mixed-signal
linear classifiers. A high-resolution (i.e., multi-bit) multiplication
is facilitated within a single-MOSFET by feeding the features and
feature weights into, respectively, the body and gate inputs. High-
resolution classifier that considers the decisions of the individual
predictors is designed at 180 nm technology node and operates
at 100 MHz in near/subthreshold region. To evaluate the perfor-
mance of the classifier, a reduced MNIST dataset is generated
by downsampling the MNIST digit images from 784 features to
48 features. The system is simulated across a wide range of PVT
variations, exhibiting average accuracy of 92% (2% improve-
ment over state-of-the-art), energy consumption of 67.3 pJ per
classification (over 8 times lower than state-of-the-art classifiers),
area of 27,570 µm2 per binary classifier, and a stable response
under PVT variations. Finally, to provide ground for future work
on ultra-low-power deep and convolutional networks, scalability
and robustness of the proposed multiplier is evaluated with a
convolutional neural network on CIFAR-10. Similar classification
accuracy with digital and SMART hardware has been observed.
All the code and simulation files are available at an online
public GitHub repository, https://github.com/faridken/SMART-
Multiplier-for-ML.

Index Terms— Machine learning hardware, mixed-signal clas-
sifiers, high resolution, high-dimensional data, multi-class classi-
fication, linear classifiers, subthreshold, ensemble learning.

I. INTRODUCTION

ENABLING on-device near-sensor machine learning (ML)
compute on power limited devices has the potential

to shift paradigms in smart applications. Relevant devices
include but not limited to difficult-to-reach sensors powered
by energy harvesting; smart and battery-powered devices
that execute always-on applications; unplugged devices that
can run on batteries for years. While such devices cannot
afford the computational power needed for executing advanced
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ML architectures, power efficient execution of linear ML
algorithms on such devices is highly desired. Yet another
interesting application of those simpler, yet highly efficient
ML architectures, is understanding biological behavior and
particularly the brain. The goal is to gain considerable insight
into the neural structures through in-circuit modeling of bio-
logical systems [1]–[3]. A primary limitation of this research
is the power consumption of ultra-large-scale ICs. Inventing
extremely compact and power efficient, ML-dense ICs is
therefore a primary goal. Finally, tinyML (a fast-growing field
of study at the intersection of ML and Embedded Systems [4])
explores the tremendous potential of ultra-low-power ML
hardware to unlock an entirely new class of smart applications.
Many of the most recent works in this field are looking into
non-NN architectures and simpler datasets due to their low
compute and memory requirements [5].

Existing on-chip classifiers can be categorized into two
major domains: digital and mixed-signal [6]. A digital classi-
fier is typically fed with binary inputs (i.e., features) and uses
binary feature weights, all obtained by sampling and quantiz-
ing corresponding analog signals. The classification accuracy
with digital classifiers increases with the increasing number of
bits assigned for features and weights. These highly accurate
digital classifiers however exhibit significant power consump-
tion and physical size and are often not suitable for power
limited applications, such as battery powered sensors and those
other edge devices that are wirelessly powered and powered
from harvested energy. Alternatively, mixed signal classifiers
aim to reduce the area and power consumption of the conven-
tional digital classifiers by directly using the analog input data
for classification [7]. The inherent need for data conversion
with power hungry analog-to-digital converters (ADCs) is
therefore mitigated with mixed-signal classifiers [7].

Recent state-of-the-art mixed-signal classifiers typically
exhibit accuracy of 90%-99% and the overall energy con-
sumption in the range of hundreds of picojoules to hundreds
of nanojoules per decision for typical image recognition
datasets [7]–[13]. Emerging device technologies are also being
considered for providing power and area efficient alternatives
for the conventional CMOS based classifiers [14]. Accuracy
of 90% and energy of 25 pJ per decision has been recently
reported in [15], [16].

To enable high-resolution (i.e., multi-bit) feature-weight
multiplication, a theoretical framework that comprises circuits,
models, heterogeneous design framework, and linearization
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Fig. 1. Schematic of the proposed single MOSFET multiplier. Features
and feature weights are fed into, respectively, the body and gate input of
the individual MOS transistors and a current corresponding to the feature-
weight multiplication is generated. The 4-bit digital multiplier is shown for
comparison.

flow is proposed. To the best of the authors knowledge, this
paper is the first to report a mixed-signal high-resolution
classifier, utilizing MOSFET body terminals. The schematic of
the proposed SMART multiplier is shown in Fig. 1. A typical
digital multiplier is also shown in the figure for comparison.
With this approach, body bias of the MOSFETs is controlled
by the individual ML features, the gate inputs are fed by the
absolute value of a corresponding feature weights, and the
sign of the weight is considered with separate lines for the
positive and negative feature and feature weight product. M-
class classification with N features is therefore realized with an
N-row K -column multiplication and accumulation (MAC)
array, where each column serves as an independent binary
classifier. These individual binary classifiers are combined
using one-versus-one technique [17], requiring K = M(M −
1)/2 binary classifiers in total. While body bias has previously
been used to enhance IC characteristics (i.e., in memories,
amplifiers, and signal converters [2], [18]–[22]), exploiting
body bias for enhancing on-chip multiplication and machine
learning is novel. A primary advantage of the single-MOSFET
multiplier configuration is the low sensing line capacitance,
yielding low power consumption and high multiplication rate.

