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Abstract—Memristors show great potential for being inte-
grated into CMOS technology and provide new approaches for
designing computing-in-memory (CIM) systems, brain-inspired
applications, trimming circuits and other topologies for the
beyond-CMOS era. A crucial characteristic of the memristor is
multi-state1 switching. Memristors are capable of representing
information in an ultra-compact fashion, by storing multiple
bits per device. However, certain challenges remain in multi-
state memristive circuits and systems design such as device
stability and peripheral circuit complexity. In this paper, we
review the state of the art of multi-state memristor technologies
and their associated CMOS/Memristor circuit design, and discuss
the challenges regarding device imperfection factors, modelling,
peripheral circuit design and layout. We present measurement
results of our in-house fabricated multi-state memristor as an
example to further illustrate the feasibility of applying multi-
state memristors in CMOS design, and demonstrate their related
future applications such as multi-state memristive memories in
machine learning, memristive neuromorphic applications, trim-
ming and tuning circuits, etc. In the end, we summarize past
and present efforts done in this field and envisage the direction
of multi-state memristor related research.

Index Terms—Memristor, RRAM, memristive circuits and
systems, multi-state memristors, multi-bit RRAM, AI hardware.

I. INTRODUCTION

IN the past decades, the semiconductor industry has steadily
followed Moore’s law by advancing to deeper technology

nodes. In view of the possibility that CMOS technology may
eventually approach its physical limit, new devices have been
proposed to be integrated with the existing technology. At the
same time, the pursuit of novel computing architectures such
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1also often referred as multibit, multi-state, and multi-level

as neuromorphic computing has been driven by the need for
addressing the data scalability limits in the traditional von-
Neumann architectures. The rapid technological advances of
memristors promise to resolve both issues, improving the ca-
pability of electronics beyond what the CMOS cannot achieve
alone and rendering unconventional computing architectures
that are becoming viable [1].

Since Leon Chua postulated the concept of the memristor
in 1971 [2], several devices with similar characteristics to the
conceptual memristor had been reported in the literature [3–7],
but the conceptual memristor was not linked to any physical
devices in the following three decades. In the early 2000s, an
increasing number of Metal-Oxide-Metal (MOM) devices with
non-volatile resistive switching behaviour started to emerge,
such as the ones in [8–11]. One typical example is a solid-
state non-volatile device based on the Copper-Tungsten oxide
whose resistance can be switched by the applied write current
[12]. In 2008, HP lab first linked a non-volatile resistive
switching device based on Pt-TiO2-Pt layered structure [13] to
the theoretical concept of a memristor. Since then, memristors
have attracted increasing attention from the research commu-
nity, and memristors based on different types of materials
have been reported. More importantly, memristors’ unique
features such as non-volatility, small feature size (down to
2nm [14]), low power consumption, and compatibility with
CMOS technology for monolithic integration render them
good candidates for using in various applications [15–21].

Among all of the promising advantages of the memristor,
the multi-state switching capability is a unique feature. Since
2008, using the multi-state characteristic of memristors in
next-generation electronics has become a popular research
direction because a single memristor can potentially replace
multiple transistors, while performing the same logic func-
tion [22]. Nevertheless, multi-state memristors still face vari-
ous challenges including retention degradation, vulnerability,
device-to-device variations, cycle-to-cycle variations, process
voltage temperature (PVT) variations, inaccurate modelling,
complex control logic and excitation circuits, etc [23–26].

In this paper, we review multi-state memristors with dif-
ferent bi-layer oxide combinations and the state-of-the-art
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Fig. 1: (a) A conventional DRAM consists of 1T1C cells. Each capacitor stores
1-bit information. (b) A multi-state 1T1R memristor cell can in principle store
up to 5.5-bit of information [28].

memristive systems. We mainly analyse the difficulties and
challenges that lie in the memristive circuits and systems
design, and provide an overview of the multi-state memristors
related applications. The rest of the paper is organized as
follows: Section II reviews multi-state memristors and the
state-of-the-art CMOS/Memristor systems. Section III illus-
trates the design challenges of multi-state memristive systems
including device defects, device modelling, peripheral circuits
design, and layout and post-processing in CMOS. Section IV
introduces three major categories of applications where multi-
state memristors can enhance overall performance. Section V
discusses high-level insights and research directions for multi-
state memristive systems, and Section VI concludes the paper.

