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Abstract—Graph convolutional networks (GCNs) have shown
remarkable learning capabilities when processing graph-
structured data found inherently in many application areas.
GCNs distribute the outputs of neural networks embedded
in each vertex over multiple iterations to take advantage of
the relations captured by the underlying graphs. Consequently,
they incur a significant amount of computation and irregular
communication overheads, which call for GCN-specific hardware
accelerators. To this end, this paper presents a communication-
aware in-memory computing architecture (COIN) for GCN
hardware acceleration. Besides accelerating the computation
using custom compute elements (CE) and in-memory computing,
COIN aims at minimizing the intra- and inter-CE communication
in GCN operations to optimize the performance and energy
efficiency. Experimental evaluations with widely used datasets
show up to 105× improvement in energy consumption compared
to state-of-the-art GCN accelerator.

I. INTRODUCTION

Graph convolutional networks (GCNs) have shown tremen-
dous success for various applications, including node classi-
fication, social recommendations, and link predictions [1–3].
Their powerful learning capabilities on graphs have attracted
attention to additional research areas like image processing
and job scheduling [4, 5]. Consequently, leading technology
companies, including Google and Facebook, have developed
libraries and computing systems for GCNs [6, 7], stimulating
further research on joint hardware and algorithm optimization.

GCNs operate on graphs by preserving their interconnec-
tions. They have irregular data patterns since the relation be-
tween the nodes, i.e., the edge connections, do not necessarily
follow a specific pattern. In strong contrast, classical convolu-
tional neural networks (CNNs) are optimized for regular data
patterns, which prevents them from capturing the connectivity
information in the graph. GCNs use a neighbor aggregation
scheme that computes each node’s features using a recursive
aggregation and transformation operation. The aggregation
process depends on the graph structure, while the transforma-
tion process uses a technique similar to CNN computations.
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These processes repeat until embeddings for each node are
generated at the end. As the data is sparse, irregular, and
high dimensional, general-purpose platforms like CPU and
GPU require energy-intensive memory accesses even if they
use complex caching and prefetching techniques [8]. Hence,
the state-of-the-art GCN models are large and complex [9–
11]. Multiple software-based techniques have been proposed
to reduce the computation by utilizing the sparsity of the
graph [12, 13]. However, GCN execution still suffers from
high latency and energy consumption.

The prevalence and computational complexity of GCNs
call for high-performance and energy-efficient hardware ac-
celerators. In contrast to software implementations, hardware
accelerators perform GCN computations with significantly
lower latency and higher energy efficiency [14–16]. Due
to this potential, a couple of recent studies proposed GCN
accelerators [14, 17]. These techniques implement systolic
array-based architectures to perform the computations. Since
this approach requires a large number of weights, the resulting
GCN hardware accelerators need a substantial number of
memory accesses to fetch the weights from off-chip memory.
In turn, frequent off-chip memory accesses lead to higher
latency and energy consumption as off-chip memory access
consumes on average 1,000× more energy than computa-
tion [18]. Therefore, there is a critical need to minimize the
latency and energy consumption due to the off-chip memory
accesses in GCN accelerators.

In-memory computing (IMC) decreases memory access-
related latency and energy consumption by integrating com-
putation with memory accesse [19]. A notable example is the
crossbar-based IMC architecture, which provides a significant
throughput boost for hardware acceleration by storing the
weights on the chip. However, crossbar-based in-memory
computing dramatically increases the volume of on-chip com-
munication when all weights and activations are stored on-
chip. In turn, the on-chip communication energy also increases
exorbitantly. We implemented an IMC-based GCN accelerator
baseline for popular benchmarks to quantify this effect. Each
node in the GCN is implemented using a compute element
(CE) (array of IMC crossbars) that performs the required oper-
ations. The CEs that make up the design are interconnected by
a 2D mesh network-on-chip (NoC) through dedicated routers.
GCNs consist of thousands of nodes. The connections between
the nodes enable message passing. The message passing
between the nodes result in high communication volume
for GCN accelerators. For example, the Nell dataset with
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Fig. 1. Communication energy with a baseline IMC-based GCN accelerator.
In the baseline architecture, the number of compute elements is equal to the
number of GCN nodes and compute elements are interconnected by a 2D
mesh NoC through a dedicated router. The x-axis is sorted by increasing
number of GCN nodes.

65755 nodes results in up to 2.7 TB of data communicated
between nodes. The high volume of communication data
increases communication energy consumption. Figure 1 shows
that the communication energy increases with the number of
GCN nodes. Furthermore, larger GCNs require more compute
elements and routers, leading to increased chip area. Therefore,
designing an efficient on-chip communication architecture is
crucial for the in-memory acceleration of GCNs.

This paper proposes a communication-aware in-memory
computing architecture (COIN) for GCN hardware acceler-
ation. The COIN architecture distributes the GCN computa-
tions into multiple compute elements called CEs. Each CE
utilizes RRAM-based crossbars for computation, significantly
reducing frequent off-chip memory accesses. Furthermore, it
considers the intra- and inter-CE communications to design
an optimized on-chip interconnection network. Specifically,
we construct an objective function that represents the energy
consumption of communication. We show that the objective
function is convex. Then, we minimize the objective function
to obtain the number of CEs. Note that the proposed method-
ology is also applicable to SRAM-based IMC.

The major contributions of this work are as follows:

• A novel RRAM-based IMC architecture, COIN, for GCN
acceleration that utilizes a communication-aware IMC
architecture and a novel dataflow,

• An methodology to determine the optimal number of
compute elements (CEs) in COIN that ensures a balance
between intra-CE and inter-CE data communication for
GCN acceleration,

• Experimental evaluation across popular graph datasets
for GCN and comparison with respect to state-of-the-art
GPUs and accelerator. COIN achieves up to 105× lower
energy consumption with respect to state-of-the-art GCN
accelerator.

The rest of the paper is organized as follows. Section II dis-
cusses the related work, while Section III provides background
on GCNs and IMC. Section IV and Section V present the
proposed COIN architecture and its evaluation, respectively.
Finally, Section VI concludes the paper.

II. RELATED WORK

Graph processing accelerators have recently attracted atten-
tion due to their significant impact potential. GraphR [20]
graph processing accelerator uses two components: memory
and graph engine, both based on resistive random access
memory. It performs the graph computations in matrix format
without optimizing sparsity. The technique shows around 16×
speedup compared to CPU baseline systems. A more recent
graph processing accelerator, GraphS [21], uses spin-orbit
torque magnetic random access memory (SOT-MRAM) for
parallel computations to accelerate graph processing applica-
tions. It achieves around 5× speedup compared to processing
depending on DRAM acceleration. GCNs involve convolution
operations in addition to graph processing. Therefore, accel-
erators that target only graph processing are not suitable for
GCNs.