Another primary contribution is the heterogeneous design
framework for ensemble learning. With this framework, the
learning algorithms and ML hyperparameters are individu-
ally adjusted for each binary classifier based on an auto-
mated close-loop SPICE-Python feedback, enhancing the
overall classification accuracy and resilience to PVT varia-
tions. With the heterogeneous approach, the individual binary
classifiers are trained with unique algorithms and hyperpara-
meters, addressing the inherent heterogeneity of typical multi-
dimensional data. The preferred algorithms and corresponding
hyperparameters are determined iteratively based on the feed-
back from SPICE simulation shell. Note that the heterogeneous
training is a generic approach which can be utilized with
any dataset. For a different dataset, maximum classification
margin is achieved with a different set of training algorithms

and hyperparatemers. The dataset-specific weights are stored
within the memory and no additional hardware and/or hard-
ware modification is required to enable the ensemble learning
(see Section IV).

Finally, the proposed system is designed in
near/subthreshold region, exhibiting a power efficient
alternative for the traditional classifiers. The classifier is
demonstrated at circuit level in SPICE with the Modified
National Institute of Standards and Technology (MNIST)
dataset [23] of 10-class digit images. Based on the simulation
results, MNIST data is classified with 92% accuracy and
67.3 pJ per decision.

The rest of the paper is organized as follows. In Section II,
the proposed high-resolution binary classifier and linearization
technique are described. Fabrication considerations are also
discussed in this section. Based on the proposed binary clas-
sifier, a multi-class high-resolution classifier is designed and
demonstrated with MNIST dataset, as described in Section III.
The proposed heterogeneous framework for enhancing clas-
sification accuracy of the multi-class classifier is described
in Section IV. Circuit design and simulation results of the
multi-class SMART classifier using one-versus-one technique
are presented in Section V. The scalability and robustness
of the SMART multiplier is evaluated in Section VI with a
convolutional neural network (CNN) on CIFAR-10 dataset
as a ground for future work. The paper is summarized in
Section VII.

Circuit design and simulation results of the multi-class
SMART classifier using one-versus-one technique are pre-
sented in Section V. The paper is summarized in Section VII.

II. THE PROPOSED LINEAR BINARY CLASSIFIER

In this section, the proposed linear binary classi-
fier is described. The software level design framework
is explained in Section II-A. The circuit, linearization
flow, and fabrication costs are presented in, respectively,
Sections II-B, II-C, and II-D.

A. Design Framework

Reliability, power consumption, and physical size of on-
chip classifiers are all primary concerns in modern ML ICs.
The proposed framework is designed to meet accuracy speci-
fications of modern classification problems in a cost effective
manner. Linear algorithms are exploited in this paper for
training a supervised binary classifier, optimizing the system
for linearly separable input data.

With a multivariate linear classifier, the system response Z is
a linear combination of N input features x = (x1, x2, . . . , xN )
and model weights w = (w1, w2, . . . , wN ),

Z =
N∑

i=1

wi · xi , Z ∈ R. (1)

The model weights are determined during supervised train-
ing by minimizing the prediction error between the system
response, Z , and a corresponding true value in the labeled
training dataset. A combination of common supervised linear
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Fig. 2. Handwritten digits from MNIST dataset, (a) original image (default
resolution with 28 × 28 pixels = 784 features), (b) downsampled image
(9 × 9 pixels = 81 features), and (c) 48 features determined using SBS
feature selection algorithm.

ML models (i.e., logistic regression, passive-aggressive regres-
sion, perception, and linear support vector machine) is used
to evaluate the performance of the heterogeneous SMART
classifier. In inference, a probability threshold of 0.5 is used for
predicting system response to input data, exhibiting a simple
on-chip implementation,

ŷ = sign(Z) = sign(
∑N

i=1
wi · xi ) =

{
1, Z ≥ 0

−1, Z < 0.
(2)

The accuracy of the classifier is evaluated as a percentage
of all the correct predictions out of the total number of test
predictions. The proposed ML flow and the preprocessing
steps are explained below.

1) Dataset: MNIST database is a large image dataset, com-
monly used for evaluating the effectiveness of ML hardware.
MNIST contains images of 70,000 handwritten digits, ranging
between 0 to 9. Each digit comprises 784 (28 × 28) image
pixels. The training and test datasets comprise, respectively,
60,000 and 10,000 digits. Out of the 60,000 training obser-
vations, 45,000 and 15,000 digits are used for, respectively,
training and validating the proposed system.

2) Feature Selection and Downsampling: Each image pixel
of the individual digits in the training set is considered as
an ML feature and used for training the classifier. To reduce
the power and area overheads, those redundant features
that are not essential for digit classification are eliminated.
A typical feature selection flow (see [7], [8]) is utilized for
a fair overhead comparison. In both [7] and [8], the raw
images have been low-pass filtered and downsampled from
784 to 81 features. In addition, the number of features in [7]
has been further reduced to 48 using Fisher’s criterion [24].
Higher number of features (i.e., 81) has been used in [8]
to compensate for the accuracy loss due to 1-bit resolution
feature weights. In SMART classifier, the images are also
filtered and downsampled to 81 features. The number of
features is further reduced to 48 with the sequential backward
selection (SBS) algorithm [25]. Finally, a various number of
meaningful features is selected from the pool of 48 features
for the individual binary classifiers within the heterogeneous
framework. The original, downsampled, and 48-feature images
of digit 7 are exemplified in Fig. 2.

Fig. 3. SMART binary classifier, (a) the transistor level circuit diagram,
(b) equivalent RC model, and (c) simplified RC model.