II. MULTI-STATE MEMRISTOR DEVICES AND SYSTEMS

Shortly after the memristor was realised as a solid-state de-
vice in [13], the concepts of exploiting a multi-state memristor
to realise logic functions [22] and memory [27] were proposed.
Taking a random-access-memory (RAM) as an example, as
shown in Fig.1, traditional DRAM employs 1 transistor and
1 capacitor (1T1C) to store 1-bit information in one cell,
whereas in a multi-state 1 transistor and 1 memristor (1T1R)
cell, a single memristor can store up to 5.5-bit information
in principle [28]. In addition, the capacitor in the DRAM
cell needs to be refreshed periodically to deal with charge
leakage. The memristor’s non-volatility not only prevents the
information loss due to the leakage, but also enables fast
and safe power-cycling. Compared with other RAMs such as
SRAM, memristive RAM can achieve higher density while
maintaining the same speed [29]. In this section, we review
the multi-state memristor devices based on different bi-layer
oxides and the performance of the state-of-the-art multi-state
memristors in integrated 1T1R crossbar arrays.

A. Multi-State Memristor Device

Metal-oxide-metal (MOM) memristors have been reported
with many electrode material and active material combina-
tions, which lead to different specifications and performance.
For example, a TiOx memristor with gold electrodes is almost
completely volatile, while the one with platinum electrodes is
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Fig. 2: (a) Memristors based on different oxide combinations exhibit different
resistive state ranges and multi-state switching capabilities. The monolayer
device (only T iO2) has lower resistance range and number of states compared
with the bi-layer devices. (b) The Pt-T iO2+Al2O3-Pt memristor exhibits
multi-state switching behaviour. The stimulus consists of sets of programming
voltage pulses with increasing amplitude at 500 pulses per voltage level and
pulse width of 10µs. Between each programming process, there are 100
reading pulses with the same amplitude of 0.2V and the same pulse width of
10µs.

almost completely non-volatile. Besides the electrode materi-
als which determine the volatility of a memristor, active ma-
terials determine the multi-state switching behaviour. Among
different bi-layer oxide combinations, the most popular ones
use Ta2O5, HfO2 and TiO2 as their main active oxides and
a variety of metals as electrodes [30–34]. Every combination
behaves differently as a multi-state device. These differences
include the values of the high and low resistive states (HRS,
LRS) and the number of distinguishable states indicated by
different resistive switching ranges. The resistive switching
range is important because it affects the trade-off among power
consumption, linearity, and resolution of the peripheral circuit
design, whereas independent and distinguishable states affect
the stability, reliability, and reconfigurability of the multi-
state memristor. Here, a comparison is made based on the
work in [28] analysing 7x types of memristors, of which
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TABLE I: SUMMARY OF BEHAVIOUR OF MULTI-STATE MEMRIS-
TORS BASED ON DIFFERENT BI-LAYER STRUCTURES [28]

Bi-layer Oxide T iO2
T iO2

+AlxOy

T iO2

+TaxOy

T iO2

+WOx

T iO2

+HfOx

T iO2

+ZnOx

T iO2

+SiOx

Number of
States

10 47 37 33 23 15 13

LRS (kΩ) 12.5 36 16.8 55 17.6 42 15
HRS (kΩ) 15.3 85 20.2 162 25.6 91 16.6

Range (kΩ) 2.8 49 3.4 107 8 49 1.6
HRS/LRS

Ratio
1.2 2.4 1.2 2.9 1.5 2.1 1.1

Equivalent
Number of Bits

3.3 5.5 5.2 5 4.5 3.9 3.7

6x feature different bilayer oxide combinations (TiOx is the
“base layer” in all cases) and 1x is a simple monolayer
device (only TiOx “base layer” oxide). As shown in Fig.2
(a) and Table I. The monolayer memristor exhibits the lowest
number of states, smallest resistive switching range, and low
HRS/LRS ratio. On the other hand, memristors based on TiO2

with AlxOy
2, WOx, and ZnOx exhibit promising multi-state

capability. In particular, the TiO2+Al2O3 bi-layer shows the
highest number of states and has been leveraged in different
integrated applications such as a one-time-programming mem-
ristive memory (RRAM) in [35]. Fig.2 (b) shows an example
of the measurement result of a Pt-TiO2+Al2O3-Pt memristor.
After applying voltage pulses with an increasing amplitude,
the memristor can be written to different resistance states.