A few recent studies propose GCN hardware accelerator
architectures [14, 15]. For example, HyGCN [14] uses a
hybrid system to incorporate convolution operation and tackle
the irregularity of the GCN structures. It first divides the
computations into two as aggregation and combination to
exploit different levels of parallelism. Then, a task scheduler
is used to exploit edge-level parallelism by sending edge
processing loads onto single instruction multiple data cores.
The combination phase performs the transformation process by
utilizing a systolic-array structure. Main memory accesses take
up a significant portion of the total execution time, although
the HyGCN employs multiple optimizations to reduce DRAM
accesses. Similarly, the GRIP [22] architecture also divides
the GCN computations into aggregation and combination
engines. It employs a parallel prefetch-and-reduce engine to
handle irregular data for aggregation. Another recent tech-
nique, EnGN [17], uses a ring-edge-reduce-based approach
for data transfer. This approach sends the output data to the
subsequent processing unit in a physical ring system for the
aggregation phase. However, most of the execution time comes
from DRAM accesses as EnGN utilizes the main memory
to load the weights to process. Similarly, Rubik [23] uses
graph reordering, mapping-aware data reuse to achieve a better
graph-level data locality. It uses a customized cache design for
graph-level data reuse [24]. Another recent proposal, AWB-
GCN, stores the adjacency matrix and the weights on off-
chip memory [15]. The sparse matrix multiplication kernel
periodically accesses the off-chip memory and performs the
computation. It requires up to 503 GBps off-chip memory
bandwidth to fully utilize the hardware. A critical drawback
of prior HW accelerators is large number of off-chip memory
accesses, which increase the latency and energy consumption.

IMC-based hardware accelerators reduce off-chip mem-
ory accesses by performing computation inside the memory
element. Thus, RRAM and SRAM-based IMC accelerators
have been proposed for DNNs in the literature [19, 25].
However, IMC increases on-chip data volume, which increases
latency and energy due to on-chip communication [26–29].
The high density and complexity of GCNs make the on-chip
communication for IMC-based accelerators even more critical.
Authors in [30, 31] proposed an IMC-based accelerator for
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Fig. 2. (a) An example input graph, (b) Graph Convolutional Network model.

GCN. However, these technique does not address the issue of
the on-chip communication performance of GCN accelerators.
Recently, a RRAM-based 3D NoC-enabled accelerator for
GNN training ReGraphX is proposed [16]. The authors show
that the proposed architecture is more energy-efficient than
conventional GPUs. More detailed survey of communication-
aware IMC-based accelerators can be found in [32, 33].

To address the limitations of prior approaches, we propose
a communication-aware in-memory computing-based acceler-
ator for GCNs. We first identify that the large data volume in
GCN results in high latency and high energy consumption
due to on-chip communication. Therefore, we co-optimize
the communication energy and latency. We determine the
optimal IMC architecture for GCN acceleration, COIN through
this optimization. The communication-aware interconnect, and
IMC-based computing elements significantly improve overall
latency and energy for GCN acceleration. To the best of our
knowledge, This is the first communication-aware in-memory
computing-based GCN accelerator.

III. BACKGROUND AND MOTIVATION

A. Graph Convolutional Networks

An increasing amount of data is now represented in the
form of graphs. Deep learning is effective at capturing the
patterns in the Euclidean space, but the inherent irregularity
of graphs makes them unsuitable for classical deep learning
techniques. This limitation has led to advancements in GCNs,
whose structure and operations are illustrated in Figure 2.
GCNs maintain the graph information and can be considered
as a generalized version of regular convolutional networks.

GCN computations are divided into two stages. First, each
node aggregates the feature information from all neighbors
(node 2, 4, 6, 7, 8 in Figure 2(a)) with its own data (node
3) during the aggregation stage. For example, the Z matrix in
Figure 2(b) represents the aggregated node features from node
3 and its neighbors shown in Figure 2(a). As the aggregation is
done by summation or averaging, the output of the aggregation
stage preserves the feature dimensions, M × 1, where M
is the number of input features. The aggregation stage can
also consider a weighted average of neighbors’ features using
their node degrees [11]. For example, the GCN can put more
weights on the neighbor nodes with lower degrees to reduce
the impact of high-degree nodes.

The second stage of GCN is the feature extraction stage. It is
similar to regular convolutional neural network computations.
The result of the aggregation stage (Z in Figure 2(b)) is fed
into a multi-layer perceptron (MLP) based model. After that,

an activation function like ReLU is applied. Finally, the O
matrix (1 × P , where P represents the number of outputs in
Figure 2(b)), is produced as the output of the feature extraction
stage. These two stages repeat iteratively, where the number
of layers determines the farthest distance a node feature can
travel. For example, for a GCN with a single layer, each node
gets information from only its neighbors. A typical GCN uses
2–3 layers [11].

B. In-Memory Computing

Conventional GCN accelerators utilize separate hardware
units for memory access and computation [14, 17]. Hence,
GCNs with a large amount of data require a significant number
of external memory accesses, which increases latency and
energy consumption [18]. In contrast, in-memory computing
combines both memory access and computation into a single
unit, reducing the latency and energy consumption [34, 35].
IMC architectures utilize an array of tiles that integrates
crossbars of SRAM or RRAM memory cells. In addition to
the crossbar, IMC utilizes peripheral circuits, such as analog-
to-digital converters (ADCs), multiplexers, switch matrix, and
shift-and-add circuits to compute the output. IMC-based graph
convolutional networks can suffer from significant on-chip
communication overhead, especially when they have large
graph sizes. For example, the NELL dataset [36] has 65,755
nodes, resulting in an adjacency matrix of size 65,755×65,755.
The large adjacency matrix and corresponding computations
incur a significant on-chip communication overhead. Hence,
there is an urgent need for an optimized IMC architecture
that exploits the parallelism within the GCN operations while
considering the on-chip communication overhead.