B. Circuit Level Considerations

The primary goal in a linear binary classification is to accu-
rately and efficiently perform the dot product operation of the
features and feature weights, as described in (2). To simplify
the circuit level design, the system response is reformulated as
the signed addition of positive, Z+, and negative, Z−, feature-
weight products,

ŷ = sign(

Z+︷ ︸︸ ︷∑
wi>0

xi · wi +
Z−︷ ︸︸ ︷∑

w j <0

x j · w j )

=
{

1, | Z+ |≥| Z− |
−1, | Z+ |<| Z− | .

(3)

The individual positive and negative feature-weight prod-
ucts are accumulated within the positive, V +

sen , and negative,
V −

sen , sensing lines, yielding the basic ML MAC operation,
as shown in Fig. 3(a). To enable a single feature-weight
multiplication, a MOSFET is connected to each of the pos-
itive (i.e., Mpi ) and negative (i.e., Mni ) sensing lines. The
body terminals of the transistors in the i th row (Mpi , Mni )
are connected to the corresponding feature (i.e., Xi ). One
of the two transistors is deactivated through the grounded
gate terminal. The gate terminal of the other transistor is
connected to the feature weight (i.e., Wi ), as determined by the
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feature weight sign,

(
Wpi , Wni

) =
{

(|Wi |, 0) , Wi > 0

(0, |Wi |) , Wi < 0.
(4)

Note that during each classification period only one MOS-
FET within each row is active. The other MOSFET is added
to enable dynamic weight update in reconfigurable classifiers.

Intuitively, transistors with Xi = 0 or Wi = 0 should
not induce a voltage drop on the sensing lines. To mitigate
the current flowing through those transistors with Wi �= 0
and Xi = 0, the source terminals of the individual MAC
FETs are shorted to VD D/2, resulting in a negative bulk-to-
source voltage, VBS = −VD D/2, for Xi = 0. As a result, the
threshold voltage is increased and the transistor is closed (for
example, Vth(VBS = −0.9V ) = Vth(VBS = 0V ) + 0.9 V =
0.48 V + 0.9 V ≥ VGS for selected range of the VGS values
in 180 nm technology node with power supply of 1.8 V). With
this configuration, no current flows through a MAC FET with
either Wi or Xi is grounded.

The classifier has two operating modes: precharge and
classification. During precharge (i.e., PRE = 0), the sensing
lines are precharge to VD D. Alternatively, during the clas-
sification mode (i.e., PRE = 1), the lines are discharged
by the transistors connected to the line, exhibiting a voltage
drop corresponding to the magnitude of the feature-weight dot
product.

The effective impedance of the MAC transistors and sens-
ing lines plays a significant role in classification accuracy.
To better understand the relation between the impedance
parameters, consider an RC model of the circuit as shown
in Fig. 3(b). Each transistor is modeled by its equivalent
resistance (i.e., Ri ), as determined during the classification
period. Note that the resistance of each transistor is controlled
by the gate and body biases (Ri = f (VGSi, VBSi)). The total
resistance as seen from a sensing line is therefore,

Rtot = R1||R2 . . . ||RN

= f (VGS1, VBS1)|| f (VGS2, VBS2)|| . . . || f (VGS N , VBS N )

= f (W1, X1)|| f (W2, X2)|| . . . || f (WN , X N ), (5)

where N is the total number of features. Alternatively, the
total capacitance of a line is dominated by the interconnect
capacitance, Cline , and the MOSFET gate capacitance, CG0,

Ctot = N × (Cline0 + CG0), (6)

where Cline0 is the capacitance of the line per feature. The
model is simplified, as shown in Fig. 3(c), exhibiting for each
sensing line the voltage drop,

Vdrop(t) = VD D

(
1 − exp

( −t

RtotCtot

))
. (7)

where t is the time since the start of the classification mode and
the time constant RtotCtot is the discharge rate, as determined
by (5) and (6). Note that while the width, W , of the indi-
vidual MAC transistors only weakly affects the Vdrop in (7)
(i.e., RtotCtot ≈ W/W = 1), the biases of the individual
transistors primarily affect the classifier resistance, but not
the capacitance. To accurately classify data with an intrinsic

Fig. 4. Linearization flow. To account for the non-linear dependence of
the drain current on the body bias, Isub ∝ √

Vbs , the model is trained to
make predictions based on the square root values of the original features. The
optimized weights are logarithmically adjusted, mitigating the exponential
dependence of the near/subthreshold current on the gate bias.

line capacitance, maximum permissible load (i.e., Rtot , Ctot )
is determined based on (5)-(7). Thus, low or high values
of Rtot (as determined by a combination of features and
weights) can negatively impact the classifier performance. For
example, if more than a single line fully discharges prior to
vote extraction, the prediction becomes random.