The retention measurement is another important process for
characterizing a memristor. Memristors experience retention
degradation after a certain time or in different temperatures,
which leads to undesired volatile behaviours. For example,
in the study reported in [28], at room temperature, the Pt-
TiO2+Al2O3-Pt memristor in Table I only achieves 10 states
after 8 hours of electroforming3. When baking the memristor
with 85◦C, the memristor can only retain 4 states. Similarly,
the SiN-TiNOx+WOx+TiNOx-SiN memristor with 8 states
in [36], the W-Ta+TaOx-Pt memristor with 8 states in [37],
and the Au-Al2O3+HfO2-TiN memristor with 16 states in
[38] only retain their states up to 85◦C. Since retention is an
inevitable problem when employing memristor’s multi-state
characteristic, it has to be carefully considered and handled.

B. Multi-State Memristive System State of the Art

Although stand-alone memristors range from supporting 10
to 47 states (Table I), an essential problem is assessing this
capability within a CMOS/Memristor system. The highest
reported number of independent states in a memristive neural
network is 32 [24], which is equivalent to 5x bits. Yet, when
employing these states, multi-state memristors in an array are
unreliable and experience high device-to-device and cycle-to-
cycle variations, low yield rate, and limited precision [24],
which limit applicability in multi-state memristive systems.

The past five years have seen the emergence of fully inte-
grated memristive systems, especially RRAM in neuromorphic
computing [35, 39–48]. Among these works, the multi-state

2AlxOy stands for Aluminum Oxide such as Al2O3
3An electrical biasing routine undertaken to electrochemically activate a

device after manufacturing and before it is used for the first time. This
can frequently involve voltages many times larger than normal operating
conditions.
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Fig. 3: (a) The RRAM design in [40] presents 5 independent states in a single
cell. Each state is defined within a resistance range, and error windows are
defined between each resistance range. (b) The fully integrated RRAM in [46]
exhibits three resistance states (i.e HRS, IRS and LRS) and can store 1.58
bit/cell.

RRAM exhibits its advantage of storing more information in
a single cell [35, 40, 45, 46]. Table II shows the state-of-
the-art RRAM systems, and few observations are acquired.
Although weight resolution in an RRAM system can reach
up to 20-bit in [47], the highest reported number of states
in a single RRAM cell is 5, which is equivalent to 2.3-bit
information storage per cell [40]. As shown in Fig.3 (a),
in this work, error windows are defined between resistance
ranges to avoid the collision. When writing to a desired state,
write voltages are precisely controlled. This method is also
adopted in other multi-state RRAM designs such as the one
proposed in [29]. In 2021, a fully integrated RRAM exhibiting
3 independent states that can be employed to store 1.58 bit/cell
of information was reported [46]. As shown in Fig.3 (b), by
using this approach, an intermediate resistance state (IRS) is
used to achieve 3 states. Another RRAM employing 3 states
is also adopted in [35], a fuse state is employed beyond the
HRS. Nevertheless, the multi-bit weight does not correspond
to a true multi-state memristor cell, among all the state-of-the-
art memristive systems, most of them still only employ two
states, HRS and LRS, to achieve reliable switching.
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TABLE II: COMPARISON OF THE STATE-OF-THE-ART RRAM DESIGNS

ISSCC 18
[39]

VLSI 18
[35]

ISSCC 19
[40]

ISSCC 19
[41]

ISSCC 20
[42]

ISSCC 20
[43]

ISSCC 20
[44]

SSCL 20
[45]

CICC 21
[46]

ISSCC 21
[47]

ISSCC 21
[48]

Technology 65nm 14nm 130nm 55nm 130nm 130nm 22nm 90nm 40nm 40nm 22nm
Supply (Volt) 1.0 V 5.5 V 0.71-1.2 V 1.0 V 4.2 V 1.8 V 0.7-0.9 V 1.2 V 0.9 V 0.9 V 0.8 V