IV. THE PROPOSED COIN ARCHITECTURE

A. Overview of COIN Architecture

Figure 3 shows the proposed COIN architecture for GCN
accelerators. It utilizes a hierarchical structure with an array
of compute elements (CEs) connected by a hierarchical 2D
mesh NoC. The global buffer in COIN is used to load the
adjacency matrix, weights, and input features at the beginning
of the inference. It is connected to the CEs through the NoC-
mesh interconnect. The CE-level NoC performs the inter-layer
on-chip data communication, while the local NoC within the
CE performs the intra-layer communication. The number of
CEs is obtained through an optimization technique discussed
in Section IV-B.

Each CE consists of an array of tiles, a CE buffer, activation
unit (ReLU), all interconnected by the intra-CE NoC, as shown
in Figure 3(b). The tiles (T) consist of an array of processing
elements (PEs) designed as IMC crossbar arrays. Each CE
performs the GCN operations of a given layer and transmits
the generated results to all other CEs to compute the next
layer of the GCN. The total number of tiles within the CE
is limited to 30 (6×5 mesh) to constrain the total chip area.
We note that this constraint does not limit the potential use of
COIN for large datasets since multiple instances of the COIN
chip may be used if needed, as discussed in Section V.
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Fig. 3. Overview of the COIN architecture for GCN acceleration. Each compute element (CE) consists of an array of processing elements (PEs) or RRAM-
based IMC crossbar arrays connected by an NoC-mesh. A subset of the PEs performs the aggregation operation while the remaining performs the feature
extraction. Aggregation PEs store the adjacency matrix while the feature extraction PEs store the layer weights.

GCNs perform two primary operations – aggregation and
feature extraction. A subset of the tiles within each CE is
reserved for each operation as shown in Figure 3(b). Aggre-
gation tiles store the adjacency matrix in the IMC crossbar
arrays, while the tiles used for feature extraction store the
weights of all the layers in the GCN. The feature extraction
is performed first where matrix multiplication is performed
between the input features X and the weights W to generate
the extracted features Z. The extracted features are then used
to perform the aggregation operation using the tiles that map
the adjacency matrix. The number of tiles required to map the
adjacency matrix varies between 10 and 23, while the number
of tiles required to map the weight matrix for the feature
extraction operation varies between 3 and 7 for different
GCNs. Therefore, both aggregation and feature extraction can
be performed within each CE, thus localizing the compute for
the GCN. Consequently, the localized CE architecture inside
COIN reduces the total on-chip communication data volume,
carried by the inter-CE mesh NoC. The activation unit below
the bottom row implements the non-linear activation function
after each layer in the GCN. Finally, the CE buffer above the
top row stores the intermediate outputs and the overall GCN
layer output.

Each tile inside CE consists of an array of PEs or RRAM-
based IMC crossbar arrays, as shown in Figure 3(c). Fig-
ure 3(d) shows the structure of a PE within the COIN
architecture. PEs consist of an RRAM-based IMC crossbar
array, a PE buffer, wordline (WL) decoder, driver circuits,
and the associated read-out circuits. The read-out circuits
comprise the column multiplexers, a flash-based ADC, and a
shift and adder circuit. The IMC array utilizes analog domain
computation to perform the matrix multiplication operations
(aggregation and feature extraction) within the GCN. All rows
of the crossbar array are activated simultaneously to perform
parallel multiply-and-accumulate operations. Further, the read-
out circuits convert the analog voltage to the digital domain.
After that, the digital outputs are transferred to the PE and CE
buffers. Finally, the output from the CE buffer (layer output)
is transmitted to all other CEs using the CE-level NoC in the
COIN architecture.

B. Finding the Number of Compute Elements (CEs)

IMC-based architecture reduces off-chip memory accesses
at the expense of increased on-chip communication volume,
leading to higher communication energy consumption and
latency. As illustrated in Figure 1 in Section I, on-chip
communication itself consumes 320J of energy for the Nell
dataset with a baseline architecture. Both the baseline and
proposed COIN architecture perform the GCN computations in
dedicated IMC compute elements. Furthermore, in the baseline
design each IMC element is connected with a dedicated router
in a 2D mesh NoC. As a result, energy consumption and com-
munication latency of the baseline design can be prohibitive
for GCNs that process large datasets, such as the Nell dataset
with 65755 nodes. Therefore, there is a need to optimize
the number of CEs to minimize the on-chip communication
volume, thus the energy consumption and latency.

This section presents an optimization technique to determine
the optimal number of CEs by considering both intra- and
inter-CE communication volume. First, we show a canonical
example illustrating intra- and inter-CE communication vol-
ume. Then, we construct an objective function that captures
total communication energy (both intra- and inter-CE) for
a GCN. Finally, we employ the interior point algorithm to
minimize the objective function obtaining the optimal number
of CEs.

1) An illustrative canonical example: We take a canonical
example to illustrate the communication between two CEs
(inter-CE) as well inside a CE (intra-CE). Figure 4(a) shows
a graph with 8 nodes. Each node has a convolutional network
with L hidden layers embedded to it. The output of the

Fig. 4. A canonical graph example for intra-CE and inter-CE communication.
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convolutional network after each layer at each node is com-
municated to the nodes located at the neighbor. Therefore, the
communication between neighbors generates a communication
volume. The bidirectional communication volume between
node-i to node-j is represented as vij .

Let us assume, there are two CEs (CE-1 and CE-2) in the
hardware. Let us also assume that node 1, 2, 3, and 4 are
mapped to CE-1 and node 5, 6, 7, and 8 are mapped to CE-
2 as shown in Figure 4(b). For the sake of simplicity, we
consider vij are all equal (vij = v, ∀i, j). The connections
inside each CE are shown in blue solid lines. Since there are
total 4 connections inside CE-1, we obtain 8v as the intra-
CE communication volume for CE-1. Similarly, 2 connections
inside CE-2 makes communication volume as 4v . The graph
in Figure 4(b) has four connections between CE-1 and CE-2:
2–5, 3–6, 3–7, 3–8 shown in dashed black lines. Therefore,
the total communication volume is 8v between CE-1 and CE-2
(intra-CE communication).

2) Constructing the objective function: Suppose the target
GCN has N nodes each implementing a convolutional network
with L layers, where L,N ∈ Z+. We denote the number of
input activation bits of layer l as a(l) for 1 ≤ l ≤ L. We note
that, the communication volume between nodes (vij) appears
due to the activation bits. The number of output activation bits
of layer l can be expressed as a(l + 1) ∈ Z+ since it equals
to the number of input activation bits of the succeeding layer.
Finally, let the number of CEs be denoted by the variable
k ∈ Z+. Therefore, number of nodes mapped onto each CE
is N

k . The objective function has two components which are
described next.