C. Linearization Flow

To provide a power efficient and scalable solution, the
transistors are biased in near/subthreshold operation region,
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significantly limiting the current through the sensing lines.
A primary concern with near/subthreshold operation is the
exponential dependence of the drain current on the body and
gate biases [26],

Isub = W

L
It exp(

Vgs − Vth

nVT
)[1 − exp(− VDS

VT
)], (8)

where It is the sub-threshold current at Vgs = Vth , n is the
sub-threshold slope, and VT is the thermal voltage. Note that
body voltage dependence is embedded in the threshold voltage,
Vth ∝ √

Vbs ,

Vth = Vth0 +
(√

2φ f − Vbs − √
2φ f

)
(9)

where Vth0 is the threshold voltage when Vbs = 0 V and 2φ f is
the surface potential of the silicon. Please note that the drain
current in weak inversion region is practically independent
of the VDS voltage for VDS � VT as the last term in (8)
approaches unity [26], thus, the expression in (8) can be
simplified as,

Isub = W

L
It exp(

Vgs − Vth

nVT
), VDS � VT . (10)

To mitigate the non-linear dependence of the drain current
on the weight-feature dot product (see (1)), a novel training
flow is proposed (see Fig. 4). To account for the square-
root dependence of the drain current on the bias voltage,
the model is trained with square root values of the default
features (xi → √

xi )). Thus, the extracted feature weights, w,
are optimized for classifying the MNIST dataset transformed
into half-order polynomial space. Alternatively, to account
for the exponential dependence of the drain current on the
gate voltage, the feature weights are logarithmically adjusted
(wi → ln(wi )), yielding Vgs ∝ ln(w). Based on the first-order
approximation of exp(

√
Vbs) ≈ 1 + √

Vbs , the current in this
case is expressed as,

Isub ∝ exp
(
ln

(
Vgs

))
exp

(√
Vbs

)
∝ Vgs

√
Vbs ∝ w

√
x . (11)

In inference, the current model is exploited for making
prediction based on the square root values of the original
features, as trained offline, yielding 92% accuracy across the
MNIST test set, as detailed in the following sections.

D. Fabrication Costs

In the proposed linear binary classifier, the body and gate
terminals are fed by, respectively, the input features and
corresponding feature weights. Each multiplication is, there-
fore, executed by a single-MOSFET, significantly reducing
the power and area costs (despite the overhead of the triple-
well technology) and complexity (as determined by number
of transistors) of the classifier in comparison to the existing
state-of-the-art mixed-signal classifiers [7]–[13].

Conventional twin-well fabrication process is illustrated
in Fig. 5(a). This process is designed to provide a single
voltage connection to all the n-type and p-type body terminals.
Alternatively, to independently control the body terminals of
the individual multipliers, a specialized fabrication process
is required. One way to independently bias numerous body

Fig. 5. Common fabrication processes with CMOS technology and
p-substrate, (a) twin-well process, and (b) triple-well process with p-substrate.

terminals, is with triple-well fabrication process (see Fig. 5(b)),
which is commonly used in high-performance, low-power
ICs [27], [28] and for reducing substrate noise in mixed-signal
circuits [29]. With a p-substrate triple-well process, an addi-
tional deep n-well is diffused to isolate the p-well diffusions
of the individual MOSFETs from the common p-substrate,
allowing an independent body terminal connection for each
MOSFET. The triple-well structure yields better noise charac-
teristics as compared with the traditional twin-well structure,
without increasing the gate leakage [30]. Alternatively, the
triple-well structure, exhibits additional fabrication costs and
area overheads due to requirements on the minimum width and
spacing of deep n-wells. The minimum permissible width and
spacing of deep n-wells for 180 nm PDK is, respectively, 3μm
and 5μm [31], resulting in five times larger area than with the
twin-well process. In this paper, the triple-well overheads are
determined based on transistor layout and considered as part
of the reported results.

III. SMART MULTI-CLASS CLASSIFIER

A multi-class classifier is designed based on the linear
binary classifiers, as presented in Section II. One-versus-
one (OVO) approach is preferred to address the integrity
of multi-class classification, as described in Section III.A.
The transistor level implementation of the proposed SMART
classifier is presented in Section III.B.

A. OVO Multi-Class Classification Scheme

Two typical approaches for designing a multi-class classifier
based on multiple binary classifiers are one-versus-one (OVO)
and one-versus-all (OVA) [32]. With OVA approach, each
binary classifier discriminates between a single class and the
rest of the classes. The required number of binary classifiers
with OVA increases linearly with the number of classes.
Alternatively, with OVO approach, all pairwise combinations
of the output classes are evaluated with the individual binary
classifiers. An M-class classification with OVO approach
requires M(M − 1)/2 binary classifiers. For classifying
MNIST dataset (M = 10) with OVO approach, 45 i -verus- j ,
(i, j ∈ {0, 1, 2, .., 9}) binary classifiers are therefore required.
The final decision with OVO technique is extracted using
majority voting approach [33]: each binary classifier votes
independently for a certain class and the final decision is made
based on the class with highest number of votes.

While OVA is a more power and area efficient classification
scheme as fewer number of binary classifier needs to be
utilized (i.e., (M − 1)/2 times less), it typically exhibits
lower accuracy and poor performance under PVT variations
as compared to the OVO scheme. In this paper, OVO scheme



KENARANGI AND PARTIN-VAISBAND: SMART MULTIPLIER FOR MACHINE LEARNING CLASSIFICATION 821

Fig. 6. Voltage waveforms of the sensing lines during the precharge (i.e., (0, 6), (10, 16), and (20, 26) nanosecond time intervals) and classification stages
(i.e., (6, 10), (16, 20), and (26, 30) nanosecond time intervals) for three consecutive input features (i.e., 7, 2, and 1). The votes extracted during each period
are shown below the waveforms.

is preferred over OVA to maximize the classification accuracy.
The vote for each binary classifier i -verus- j (i.e., vote(i, j))
is determined based on the relative difference of the voltage
drops across the corresponding positive (i.e., �V +

sen(i, j)) and
negative (i.e., �V −

sen(i, j)) sensing lines,

vote(i, j) =
{

1, �V +
sen(i, j) > �V −

sen(i, j)

0, �V +
sen(i, j) < �V −

sen(i, j).
(12)

To extract the classifier vote at the circuit level, a sensing
amplifier is designed, as described in the next subsection.