Multi-bit Weight Memristor Cell No Yes Yes No No No No Yes Yes No No
RRAM Type Digital Digital Digital Digital Analog Analog Digital Digital Digital Digital Digital
Array Size 512 x 256 n/a 256 x 16 256 x 512 784 x 784 256 x 256 512 x 512 128 x 64 256 x 256 256 x 256 1024 x 512
Array Type 1T1R 1S1R 1T1R 1T1R 2T2R 1T1R 1T1R 1T1R 1T1R 1T1R 1T1R

Max Input Resolution 1 bit n/a 1 bit 2 bit 1 bit 1 bit 4 bit 1 bit 1 bit 8 bit 8 bit

Max Weight Resolution Ternary 1.58 bit/cell 5.6 bit
2.3 bit/cell

3 bit Ternary Analog 4 bit 2 bit/cell 1.58 bit/cell 8 bit 8 bit

Max Output Resolution 3 bit n/a 1 bit 3 bit 8 bit 1 bit 11 bit 1 bit 4 bit 20 bit 14 bit
Write Verification No No Yes No No No No Yes Yes Yes No

Sensing mode Current Current n/a Current Current Voltage Current Voltage Voltage Voltage Voltage

III. MULTI-STATE CMOS/MEMRISTOR SYSTEM DESIGN
CHALLENGES

Multi-state memristors provide different methodologies for
designing future electronics and applications. In the previous
section, a few integrated multi-state RRAM systems have
shown their promising potential. However, not all technical
details about the technologies are publicly available. In this
section, we analyse the feasibility and challenges of the multi-
state memristor technologies and we combine the analysis
with the measurement results from our in-house fabricated
memristor devices.

A. Multi-State Memristor Device-Level Imperfection Factors

Multi-state memristors of different structures have been
reviewed in Section II-A, however, memristors still suffer
from device and process variations, inaccurate writing process,
retention degradation, low yield rate, etc. Combining with
the observations and measurement results of our in-house
fabricated Pt-TiO2-Pt memristor, we analyse the challenges
of using multi-state memristors in a large CMOS array.

1) Case Study: Measurement Result of an in-house Fab-
ricated Memristor: Fig.4 (a) shows the micrograph of the
multi-state Pt-TiO2-Pt memristor. To fully characterize the
memristor, a complete testing platform is set up as shown
in Fig.4 (c). A customised memristor testing platform and a
software interface developed in [49] are adopted to write and
read the memristor-under-test (MUT) with adjustable voltage
pulses of different amplitude, number, and frequency. In Fig.4
(b), two probes are connected to the positive and negative
terminals of a single memristor to minimize the factors that
can potentially affect its characteristics. Fig.4 (d) shows the
IV characteristics of the MUT. A pinched hysteresis loop
is formed successfully. By applying different amplitudes of
voltage pulses while fixing equal pulse number and pulse
width and vice versa, the memristor can be written to different
states. An example of the measurement results is shown in
Fig.4 (e).

While these measurements were performed and results were
obtained, we identified a few difficulties of using the multi-
state memristors in integrated circuits design. First of all,
multi-state switching specification in integrated circuits design
is stricter. A properly defined state has to be accurately
rewritten by the same pulse train which is often measured
within 2-3σ. This needs a “program and verify” approach
to guarantee the switching behaviour, but it adds circuit

 

 

 

 

(a)

 

 

 

 

(b)

 (c)

(d) (e)

Fig. 4: (a) The micrograph of an in-house fabricated Pt-T iO2-Pt memristor.
(b) Two probes are connected to the terminals of the memristor to minimize
the undesired effects. (c) The complete testing setup. (d) The pinched
hysteresis loop of the memristor after electroforming. (e) An example of
the measured results indicates the Pt-T iO2-Pt memristor reaches different
resistive states.

complexity. Under the same testing condition and voltage
pulses, we observed that the MUT did not always reach the
desired state, the successful forming and writing process are
not always perfectly repeatable. This leads to some states
becoming incompatible and cannot be considered as a stable
state. Moreover, memristors are sensitive to the voltage above
their threshold, and they can be damaged with high voltage
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when performing electroforming. Yet, there is not a constant
threshold voltage observed that can be applied to all the MUTs.
Thus, when designing a crossbar array, this variation has to
be considered to avoid broken memristors. Furthermore, based
on our measurements, “designed non-volatile” memristors are
not non-volatile under all possible configurations: it depends
on the forming process, pulse amplitude, and the current resis-
tance state (e.g. larger resistance state is more volatile). This
has been discussed in [50], and needs further investigation. In
addition, as discussed in Section II-A, retention degradation
must be considered in a CMOS/Memristor system. Although
there are reported investigations of retention such as in [23],
and methods to improve the stability such as the multilevel
incremental step pulse with verify algorithm in [51], there
is not a commonly adopted method to overcome the volatile
behaviour and guarantee data retention.