Intra-CE Communication Energy: The first part of the objec-
tive function accounts for the intra-CE communication energy.
The number of CEs dictates the communication volume inside
each CE. Remember that the number of input activation bits
to each node for lth layer is a(l). Since we consider sparse
connections between nodes, we denote the probability of
having a connection between two nodes in CE-m as p

(1)
m .

Since there are N
k number of nodes mapped to each CE,

there are total
∑k

m=1(
N
k )(

N
k − 1)p

(1)
m transactions between

all nodes inside a CE. Hence, the total number of output
activation bits within the CE after the lth layer of operation is∑k

m=1(
N
k )(

N
k − 1)p

(1)
m a(l+1). We add the whole expression

for L− 1 layers to take account of the output activations for
each layer. Finally, assuming energy per bit is proportional to
square root of number of nodes per CE, we obtain the total
intra-CE communication energy as follows:

Eintra−CE(k) =

k∑
m=1

N

k

(N
k
− 1
)
p(1)m

L−1∑
l=1

a(l + 1)
(N
k

) 1
2

(1)

Inter-CE Communication Energy: The second part of the
objective function accounts for the inter-CE communication
energy. The number of CEs in the system is a key contributor
to inter-CE communication volume. As a reminder, each CE
implements the functionality of N

k nodes of the target GCN.
We denote the probability of having a connection between

two nodes mapped in CE-i and CE-j as p
(2)
ij . Since each

node generates a(l+1) output activation bits after processing
the lth layer between CE-i and CE-j, the number of output
activation bits generated is N

k
N
k a(l + 1)p

(2)
ij . We note that,

all CEs generate output activation bits to (k − 1) other
CEs. Therefore, the total inter-CE communication volume is
obtained by adding the summations to take account of all
CE pairs. Finally, assuming that the energy per bit for inter-
CE communication is proportional to square root of number
of CEs (k

1
2 ) [37], we obtain the total inter-CE energy by

multiplying the whole expression by k
1
2 as follows:

Einter−CE(k) =

k∑
i=1

k∑
j=1
j 6=i

(N
k

)(N
k

)
p
(2)
ij

(
L−1∑
l=1

a(l + 1)

)
k

1
2

(2)

Finally, we obtain the total communication energy by adding
intra-CE (Equation 1) and inter-CE (Equation 2) communica-
tion energy as shown in Equation 3.

E(k) = Eintra−CE(k) + Einter−CE(k) (3)

3) Solving the objective function: Our goal is to minimize
the objective function E(k) with constraints in Equation 4. As
a reminder, each CE is connected to a NoC router. Hence, the
number of NoC routers is equal to the number of CEs. The
constraint in Equation 4 states that the number of routers in
the NoC (k) is positive and is linear on k. In Appendix A, we
show that E(k) is convex. Since E(k) is a convex function
with linear constraint, we can apply any standard algorithm
to solve a convex optimization problem. In this work, we
use the interior point algorithm [38] to solve Equation 3
with constraints in Equation 4. We use this algorithm since
it provides a solution in polynomial time. Specifically, it takes
only 10ms to obtain a global minimum. Based on the result,
we consider a 4×4 mesh NoC to connect CEs i.e. total number
of CEs in COIN is 16. With 16 CEs, COIN consists of 30 MB
of memory on-chip.

minimize
k

E(k)

subject to k > 0.
(4)

C. Proposed Mapping and Dataflow

1) Mapping of GCN to the RRAM-based IMC crossbar
arrays: This section describes the mapping of the adjacency
matrix and layer weight matrix onto the RRAM-based IMC
crossbar arrays. Since adjacency matrix remains the same for
all the layers, we map the adjacency matrix onto the RRAM-
based IMC crossbars inside a CE and reuse for all layers.
Specifically, if a GCN consists of N nodes and the architecture
has k CEs, then the size of the adjacency matrix to be mapped
in each CE is N × N

k . We note that the weight matrices
are specific to each layer and are smaller in size. Therefore,
the total number of IMC crossbar arrays required to map the
weight matrices is smaller than the number of IMC crossbar
arrays required to map the adjacency matrix. We further note
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Fig. 5. Layer-wise execution dataflow of the proposed COIN architecture. (a)
shows feature extraction operation of layer-i in a CE, (b) shows aggregation
operation of layer-i in a CE, (c) shows the communication between CEs.

that the mapping of both (adjacency and weight) matrices is
performed as is without any matrix transformations.

2) Dataflow of the COIN architecture: We propose a
layer-wise operation for the inference with COIN, as illustrated
in Figure 5. In the beginning, the adjacency matrix and
the weights are loaded into the corresponding IMC cross-
bars from the off-chip memory. Then, the proposed layer-
wise computations within each layer are performed parallely
(simultaneously within each CE), while across layers are
executed serially. We denote the input features to layer-i
as Xi and weights of layer-i as Wi. The feature extraction
unit (IMC crossbar arrays) performs the matrix multiplication
between the feature matrix (Xi) and the weight matrix (Wi) to
generate the intermediate output Zi as shown in Figure 5(a).
The weights are stored in the RRAM IMC crossbars in a
column-wise manner. The transposed form of the input feature
matrix Xi is then provided to the crossbar array as the
input vector across the wordlines. Each input gets multiplied
with the corresponding weight value stored in the RRAM to
generate the output. The computed result then accumulates
along the bitline (BL) in the current domain. Next, the analog
current is then converted to digital using an analog-to-digital
converter (ADC). The proposed COIN architecture does not
utilize a digital-to-analog converter, while it utilizes bit-serial
computing for multi-bit inputs (shift and add circuit performs
the accumulation based on the positional value of the input).

After that, the aggregation operation is performed. The
adjacency matrix is stored in the RRAM IMC crossbar arrays
to form the aggregation unit, similar to weights within the
feature extraction operation. The input of the aggregation unit
is the transposed form of the intermediate output (Zi) from the
feature extraction operation. The aggregation unit performs the
matrix multiplication between the intermediate output Zi and
the adjacency matrix (A) to obtain Oi = A.Zi as shown in
Figure 5(b). The computation within the aggregation unit (IMC

TABLE I
PROPERTIES FOR DIFFERENT GCN DATASETS

Cora Citeseer Pubmed Ext.
Cora Nell

Dataset
Type

Citation
Network

Citation
Network

Citation
Network

Citation
Network

Knowled.
Graph

# Nodes 2708 3327 19717 19793 65755
# Edges 10556 9228 88651 130622 266144

# Features 1433 3703 500 8710 5414
# Output

Labels 7 6 3 70 210

# Layers 2 2 2 2 2

crossbar arrays) is similar to that in the feature extraction step.
The ‘shift and add’ unit inside PE performs the addition on the
aggregated output. Next, the ReLU operation is performed on
Oi to obtain the output from layer i across all CEs. Finally,
the output from layer i is communicated to all CEs via the
NoC to perform the computation for layer i+ 1 of the GCN,
as shown in Figure 5(c).