B. Circuit Level Design and Simulation Results

The proposed multi-class classifier is designed in SPICE
and demonstrated based on the reduced MNIST dataset. The
OVO circuits and the architecture of the MOSFET array are
described in this section.

1) MAC Array: To classify the downsampled MNIST digits,
45 binary classifiers (see Section II) are co-designed in SPICE,
yielding a MAC array of at most 48 × 45 simultaneously
activated transistors. Each of the transistors within the MAC
array is exploited for generating a single feature-weight prod-
uct. During inference, the V +

sen and V −
sen lines are precharged

to VD D prior to each prediction. All the input features and
feature weights are connected simultaneously to, respectively,
the body and gate terminals of the individual multiplier transis-
tors, facilitating a parallel classification process within all the
45 binary classifiers. As a result, 45 × 2 different voltage drop
values (i.e., �V +

sen(i, j), �V −
sen(i, j), i, j = 0, 1, . . . , 9) are

generated on the individual sensing lines, as shown in Fig. 6.
The voltage waveforms of the positive and negative sensing
lines are illustrated by, respectively, the blue dotted and solid
red lines. These voltage drops are sensed with a comparator
to generate the classifier decision (i.e., vote). The obtained



822 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

Fig. 7. (a) Schematic of the vote extractor. (b) The votes of the i-vs- j binary
classifier are exemplified for i = 4 and j = 9.

votes for each classification period (as determined based on
(12)) are also shown in Fig. 6 for each binary classifier.
Finally the predicted digit is determined based on the digit
with highest number of votes. For the examples shown in
Fig. 6, the digits 7, 2, and 1 exhibit the highest number of
votes (i.e., 9, 9, and 9), resulting in three correct predictions.

2) Vote Extractor: To extract the vote of each binary classi-
fier, a sensing amplifier (i.e., vote extractor) is designed [34].
The schematic of the vote extractor for a multi-class classifi-
cation is presented in Fig. 7(a). For a M-class classification,
M(M − 1)/2 vote extractors are required, yielding a total
of 45 extractors for the MNIST dataset (M = 10). Each
vote extractor compares the voltage levels of the positive and
negative sensing lines (V +

sen(i, j) and V −
sen(i, j)) and identifies

the line with higher voltage drop, as shown in (12).
Initially (i.e., E N = 0), the outputs (i.e., vote(i, j) and

vote(i, j)) are precharged to VD D by the pull-up network
(i.e., M1 and M2). During the voting stage (i.e., E N = 1), the
pull-down network (i.e., M3 and M4) is activated. Depending
on the relative strength of the signals at the gate terminals
of the pull-down network (i.e., V +

sen(i, j) and V −
sen(i, j)), M3

sinks higher or lower current than M4. Finally, the current
difference is sensed by the back-to-back inverter (i.e., M5, M6,
M7, and M8) and the vote is generated. For example, if the
voltage on the positive sensing line is higher than the voltage
on the negative sensing line, the left branch (i.e., M3) will

Fig. 8. Schematic of the (a) memory unit, and (b) the resistive voltage
divider.

sink higher current, forcing the left (i.e., vote(i, j)) and right
(i.e., vote(i, j)) branches to, respectively, 0 and VD D. Voltage
waveforms of the sensing lines, E N signal which enables voter
extractor, and output signals are illustrated in Fig. 7(b) for six
consecutive classification periods.

3) Resistive Voltage Divider: The quantized features and
trained feature weights are stored in Master-Slave Flip-Flops
(MS-FF), as shown in Fig. 8(a). To generate the quantized
voltage levels for features and feature weights, resistive voltage
dividers are utilized as shown in Fig. 8(b) [35]. Poly resistors
(R = 100�) with sheet resistance of 7.5 �/� are utilized
within the resistive voltage dividers. In this configuration, the
preferred voltage range [Vlow, Vhigh ] is divided into 2n − 1
equal steps, where n is the preferred quantization resolu-
tion. Multiplexers are designed between the resistive voltage
divider and MS-FF memory to enable system reconfigurability
(see Fig. 9(a)).

To reduce the power consumption of the classifier and the
overall load on the sensing lines, the MAC array is biased
in near/subthreshold region. To satisfy this condition, the
maximum gate-source voltage, VGS , is limited by the threshold
voltage (i.e., Vth = 0.48 V) for all the MAC array transistors.
To quantize the feature weights with a step size of 20 mV,
4-bit resolution is considered, limiting the minimum VGS to
Vth − (24 − 1) × 20 mV = 0.18 V (i.e., 0.18 V ≤ VGS ≤
0.48 V). Note that the source terminals are shorted to VD D/2
(i.e., VS = 0.9 V), limiting the gate voltage to 1.08 V =
0.18 V + 0.9 V ≤ V G ≤ 0.48 V + 0.9 V = 1.38 V, as shown
in Fig. 9(b). Similarly, the 4-bit resolution is considered to
quantize the features with a step size of 40 mV, limiting the
body bias to 0.9 V ≤ VB ≤ 0.9 V+ (24 −1)×40 mV = 1.5 V,
as shown in Fig. 9(c).