B. Memristor Modelling

Practically exploiting the existence of multiple states of a
memristive device for circuit applications requires a compact
device model. The model must accurately simulate the nature
of the various states observed in real devices. Measurements
have shown that not all aforementioned device states are
sufficiently reliable for circuit applications. For instance, cer-
tain states are meta-stable, and this means a device in such
state cannot persist its state over our interested timescales.
Stable states on the other hand are more useful for traditional
multi-bit circuit and memory applications. From a circuit
applications point of view, we are interested in constructing the
relationship between the characteristics of the applied stimulus
and the subset of device states that can be accessed by the
device from some initial states, upon the application of the
stimulus. Furthermore, we are interested in the relationship
among different states for a given input (i.e. determining
whether a given state can be obtained by using alternative
sets of programming pulses).

A large class of models in literature such as [52–54] are
deterministic models that are constructed as a set, consisting
of a differential equation and an algebraic equation. A typical
set is shown in (1) and (2).

ds

dt
= fu(u, s)fw(s) (1)

i(t) = G(s, u) · u(t) (2)

Here, s is the internal modelling state variable, fu(u, s) is the
input sensitivity function, and fw(s) is a window function. The
memristor conductance can be derived from the state variable
governed by (1) and the input u(t) using an appropriate
function G(s, u). The current through the device i(t) and
voltage across it u(t) are therefore related by (2).

In such a model, a given input stimulus and an initial
condition specify a unique deterministic trajectory in the state-
space, towards a terminal state. Upon reaching the terminal
state, no further change in state occurs despite the application
of input. In practice, these terminal states are defined by
using suitable window functions. In most models the window
functions simply bind the state variable into a valid range

used for modelling. In more complex models such as [55], the
window is a function of the state variable and the input stim-
ulus and can therefore additionally describe input-dependent
stable states to which the memristance saturates. Whilst this
is useful in cases where the device can be allowed to reach a
steady state, the models are not yet upgraded to account for the
transient volatility that describes the state of the device shortly
after the stimulus is removed. In practice, all valid values of
the memristance are not stable and the memristance typically
decays to another more stable value. The basic state evolu-
tion differential equation (1) can be extended to model such
behaviour by dividing the state space into stable regions and
unstable regions. Furthermore, relaxation dynamics can also
be introduced to describe volatile behaviour from the unstable
states towards the stable states. The modelling approach of
[56] introduces a single stable state into the dynamics via the
following addition to (1):

ds

dt
=

(
fu(u, s)−

s− ϵ

τ

)
fw(s) (3)

In (3) the only stable state is the value of s for which
ds
dt = 0. Typically fu(u = 0, s) = 0, thus the parameter ϵ
is equal to the value of this single stable state in this model.
The models presented in [57] and [58] extend this further by
allowing the parameter ϵ to be a dynamic variable, governed
by its own differential equation, driven by the input stimulus.
Therefore, in these models, the stable state of (3) is variable
and depends on the history of the input stimulus. Another
approach to introduce a series of stable and unstable states
in the governing dynamics is to impose a potential-energy-
like function on the dynamics, whose minima correspond to
stable states and maxima correspond to unstable states. For
example, [59] introduces a combination of exponential func-
tions and a sinusoid function to model the interfacial energy
and periodicity of the transport dynamics respectively. While
the model accuracy issue caused by numerical integration
of model equations have been addressed [60, 61] and there
are ongoing efforts to develop accurate models for specific
applications [62–64], the multi-state switching behaviour has
not been modelled to the comprehensiveness required for ro-
bust circuit design. With more and more characterization data
becoming available, it is expected that the memristor model
will be extended to cover switching metastability, temperature
dependencies, and also the electroforming process [65].