3) Illustration on number of multiplication operations:
The proposed dataflow helps to reduce the number of mul-
tiplication operations and hence the communication between
feature extraction and aggregation unit within a CE. For exam-
ple, let us consider the Nell dataset and the operation of its first
layer. The size of the adjacency matrix A is 65755×65755, the
size of the feature map is X1 65755×5414, and the size of the
weight matrix is W1 5414×16. If the aggregation operation is
performed first and then feature extraction, the total number
multiplication operations are: 65755×65755×5414 (aggrega-
tion) + 65755×5414×16 (feature extraction) = 2.3×1013. At
the same time, if feature extraction is performed first and then
aggregation (proposed approach), the total number of mul-
tiplications performed is given by 65755×5414×16 (feature
extraction) + 65755×65755×16 (aggregation) = 7.4×1010.
Therefore, there is a 311× reduction in the number of mul-
tiplication operations for Nell with our proposed dataflow for
COIN. The reduction comes from the fewer multiplication
operations in the aggregation stage.

V. EXPERIMENTAL EVALUATION

This section present the area, latency, and energy consump-
tion evaluations of the proposed COIN architecture. This work
assumes 32 nm process technology and 1 GHz operating
frequency.

A. Experimental Setup

Datasets: We evaluate the COIN architecture using widely
used graph datasets: Cora [39], Citeseer [9], Pubmed [11],
Nell [36] and Extended Cora [40]. Nell represents a knowledge
graph dataset used to learn to read the web, and other datasets

TABLE II
SUMMARY OF CIRCUIT LEVEL AND NOC PARAMETERS

Circuit NoC
PE array size 128× 128 Bus width 32
Cell levels 2 bit/cell Routing algorithm X–Y
Flash ADC resolution 4 bits Number of router ports 5
Technology used RRAM Topology Mesh
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Fig. 6. Comparison of Energy Consumption (in log scale) of IMC Elements
between SRAM and RRAM-based designs.

are scientific publication citation datasets for classification.
Table I shows the details of these datasets.
Simulation framework: We customized an open-source simu-
lator [41] to incorporate GCN attributes and support the COIN
architecture. The inputs to the simulator include the GCN
parameters, such as the number of nodes, the graph structure
of each node, and input/output features for each layer. In
addition, the simulator uses user inputs such as technology
node, RRAM-based IMC crossbar size, frequency of opera-
tion, NoC size, NoC frequency, and the number of bits per
RRAM cell, among others. The performance of the computing
elements is measured by customizing NeuroSim [42]. The
lower-level components (e.g., buffers, ADC, multiplexers) are
simulated using the Predictive Technology Model (PTM) [43],
and verified against circuit simulation (e.g., SPICE), reaching
more than 90% accuracy. The communication performance is
measured through a widely used cycle-accurate NoC simulator,
BookSim [37]. To this end, we developed a customized version
of BookSim to evaluate the NoC performance that supports
trace-based cycle-accurate simulation. Since different GCNs
exhibit different graph structures, we first generate traces for a
given GCN. The traces consist of the source router, destination
router, and generation timestamps of each packet. Since each
layer (also known as the iteration) of the GCN is executed
sequentially, we generate a separate trace file for each layer.
Then, we feed the traces to BookSim to evaluate the communi-
cation performance. Finally, the performance of computation
and communication components are combined to obtain the
total performance. Table II summarizes the parameters used in
COIN. The simulation framework is publicly available in [44].
Comparison between SRAM and RRAM-based design:
Figure 6 shows the comparison of energy consumption of IMC
elements between SRAM and RRAM-based design across
GCNs for different datasets. We note that the energy con-
sumption by communication remains the same irrespective
of the type of IMC elements used, since the volume of
inter-CE and intra-CE communication do not change with
different types of IMC elements. We observe that SRAM-
based IMC elements consistently consume more energy than
RRAM-based IMC elements. On-average SRAM-based IMC
elements consume 2.1× more energy than RRAM-based IMC
elements. Since RRAM-based devices use analog computation,
they are more energy-efficient than SRAM-based devices. We

Fig. 7. Accuracy with different quantization bits for weights and activations
for different datasets.

Fig. 8. Different components of COIN and corresponding area.

note that the energy consumption by communication remains
the same irrespective of the type of IMC elements used, since
the volume of inter-CE and intra-CE communication do not
change with different types of IMC element. Therefore, we
consider RRAM-based IMC elements for our architecture.

B. Experiments with Different Quantization Bits

This section evaluates the accuracy of the GCN for different
datasets with a varying number of quantization bits for weights
and activations. We used the GCN structure described by the
authors in [11]. Deep Graph Library (DGL) [45] with PyTorch
backend and Nvidia Tesla V100 GPU are during experiments.
The accuracy for the Nell dataset increases from 55.9% to
65.4% when the number of quantization bits is increased from
2 to 32, as shown in Figure 7. For Extended Cora, the accuracy
varies from 41% to 47.3%. For all other datasets, the difference
between the minimum and maximum accuracy is less than 3%.
In the rest of the evaluations, we consider 4-bit quantization for
weights and activations since it provides comparable accuracy
with 32-bit precision.

C. Chip Area Evaluation

The total area of COIN is 17.43 mm2 with 16 CEs with 30
tiles per CE. Figure 8 shows the area of different components
of COIN responsible for computation and communication. The
components for in-memory computing include ADC to convert
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Fig. 9. Comparison of communication energy consumption with different NoC sizes for (a) Cora, (b) Citeseer, (c) Pubmed, (d) Extended Cora and (e) Nell.

analog multiplication results to digital values, accumulators to
perform addition operations (in Tile level), buffers to store
intermediate values, and peripheral circuits. We observe that
the accumulator occupies 27% of the total area. The NoC
for inter-CE and intra-CE communication occupy 0.16% and
0.11% of the total area respectively.