IV. THE PROPOSED HETEROGENEOUS

CLASSIFICATION FRAMEWORK

The power and area efficient, mixed-signal classifiers
typically exhibit high sensitivity to circuit nonidealities
and variation sources that can negatively impact the
performance. To enhance the classification performance,
a hardware/software co-optimization framework is proposed.
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Fig. 9. Signal quantization with DAC, (a) schematic of the circuit, comprising
a resistive voltage divider, multiplexer, and memory, (b) quantized feature
weights, as observed at a DAC output, and (c) feature voltage levels,
as observed at another DAC output. The 4-bit resolution yields 40 mV and
20 mV voltage steps for, respectively, the features and feature weights with
the selected signal ranges.

The framework exploits ensemble learning to increase the
classification noise margins, minimizing the system sensitivity
to variations. The unique optimization of the number of
features, ML algorithm, and hyperparameters for each binary
classifier is further motivated by the independence of the votes
of the individual binary classifiers with the OVO scheme. The
optimization process is described in the following subsections.

A. Optimizing the Number of Features

The pairwise digit classification is performed with 45
binary classifiers. The complexity of the classification task
varies from one binary classifier to another. For example, the
complexity of the 8-vs-9 classification is high due to visual
similarity of “8” and “9,” as determined by the low data
variance between these digits. Alternatively, the digits “0” and
“4” exhibit higher data variance and are easier to discriminate,
yielding a lower classification complexity. The number of
features required for an accurate binary classification therefore
increases with the higher complexity of the classification task.
The number of preferred features (up to 48, as determined with
the SBS algorithm), is shown in Fig. 10 for each binary clas-
sifier. For a binary classifier i -vs- j , this number is determined
as the minimum number of features required to discriminate
between the digits i and j without accuracy degradation
(as compared to classification with 48 features). The rate of
accuracy degradation with smaller number of features varies
among the binary classifiers, yielding a different minimum for
each classifier, as exemplified in Fig. 11.

B. Optimize the ML Parameters

The SMART binary classifiers are designed to perform
feature-weight dot product (see (1)). Any ML algorithm that

Fig. 10. Number of selected features for each binary classifier (i.e., i-vs- j),
increasing in the clockwise direction. Visually similar digits (e.g., 8-vs-9)
require more features than easily distinguishable digits (e.g., 0-vs-4).

Fig. 11. Accuracy curves and minimum number of features. The preferred
number of features (yielding the 48-feature accuracy) is shown for, (a) high
complexity (8-vs-9), and (b) low complexity (0-vs-4) classification.

is based on (1) can be exploited within a SMART classifier
to train the weights. Examples of SMART compatible ML
algorithms are logistic regression (LR), passive-aggressive
regression (PAR), perception (PER), and linear support vector
machine (LSVM) [36]. With mixed-signal multi-class clas-
sifiers, all binary classifiers are typically trained with the
same ML algorithm. Alternatively, with the proposed design
framework, a preferred learning algorithm is individually
determined for each classifier, maximizing the classification
margin and noise resilience. A pool of learning algorithms
(i.e., logistic regression, passive-aggressive regression, percep-
tion, and linear support vector machine) and hyperparameters
(i.e., regularization penalty (α), regularization rate (λ = 1/C),
and loss function (L1, L2, and Hinge) [36]) is considered.
The preferred training algorithms and hyperparameters are
determined for each binary classifier based on the proposed
iterative Python-SPICE simulation framework, as listed in
Fig. 12.

Note that the effect of hyperparameters on classifier perfor-
mance is different for circuit level simulation with quantized
feature weights and Python simulation on a conventional
digital platform with floating point (FP) weights. In particular,
loss function and regularization rate guide the distribution of
the feature weights and consequently, the accuracy degradation
due to feature weight quantization [37]. With digital accel-
erators, classifier’s generalization capacity increases with the
increasing regularization up to the point of underfitting the
data. Thus, a preferred regularization rate exists, yielding max-
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Fig. 12. ML algorithms and hyperparameters as determined within the heterogeneous design framework. The cells are shaded based on the individually
selected ML algorithms. The first value in each cell is the loss function (L1, L2, or Hinge). The second value is the regularization parameter (α or C = 1/λ).

Fig. 13. Accuracy tradeoffs between regularization and quantization.
(a) Feature weights extracted for the 5-vs-6 classifier with different values
of regularization rate (λ = 1/C) in floating point (FP) format. (b) Lower
regularization yields higher classification accuracy with FP weights (97.8%
> 97.2%). (c) Higher regularization yields higher classification accuracy with
quantized weights (97.2% > 97%).

imum accuracy with FP weights. However, when quantized,
majority of similar weights are mapped into the same values,
exhibiting suboptimal utilization of the available weight range.
Alternatively, moderately underfitted FP models (with low-
variance weights at higher regularization rates) yield a higher
number of distinguishable weights when quantized over a fixed
weight range. Thus, the optimum regularization rate tends to
be higher with quantized weights than the optimum rate with
FP weights.

To illustrate the quantization-regularization tradeoff, con-
sider the 5-vs-6 binary classifier trained with logistic regres-
sion and various regularization rates, λ = 1/C . FP and 4-bit
quantized weights and the respective accuracies in Python and
at the circuit level are shown in Fig. 13. While the training with
λ = 103 yields highest accuracy in Python (see Fig. 13(b)),
higher regularization (λ = 104) is preferred for maximizing
the accuracy at the circuit level (see Fig. 13(c)).