C. Circuits Design and Implementation

Peripheral circuit design in multi-state memristor arrays is
more challenging than in bi-state memristor arrays. Fig. 5
shows a common 1T1R architecture of the memristor crossbar
array. When writing a memristor to the desired state, row
and column selectors are used to select a device from the
array. One terminal of the memristor is connected to a pulse
generator and other terminals are connected to the ground or a
virtual ground. The pulse generator then sends programming
signals to the selected memristor. The read operation faces
more difficulties than the write operation. When reading the
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tions from the processor. Either the readout current or voltage is sensed by the
peripheral circuitry and converted to digital codes by an ADC. The converted
digital codes are sent back to the processor for signal processing.

memristance 4, low voltage pulses are applied to the selected
memristor, while the resulting current is measured. The read-
out voltage has to be sufficiently low to avoid changing the
memristance. The resulting current is interfaced with dedicated
readout circuitry and gets digitized. Referring to Table II, both
voltage mode and current mode sensing are adopted in state-
of-the-art designs. Current mode sensing provides higher speed
and larger sensing margin [26]. However, current mode sensing
is not preferred in a multi-state memristive system due to its
higher noise nature than voltage mode sensing, which leads to
inaccurate readout result when the memristor has more states.
Besides, current mode sensing also leads to large static power
dissipation [26]. On the other hand, in voltage mode sensing,
a current-to-voltage (I2V) circuitry is required. It has been
demonstrated in Table I that multi-state memristor with higher
HRS/LRS ratio leads to a larger current range. For instance, if
an amplifier is used to sense the current, the trade-off among
large dynamic range, low input offset, low input referred noise,
high open-loop gain, and high linearity must be optimized.
When the I2V conversion is finished, a high resolution analog-
to-digital converter (ADC) and a digital quantizer are needed
to precisely categorize the I2V output voltage to different
digital ranges which correspond to different distinguishable
resistance states such as the approach shown in Fig.3 (a) [42].
The more states that a 1T1R cell aims to achieve, the higher
resolution of ADC is needed. This leads to another trade-off
among multi-state switching, power consumption, chip area,
and circuit complexity. In addition, to ensure the memristor
is written to a desired state, a write-verify circuit is needed
[40, 45–47], which leads to a more sophisticated peripheral
circuit design. Thus, there is a wide Pareto surface to optimise
over and every bit of resolution requested from the memristive

4refers to the resistance or the conductance of the memristor depends on
different designs

RP RN Polysilicon
CMOS metal 1
Via
CMOS metal 4 (to memristor) 
Memristor boundary

Fig. 6: Layout of a 1T1R array corner with CMOS layers indicating memristor
placements. RP links to memristor top electrode and RN connects to its bottom
electrode. The insufficient layout data regarding the post-processed memristor
hinders the way to perform post-layout analysis for a whole picture.

devices has to be carefully balanced against the costs of the
corresponding peripherals.

Hybrid CMOS/Memristor circuits are typically fabricated
in two steps: the CMOS parts including the peripheral circuits
and the selecting transistors in the 1T1R cells are fabricated
using standard CMOS process, and then the memristors are
integrated on top of the CMOS through wafer-level post-
CMOS processing. Fig. 6 shows an example layout of a
1T1R array chip corner showing the CMOS layers and the
boundaries of custom memristor layers. There has been pro-
gressed in process design kit development to allow hybrid
CMOS/Memristor circuit design using design flows compati-
ble to standard CMOS process [66]. When designing circuit
especially for interfacing memristors at a large scale, both
layout-dependent and processing-dependent parasitic effects
need to be modelled. This will become possible as more
data becomes available from post-processed devices on top
of CMOS, and a dedicated characterization platform has been
constructed to facilitate this development [67].

IV. MULTI-STATE MEMRISTOR APPLICATIONS

A multi-state memristor can be understood as a device that
manifests variable resistance values in response to certain input
stimulus patterns. This feature means it can be used as a multi-
bit memory cell or a resistive trimmer, and also be used to
encode or process temporal dynamic signals such as physi-
ological signals. In this section we will discuss about three
potential applications corresponding to these characteristics
respectively.