We also note that GCN for large datasets such as Nell or
extended Cora require multiple instances of the COIN chip.
More precisely, Cora and Citeseer require 1 chip, Pubmed
requires 3 chips, extended Cora requires 20 chips, and Nell
requires 45 chips. This design choice is widely adopted for
CNN accelerators (e.g. the work proposed in [46] uses up to
48 chips for a single CNN where area of each chip is 86 mm2.)

D. Experiments with Different Mesh Sizes

In this section, we compare the communication energy con-
sumption between different NoC sizes for GCNs with different
dataset. Figure 9 shows the comparison. The NoC size is varied
from 3×3 to 10×10. In each case, the number of CEs is equal
to the number of NoC routers. We observe that 4×4 NoC (i.e.
the design with 16 CEs) consumes least communication energy
for most of the dataset. For example, the least communication
energy consumption for Cora dataset is 2.7 µJ with 4×4 NoC.
The communication energy consumption for the same dataset
with 10×10 NoC is 5.6 µJ. Therefore, the results with different
mesh sizes show that 4×4 results in the least communication
energy consumption for most of the dataset which is aligned
with our theoretical results.

E. Improvement with respect to Baseline

This section compares the performance of our proposed
architecture against a baseline design. We note that a baseline
design is used to show the efficacy of the proposed architecture
due to the lack of prior work using IMC architectures for GCN
acceleration. In the baseline design, computation of each GCN
node is performed using an RRAM-based IMC crossbar array,
and every node is connected through a router to an NoC. In
the baseline architecture, for Cora dataset with 2708 nodes, the
computations of all 2708 nodes are performed by individual
IMC crossbar arrays, i.e., there are 2708 CEs. Each CE is
connected through a router of the NoC. Figure 10 compares
the total energy consumption of the baseline design and the
proposed COIN architecture for different datasets. We observe
significant improvement in energy consumption with COIN

Fig. 10. Comparison of total energy (in log scale) with respect to a baseline
architecture. In the baseline architecture, the number of compute elements is
equal to the number of GCN nodes and compute elements are interconnected
by a 2D mesh NoC through a dedicated router.

for all datasets. The largest improvement (1100×) is obtained
for the Citeseer dataset. The GCN for the Nell dataset has
the largest energy consumption (with both architectures), since
Nell dataset consists of the highest number of nodes. In this
case, the baseline design consumes more than 300J energy.
However, the proposed COIN architecture reduces the energy
consumption to 577 mJ.

We also show the percentage of the total communication
energy consumption for both baseline and the proposed archi-
tecture in Table III. The communication energy contributes to
a significant portion of the total energy with the baseline de-
sign. For example, the communication energy makes up 96%
and 99% of the total energy for Pubmed and Nell datasets,
respectively. With the COIN architecture, the communication
energy is 7×10−3% and 6×10−4% of the total energy for
Pubmed and Nell datasets. Since Pubmed, Extended Cora, and
Nell dataset exhibit higher sparsity than Cora and Citeseer
dataset [15], communication energy also contributes lesser
(for Pubmed, Extended Cora, and Nell) to the total energy
with our proposed architecture. The vast improvement in
communication energy comes from the proposed optimization.

F. Improvement in Communication Performance

This section evaluates the improvement in communication
performance with COIN for different datasets. We consider
the same baseline architecture as Section V-E. Figure 11
shows the comparison of communication energy between
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TABLE III
COMPARISON OF PERCENTAGE CONTRIBUTION OF COMMUNICATION

ENERGY (%).

Datasets Cora Citeseer Pubmed Extended
Cora Nell

Baseline 43 44 96 58 99
COIN (Proposed) 4.7 5.3 0.007 0.003 0.0006

Fig. 11. Comparison of communication energy (in log scale) between baseline
and proposed COIN architecture.

Fig. 12. Comparison of inter-CE communication energy between the proposed
architecture with c-mesh NoC and proposed COIN architecture with mesh
NoC.

the baseline architecture and COIN. Since COIN optimizes
communication, there is a substantial improvement in com-
munication energy compared to the baseline architecture. For
example, only communication itself consumes 9.2 J of energy
to perform one inference in Pubmed with baseline architecture.
In contrast, COIN architecture consumes only 0.02 mJ com-
munication energy (5 orders of magnitude improvement). The
improvement is the highest for the Nell dataset as expected
(6 order of magnitude) since it has the highest number of
nodes, hence the largest communication volume. We also
show the comparison of communication energy against c-
mesh NoC since it has been used for accelerators targeted
to CNNs [46]. The comparison is shown in Figure 12. In
this case, we assume that c-mesh has 16 routers, i.e., the
same number of routers as COIN. C-mesh uses additional
links and routers, which reduces latency compared to 2D
mesh. However, c-mesh has higher energy consumption than
COIN since it uses more resources. The largest communication
energy saving is observed for the Nell dataset (1.3×) as shown
in Figure 12. Overall, COIN significantly reduces energy

Fig. 13. Comparison of EDP (in log scale) for on-chip communication
between baseline and proposed COIN architecture.

Fig. 14. Comparison of EDP for inter-CE communication across baseline,
proposed architecture with c-mesh NoC, and proposed COIN architecture.
COIN achieves least EDP across all datasets.

consumption compared to both the baseline architecture and
c-mesh NoC.

Figure 13 shows the comparison of energy-delay (EDP)
product between the baseline and the proposed COIN ar-
chitecture. Since COIN shows significant improvement in
communication energy and latency compared to the baseline
design, we also observe considerable EDP savings. For ex-
ample, the Citeseer dataset shows seven orders of magnitude
improvement in communication EDP compared to the baseline
design. Similar to the results for energy, we also observe
improvement in communication EDP with respect to c-mesh
as shown in Figure 14. The improvement compared to c-mesh
is the highest for the Pubmed dataset (30%). In summary, our
proposed optimization in NoC enables notable improvement
in communication energy and EDP compared to the baseline
and a design with c-mesh NoC.

G. Comparison with GPU and Edge Devices

We perform a detailed comparison of the proposed COIN ar-
chitecture compared to state-of-the-art GPU – Nvidia Quadro
RTX-8000 [47]. The trained GCN model for each dataset is
considered, and inference is performed on the RTX-8000 GPU.
We perform 2,000 inferences for the trained model and sample
the GPU power using Nvidia’s system management interface
(SMI) program. The power measurements are performed in
intervals of one second. Furthermore, we take the average
of the measured power values to generate the average power
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TABLE IV
COMPARISON WITH NVIDIA QUADRO RTX-8000 GPU.