Fig. 14. Schematic of the proposed classifier, comprising memory, voltage
divider, multiplexer, MOSFET array, and vote extractor.

V. RESULTS

A. System Characteristics

A schematic of the integrated system is illustrated in Fig. 14,
comprising memory, resistive voltage divider, multiplexers,
MAC array, and vote extractors. The proposed SMART clas-
sifier is designed using the 180 nm PDK in Cadence Virtuoso
with the nominal power supply voltage of 1.8 V and threshold
voltage of 0.48 V. The body and gate terminals of the MAC
array are biased at voltage levels of, respectively, [0.9 V, 1.5 V]
and [1.08 V, 1.38 V]. The area occupied per binary classifier is
27,570μm2, as estimated based on transistor count in SPICE.
The MAC array comprises a total of 48 × (45 × 2) = 4, 320
MOSFETs. The reduced MNIST dataset, as shown in Fig. 10 is
classified with 92% accuracy within a single 10 ns clock cycle
of the system operation, exhibiting no accuracy degradation
as compared with the validation accuracy in Python. The
confusion matrices obtained based on Python and SPICE sim-
ulations are shown in, respectively, Fig. 15(a) and Fig. 15(b),
exhibiting equal accuracy of 92%. No performance degrada-
tion due to quantization and linearization is therefore observed.
The ML classifier generates predictions at 100 MHz frequency,
exhibiting an average energy consumption of 67.3 pJ per
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TABLE I

SYSTEM CHARACTERISTICS OF THE PROPOSED AND OTHER EXISTING MIXED-SIGNAL ML CLASSIFIERS

Fig. 15. Confusion matrix of the MNIST classification obtained in (a) Python
(92% accuracy), and (b) SPICE (92% accuracy), exhibiting no accuracy
degradation in SPICE as compared with Python results.

classification of a single digit. To maintain high prediction
accuracy, four bits are assigned for quantizing, the feature
weights and input features. By increasing the dimensionality
of the proposed classifier, lower power and area overheads can
be traded off for higher prediction accuracy, approaching the
theoretical limit of 94% for MNIST classification with linear
ML algorithms and OVO decisioning scheme. The power
and area overhead breakdown of the SMART classifier is
illustrated in Fig. 16.

B. Simulation Results

Performance characteristics are listed in Table I for the
proposed system along with the existing state-of-the-art mixed-
signal classifiers [7]–[13]. To the best of the authors’ knowl-
edge, MNIST classification accuracy with SMART classifier
is higher by 2% than the classification accuracy with any
reported mixed-signal linear classifier [7], [8]. Benefiting from
the single MOSFET multiplication, SMART classifier exhibits

Fig. 16. The overhead with the SMART classifier, (a) physical area is
dominated by memory and MUXs, and (b) power is primarily dissipated by
the memory, MUXs, MAC array, and resistive voltage dividers (ResVDs).

significantly less MAC transistors and sensing line capaci-
tance, resulting in over an order of magnitude lower power
consumption, as compared with the state-of-the-art classifiers.
The operational frequency is scalable and can be adjusted
based on application needs and constrains. For fair compari-
son, the overall electric charge (current × time) per decision
is also shown in Table I. The electric charge per decision is
eleven times lower with SMART classifier as compared with
other approaches. Owing to the significantly lower transistor
count and otherwise typical size of the auxiliary circuits,
the proposed classifier is expected to exhibit favorable size
characteristics as compared to other similar systems. To avoid
a biased comparison between the size of systems demonstrated
at transistor level and in-silicon, estimated area characteristics
are not included in Table I. Additionally, to avoid bias towards
the selected ML algorithm, electric charge per MAC is also
included in Table I. A comparison of the electric charge per
MAC, speed, and accuracy for the proposed and state-of-the-
art classifiers is shown in Fig. 17.
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Fig. 17. Electric charge per MAC, classification speed, and accuracy of the proposed and state-of-the-art classifiers.

Fig. 18. Classifier performance under PVT and corner variations(
1.62 V < VDD < 1.98 V,−30 ◦C < T < 125 ◦C

)
.

To evaluate the effect of process, voltage, tempera-
ture (PVT) and corner variations with the SMART classifier,
the supply voltage is varied between 1.62 volts and 1.98
volts (i.e., 10% variations) and the temperature is varied
between −30 ◦C and 125 ◦C across all the operating corners
(i.e., FF, FS, NN, SF, and SS). The effect of the com-
bined PVT, mismatch, and corner variations is evaluated with
a 500-run Monte-Carlo simulation on a randomly selected
1,000-observation (100 images per digit) balanced test set
with nominal accuracy of 92%. Note that a 500-run Monte-
Carlo simulation on the whole test set takes 500 × 0.5 hours
on Intel Core i7-7700 CPU. Based on the simulation results
(see Fig. 18), the classifier exhibits no sensitivity to PVT
variations at nominal corner (i.e., average accuracy is 92%).
Furthermore, less than 1% accuracy degradation is observed
at FF, FS, SF, SS corners. The accuracy degradation at fast
and slow corners is dominated by the MAC array. At FF
corner, the MAC transistors discharge the sensing lines at a
faster (than nominal) rate. In those FF cases when both the
positive and negative lines are depleted prior to vote extraction,
an erroneous result is recorded. Alternatively at SS corner, the
MAC transistors discharge the sensing lines at a slower (than
nominal) rate, exhibiting no sensible voltage difference at vote
time and thus, an erroneous classification result. To increase
the accuracy at FF and SS corners, real-time detection of the
operational corner and adaptive frequency scaling should be

considered (i.e., the classifier should be operated at higher and
lower frequencies at, respectively, FF and SS corners). Finally,
note that due to the comparative nature of the vote extraction
scheme, high resilience to noise is expected, similar to other
comparison-based classifiers [38].