A. Next-generation Memory and Computing

The potential to store multiple states in a single memristor
cell makes it promising for high-density memory implemen-
tation, potentially paving the way for the development of
digital and analog memory which will impact the technology
landscape of future computing systems. As shown in Fig. 7, a
multi-state memristor array is adopted in a conventional von-
Neumann computing architecture as an example. The CPU is
responsible for constantly adjusting the input data until multi-
bit information is stored at a specific memory cell. The high
density and low power advantages of the multi-state memristor
memory make it a potential candidate to compete with DRAM
in the future [1]. However, adopting multi-state RRAM in
the von-Neumann architecture leads to the long-distance data
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Fig. 8: Analog-based RRAM computing architecture. In a machine learning
training process, the input signals are encoded by a pulse signal encoder and
then applied to the memristor array. Each memristor cell works as a multi-state
memory but also as a computing unit, the computed MAC result is carried
by the readout current of every column to realise in-memory processing. The
result is transmitted to an analog signal processing circuit and then fed back
to the pulse signal encoder to update the write voltage. The final result is
post-processed and digitized to the output.

transmission between the CPU and the RRAM, which costs
considerable power, area, and more importantly, leads to
low processing efficiency [1]. As a multi-bit memory cell,
the memristor facilities computing-in-memory (CIM) which
addresses this inefficiency, and because it stores the weight and
performs Multiple-and-Accumulate (MAC) operation in the
analog domain, faster and more power-efficient neuromorphic
and artificial neural network hardware were built thanks to
this advantage [68–77]. Compared with an SRAM-based CIM,
the analog-based RRAM CIM eliminates excess full adders
and logic gates, substantially reducing chip area and power
consumption. An example of such analog-based in-memory
computing array is shown in Fig. 8. Notably, a fully integrated
CMOS/Memristor CIM chip which incorporates 3 million
analog RRAM cells was presented recently [78]. This chip
demonstrates directly the advantages of multi-state memristors
for building large-scale artificial intelligence hardware with
high energy efficiency, application versatility, and software-
comparable accuracy.
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Fig. 9: Conventional SAR ADC calibration scheme assisted by capaci-
tor/resistor arrays and a substitute scheme assisted by multi-state memris-
tors [79]. The MSB of the R-2R DAC is replaced by a memristor and this
memristor is considered as a trimming element. The error sign detection logic
is similar to the one proposed in [80], and the pulse generator is used to write
the memristor to a certain state based on the feedback error sign, the updated
memristance leads to a correction on the DAC output level, and thus improve
the accuracy of the A/D conversion.

B. Multi-state Memristor for Analog Trimming & Tuning

As early as 1976, laser trimming was used to improve the
linearity of an R-2R digital-to-analog converter (DAC) that
was constructed by thin-film resistors [81]. The resistance can
be adjusted by means of irradiating thin-film resistors with the
laser, thus the DAC output level can be trimmed. Compared to
the conventional scheme, this laser-trimming approach reduced
the complexity of the peripheral calibration circuit but the
laser is difficult to be applied to today’s integrated circuits.
Alternatively, memristors can be used for calibration in the
similar way as laser-irradiated thin-film resistors because they
both offer variable resistance in principle. In recent years,
some studies show that memristors tunability can be employed
to trim circuit imperfections (i.e mismatches, offsets) in am-
plifiers [82] and ADCs [79].

Taking the successive-approximation ADC (SAR ADC) as
an example, as shown in Fig.9, in a conventional SAR ADC
calibration scheme, the calibration information needs to be
stored in calibration registers in advance of trimming the DAC
mismatches and comparator offsets. When the resolution of the
SAR ADC is increased, more calibration bits are required to
maintain good linearity, thus demanding more registers and
calibration components (i.e capacitor and resistor arrays) to
store the calibration information and correct the errors, which
induces larger latency, power consumption, and area. Thanks
to the in-memory processing nature of memristor, a smaller,
faster and more power-efficient design can be realised by
replacing conventional calibration with a memristor-assisted
calibration scheme. In Fig.9, calibration registers and correc-
tion circuits are no longer required as the memristor itself
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Fig. 10: An envisaged memristor-centric neural interface system. A multi-state
memristor array can be used to construct a matching template [83], performing
spike sorting algorithms to process the raw data from the high-density neural
probe at the front end. After spike sorting, the output data rate is significantly
reduced and can thus be transmitted wirelessly to the external hardware.
Closed-loop neuromodulation for brain disorder (eg. epilepsy) treatment can
be achieved using multi-state memristors to analyse the neural states in real
time, providing feedback to the brain through neural stimulation.

can store the calibration information. The calibration can be
conducted by applying programming pulses to increase or de-
crease the memristor resistance according to the error polarity
so that the mismatch errors in the DAC and the comparator are
minimized. In addition, the multi-state switching property also
provides a wider calibration range for the ADC mismatches,
which can potentially realise more precise trimming than the
conventional approach.