Cora Citeseer Pubmed Ext. Cora Nell

RTX COIN Impr.
(×) RTX COIN Impr.

(×) RTX COIN Impr.
(×) RTX COIN Impr.

(×) RTX COIN Impr.
(×)

Energy (mJ) 62.2 0.05 1244 90.50 0.10 905 89.1 38.13 2.4 1787.3 257.4 6.9 1504 577.1 2.6
Latency (ms) 1.22 0.6 2 1.22 1.10 1.1 1.22 0.57 2.1 7.45 9.96 0.8 14.94 1.04 14.4
EDP (mJ.ms) 75.78 0.03 2526 110.68 0.11 1006 108.65 21.56 5.1 13309 2564 5.2 22423 601.4 37.3

TABLE V
CONFIGURATION OF THE EDGE DEVICES CONSIDERED

# CPU
Cores

Max CPU
Freq. (GHz) TOPs # GPU Tensor

Cores
Max GPU

Freq. (GHz)
Xavier NX 6 1.4 21 48 1.1
AGX Xavier 8 2.26 32 64 1.37

Fig. 15. Comparison of energy (in log scale) between COIN and edge devices.
COIN consumes less energy than both Nvidia Jetson edge devices.

for the 2,000 GCN inferences. The inference latency is then
evaluated for the GCN using python’s time function. Finally,
the inference energy is evaluated by multiplying the average
power and the inference latency. We note that the same data
precision of 4-bits is used for the GPU performance evaluation.

Table IV compares the energy consumption, latency and
EDP between COIN and RTX-8000. COIN shows significant
improvement both in energy consumption and EDP for all
datasets compared to the GPU implementation. For example,
COIN shows 2.4× lower energy than RTX-8000 for the

Fig. 16. Comparison of latency (in log scale) between COIN and edge devices.
COIN incurs less latency than both Nvidia Jetson edge devices.

Fig. 17. Comparison of EDP (in log scale) between COIN and edge devices.
We present the performance of COIN with both SRAM and RRAM-based
IMC elements. COIN with both kinds of devices outperforms both Xavier
NX and AGX Xavier Nvidia Jetson devices across all datasets.

Pubmed dataset. The most significant improvement in energy
is observed for Cora (1244×). Except the GCN for Extended
Cora dataset, COIN shows improvement in latency over RTX-
8000 GPU. We also observe notable improvement in EDP
with COIN compared to RTX-8000, as shown in Table IV.
For Cora, COIN achieves 2526× improvement compared to
the GPU. Therefore, the proposed architecture COIN with an
optimized NoC leads to significantly lower energy and EDP
than state-of-the-art GPU.

We also compare the performance of our design against
two edge devices - 1) NVIDIA Jetson Xavier NX and 2)
NVIDIA Jetson AGX Xavier. Such a comparison justifies
the use of the COIN architecture for edge GCN inference
at edge. Table V shows the configurations of these two
devices. We execute the GCN structures of corresponding
datasets on the edge devices and record the power value
at each epoch of the inference from the power sensor. The
total execution time is also recorded while executing the
GCN. Figure 15 shows energy consumption of Xavier NX,
AGX Xavier, and COIN. We observe significant improvement
in energy consumption for all datasets. The improvement
is highest for Citeseer dataset. Specifically, for this dataset,
COIN’s energy consumption is 1448× and 331× lower than
Xavier NX and AGX Xavier, respectively. Figure 16 compares
latency between Xavier NX, AGX Xavier and COIN across
different datasets. COIN consistently incurs less latency than
both edge devices. The highest improvement in latency is
observed for Nell dataset. COIN incurs 232× and 200× less
latency than Xavier NX and AGX Xavier respectively. We also
compare EDP between COIN and two edge devices. A similar
improvement in EDP is observed with COIN. Figure 17 shows
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the comparison for EDP between COIN and edge devices. The
EDP of COIN is shown considering both SRAM and RRAM-
based IMC elements. On average, COIN achieves 70.7× and
50× improvement in EDP with respect to Xavier NX and AGX
Xavier respectively with SRAM-based IMC elements. COIN
with RRAM-based IMC elements shows 73.6× and 52.1×
improvement in EDP with respect to Xavier NX and AGX
Xavier respectively. The largest EDP improvement is observed
for the Cora dataset with RRAM-based IMC elements. In this
case, COIN achieves 4 orders of magnitude lower EDP than
Xavier NX and 3 orders of magnitude lower EDP than AGX
Xavier. Therefore, irrespective of the type of IMC elements
used, our proposed COIN architecture achieves significantly
lower energy and EDP than state-of-the-art GPU and two edge
devices for a wide range of popular GCN datasets.

H. Comparison with State-of-the-art GCN Accelerators

This section compares the performance of our proposed
COIN architecture with a state-of-the-art GCN accelerator,
ReGraphX [16] and AWB-GCN [15].
Comparison with ReGraphX [16]: The architecture pro-
posed in ReGraphX is composed of multiple processing el-
ements (PEs; similar to computing elements in COIN). Some
of the PEs (V-PEs) store the weights and are responsible for
the feature extraction operation at GCN nodes (or vertices).
The other PEs (E-PEs) store the adjacency matrix of the GCN
and enable ‘message passing’ through the edges of the GCN.
Similarly, in ReGraphX-2D, we allocated a set of CEs for
feature extraction (V-CEs) and rest to store the adjacency
matrix and enable message passing (E-CEs). To have a fair
comparison we consider a total of 16 CEs (same as COIN).
4 out of 16 CEs are V-CEs and 12 are E-CEs. The CEs are
connected through network-on-chip routers. All CEs consist
of 128×128 RRAM crossbar arrays as discussed in [48]. We
consider 128×128 RRAM crossbar for COIN too. For a fair
comparison we evaluate the performance of ReGraphX-2D
through the same simulation environment as COIN.