VI. FUTURE WORK–SMART MULTIPLIER FOR

ADVANCED NN ARCHITECTURES

While linear classification with the proposed SMART mul-
tiplier is the primary objective of this work, evaluating the
SMART multiplier with various ML architectures and datasets
is of interest for future work. Particularly, the effectiveness
of SMART-based CNN in classification of CIFAR-10 dataset
is evaluated in this section. Please note that the objective in
this section is to provide ground for future work on ultra-
low-power deep and convolutional networks, rather than to
exhaustively demonstrate classification of CIFAR-10. To eval-
uate the robustness and scalability of the proposed framework,
the SMART multiplier is analytically modeled, and a CNN is
developed based on the model and tested on CIFAR-10 dataset.

Each SMART matrix multiplier comprises a single sensing
line and multiplier transistors connected to the sensing line.
To capture the technology-specific transistor behavior, a single
transistor is simulated in SPICE with various gate and body
biases and the resistance is extracted and interpolated. Sensing
line capacitance is assumed to be fixed, and the multiplier
transistors are connected in parallel. Thus, the total resistance,
capacitance, and the overall voltage drop on the sensing line
can be analytically determined based on the sensing line
voltage in (7) at any point of time, yielding the analytical
SMART multiplier model used to simulate SMART CNN
in this section. This model has been exhaustively simulated
for MNIST classification, yielding less than 2% deviation as
compare with SPICE simulation results.

Two operations often required by ML algorithms are con-
volution and fully connected (FC) operations. While a single
fully connected layer is utilized to classify the MNIST dataset
in this work, convolution can be conveniently implemented
using unrolling (i.e., expansion using multiple matrix mul-
tiplications). Similarly, the proposed SMART multiplier can
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Fig. 19. Prediction results for 20 consecutive CIFAR-10 images. The true
label images and the SMART and Python classifications are shown. Albeit
the 25% error (due to shallow CNN), no difference between classifications
with digital and SMART hardware has been observed.

be extended to perform convolution and be utilized in more
complex algorithms. To design a convolution layer using the
SMART multiplier, convolution operation is unrolled using
interdigitated loops. Note that while the SMART convolution
exhibits 10%-15% deviation from the ideal convolution results,
this does not have a critical effect on the overall CNN
accuracy, as shown in this section. This is in line with the
recent analytical results that show that multiplication-based
operations can be approximated while additions need to be
exact in CNN MAC operations [39].

To show the ability of the SMART multiplier to clas-
sify CIFAR-10 data with accuracy of a digital accelerator,
a four-layer CNN is designed with two convolutional, two
FC layers, and a total of over 800,000 trainable parameters.
Note that to demonstrate digital-like (rather than the highest
possible) accuracy of SMART classification, a shallower CNN
architecture is preferred for the sake of shorter runtime of
computationally intensive IC simulation. Typical layers such
as batch normalization, max pooling, dropout, and flatten
layers are simulated in Python. The classifier is trained using
TensorFlow in Python, exhibiting 75% accuracy on a digital
accelerator. No feature selection or preprocessing has been

utilized while preparing the data. The prediction results from
Python and with the SMART multiplier are shown in Fig. 19
for 20 randomly selected CIFAR-10 images. Note that the
classification accuracy with this CIFAR-10 subset is also
75%. In this configuration, the SMART classifier exhibits the
same predictions as Python, demonstrating the robustness and
scalability of the SMART multiplier in designing complex
DNN and CNN networks.

VII. CONCLUSION

Several state-of-the-art mixed-signal classifiers have
recently been demonstrated for power efficient classification.
Accurate classification of multi-dimensional data under the
tight power and area constraints is the primary objective
in modern on-chip classifiers. A novel circuit topology is
proposed in this paper for ML classification based on a
single-MOSFET analog, high resolution-targeted (SMART)
multiplier. With this topology, the body terminal of the
each MAC MOSFET is exploited to encode input features,
enabling the high-resolution classification. To the best of the
authors knowledge, the proposed SMART classifier is the
first integrated system to successfully classify MNIST dataset
in near/subthreshold region using a single-MOSFET MAC.
Biasing transistors in near/subthreshold region significantly
decreases the leakage and dynamic currents as well as the
overall load on the sensing lines. OVO decisioning scheme is
exploited to accurately extract the final decision based on the
votes of multiple binary classifiers. A heterogeneous design
framework is developed to determine the learning algorithms
and ML hyperparameters for the individual binary classifiers,
increasing the accuracy and resilience to PVT variations.

The proposed SMART classifier is designed in SPICE and
simulated in 180 nm standard CMOS process. The perfor-
mance and functionality is validated with simulation results,
exhibiting 92% (2% higher than the state-of-the-art) classifica-
tion accuracy with 67.3 pJ energy consumption per prediction
with MNIST dataset. Each prediction is finalized within a
single clock cycle of 10 ns. The unique topology of SMART
classifier supports the ML integrity under a wide range of PVT,
mismatch, and corner variations, as well as system scalability
across technology nodes. It is also expected to enable a power-
efficient ML compute in more complex deep and convolutional
networks. All the code and simulation files are available at an
online public GitHub repository [40].
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