Figure 18 shows the comparison of energy consumption
between ReGraphX-2D and COIN. Specifically, we show

Fig. 18. Comparison of energy consumption (in log scale) between 2D version
of ReGraphX [16] and COIN. The breakdown between communication and
computation energy is shown for both the architectures.

both computation and communication components of both
ReGraphX-2D and COIN. We observe that COIN consumes
less energy than the ReGraphX-2D for GCN of all datasets
we consider. On average, COIN consumes 8.7× less total
energy than ReGraphX-2D. We also observe that communi-
cation energy consumed by COIN is consistently less than
the ReGraphX-2D. For example, the GCN for CORA dataset
consumes 2.7 µJ and 3.9 µJ of communication energy with
COIN and ReGraphX-2D respectively. On average, COIN
consumes 1.5× less communication energy than ReGraphX-
2D across different datasets. In our proposed COIN architec-
ture, the hierarchical communication network (inter-CE and
intra-CE communication) enables more parallel communica-
tion than ReGraphX-2D. Similar to communication energy,
COIN consumes less energy for computation as well com-
pared to ReGraphX-2D. On average, the computation energy
consumed by COIN is 9× less than ReGraphX-2D. In COIN,
the adjacency matrix is distributed to more number of CEs
compared to ReGraphx-2D. Therefore, the memory utilization
of COIN is higher than ReGraphx-2D. Hence, ReGraphX-2D
requires more in-memory computing (IMC) tiles than COIN
which results in higher computation energy consumption with
ReGraphX-2D.
Comparison with AWB-GCN [15]: We note that we use
32 nm technology to evaluate COIN. However, AWB-GCN
uses Intel D5005 equipped with Statix 10 SX FPGA. This
FPGA incorporates 14 nm technology. Therefore, we estimate
the performance of AWB-GCN with 32 nm technology using
the technique described in [49, 50]. AWB-GCN stores the
adjacency matrix and the weights in off-chip memory. The
sparse matrix multiplication kernel periodically accesses the
off-chip memory and performs the computation. Specifically,
the AWB-GCN accelerator requires up to 503 Gbps off-
chip memory bandwidth to fully utilize the hardware. Since
AWB-GCN uses off-chip memory, it suffers from high energy
consumption. In contrast, we use in-memory computing (IMC)
to construct COIN without requiring frequent off-chip memory
access. Moreover, we incorporate an optimization technique
to reduce on-chip communication energy. The comparison
in energy consumption between AWB-GCN and COIN for
different GCN datasets is shown in Table VI. We present
both the energy consumption reported in [15] and the energy
consumption when the technology node is scaled to 32nm
in the table. The energy with the Extended Cora dataset is
not reported in AWB-GCN. Therefore, we cannot compare
the results for Extended Cora. The improvement is shown
with respect to the energy consumption of AWB-GCN when
scaled to 32nm. We observe that COIN provides significant
improvement in energy for all the datasets we consider. The
most significant improvement is seen for the Cora dataset
(105×). On average, COIN shows a 13.2× improvement in
energy consumption over AWB-GCN.

Furthermore, the comparison in EDP between AWB-GCN
and COIN for different GCN datasets is shown in Table VII.
Similar to Table VI, we present both the EDP reported in [15]
and the EDP when the technology node is scaled to 32nm
in the table. COIN shows improvement in EDP for all the
datasets we consider. The most significant improvement is seen
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TABLE VI
COMPARISON OF ENERGY (MJ) BETWEEN COIN AND STATE-OF-THE-ART

GCN ACCELERATOR [15].

Cora Citeseer Pubmed Nell
AWB-GCN [15] 2.28 3.69 31.5 439
AWB-GCN (scaled to 32nm) 5.27 8.54 73.0 1020
COIN (ours) 0.05 0.10 38.13 577.1
Improvement (×) 105 85.4 1.91 1.77

TABLE VII
COMPARISON OF EDP (MJ-MS) BETWEEN COIN AND STATE-OF-THE-ART

GCN ACCELERATOR [15].

Cora Citeseer Pubmed Nell
AWB-GCN [15] 0.04 0.11 7.26 1425
AWB-GCN (scaled to 32nm) 0.12 0.33 22.2 4358
COIN (ours) 0.03 0.11 21.58 601
Improvement (×) 4.68 3.09 1.03 7.25

for the Nell dataset (7.25×). The vast improvement in energy
consumption as well as EDP come from IMC-based hardware
and our proposed communication-aware technique to construct
the GCN accelerator.

VI. CONCLUSIONS

This paper presented a novel communication-aware RRAM-
based IMC architecture called COIN for GCN acceleration.
COIN utilizes an array of CEs connected through a hierar-
chical 2D mesh NoC optimized to balance the intra-CE and
inter-CE communication volume. Furthermore, COIN employs
CEs with an array of tiles that utilize IMC crossbar arrays. We
do not exploit the adjacency matrix and feature matrix sparsity
in this work while addressing the ever-important on-chip com-
munication cost for GCN acceleration. The irregular structure
of these matrices and the need for a column-level or block
sparsity for IMC is left for further research. Experimental
evaluations across different datasets show that COIN achieves
up to 105× improvement in energy consumption with respect
to state-of-the-art GCN accelerator. Other sources of energy
and performance are also important in architecture exploration.
However, in this work we only consider communication energy
as an optimization objective. Optimizing the other sources of
energy (e.g. in-memory computing elements) are left as future
work.

APPENDIX A

Convex property of E(k): We show that the objective
function in Equation 3 is convex. To this end, we compute the
second-order derivative of E(k) with respect to k. Equation 5
shows the second-order derivative. We observe that the highest
probability of intra-CE connection for the dataset we consider
is 0.25 and the highest probability of intra-CE connection is
0.22. Therefore, we consider p(1)m = 0.25 and p(2)ij = 0.22.

d2E(k)

dk2
=(
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N
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2

k
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2

− 0.06
N2

k
3
2

− 0.17N2 + 0.19N
3
2

k
5
2

)(
L−1∑
l=1

a(l + 1)

)
(5)

Equation 5 is a function of number of routers (k), number of
GCN nodes (N ) and number of activations in layer-l (a(l+1))
We consider the range of k as 4–100 to limit the NoC size
as 10×10. Furthermore, we consider N > 2000 since the
smallest graph we consider is for Cora dataset with 2708
nodes. For this range of k and N , we observe that the first
part (which is a function of k and N only) of the second
order derivative (Equation 5) is always positive. Since number
of output activation bits of lth layer is always positive, the
second-order derivative, d2E(k)

dk2 is positive. As the second-
order derivative of E(k) is positive, E(k) is convex [51].

Figure 19 shows the normalized value of the objective
function for N = 6000 and varying the value of k from 4
to 100. We can visualize that the objective function is convex
in this case which supports our argument about the convex
property of E(k).

Fig. 19. Normalized value of the objective function.
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