C. Multi-State Memristor for Neural Interfaces

The emerging techniques for using multi-state memristors
to perform bio-signal processing have shown promising re-
sults in energy efficiency improvement, which is vital for
embedding intelligence in future biomedical implants [83–
85]. Encoding the neuronal spikes into multi-state memristors
results in real-time sub-µV/ch spike detection [84]. In [85],
memristors with conductance states programmed to multiple
values (1∼20µS) were used to construct coefficients in a low-
power finite impulse response (FIR) filter bank, which can
process neural local field potentials with two orders of magni-
tude better energy efficiency than conventional CMOS filters.
Significant reductions in circuit area, power consumption, and
processing latency in neural spike sorting were achieved using
the multi-state memristors to construct template coefficients
(4-bit resolution) for template-matching-based classification
algorithms [83]. Notably, the retention characteristics reported
in [83] ensures a reliable storage of the neuron templates
for over 2.7 hours. This satisfies the requirement in typ-
ical neural electrophysiological experiments, while periodic
refresh operation could be applied for longer experiments
or in clinical application scenarios. A multi-state memristor
array will prospectively be the core part of a closed-loop

neural interface system shown in Fig.10. The state-of-the-
art neural probe technologies today support implantation of
over 10,000 microelectrodes acquiring a large volume of data
from the brain [86, 87]. Multi-state memristor arrays provide
a promising solution to process these data in situ, extracting
the key information in real time to facilitate closed-loop
neuromodulation and wireless data connection to the external
hardware.

V. DISCUSSION

Permeating throughout this work are a number of key
observations and trends. We begin by noting the gradual move
towards analog memristive devices. Central to this has been
efforts to increase the resistive state resolution, and yet now
we seem to have reached the point where the bottleneck is no
longer the device, but our ability to read it precisely. As such,
in the future the new “spec battleground” is likely to revolve
around obtaining reliability and predictability of behaviour,
which disaggregates into high retention, predictable resistive
state change given input parameters, good cycling endurance,
etc. The ultimate limits of what memristors can achieve in
terms of these specs are unclear at the moment. What is
certain, however, is that large-scale characterisation studies
that are increasingly comprehensive (i.e. attack multiple oper-
ating parameters and multiple behavioural tests) will become
increasingly important.

Next, we notice that as memristive technologies mature,
their interaction with peripherals becomes increasingly impor-
tant. This manifests itself into two major directions: First, an
increasingly pressing need for comprehensive memristor mod-
els is likely to drive the need for large-scale characterisation.
This includes low-level (electrochemistry-level) modelling,
which we expect will be essential for providing reliable models
of what is a time-varying component; the very configuration
of atoms within a memristor changes during operation, which
excluding ageing and other undesirable effects is not the
case for any other component. The limits of predictability
(and therefore modelability) of memristive devices of various
underlying electrochemical mechanisms are still unclear to
us and a very big question to answer. Secondly, we already
observe a very pressing imperative to engineer devices that
do not require electroforming and that can exhibit switching
with voltage/current combinations that are sufficiently low
to admit provision by typical peripheral circuits in modern
CMOS. Specifically, the series resistance of CMOS switches
and the <2V head-rooms seen starting from CMOS techs
going as far back as 180nm realistically demand devices that
can switch in sub-V and sub-10µA conditions (and yet still
feature a “safe zone” of biases that allow read-out without
disturbing the underlying resistive state). Despite the very
beneficial, exponential trade-off noted between write voltage
and duration [88, 89], it is unclear how much voltage head-
rooms can be squeezed before it becomes exceedingly difficult
to support both non-invasive read operations and effective
write operations.

Finally, we note the large variety of applications in which
memristors have found very promising paths of exploitation. A
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potentially interesting observation is that in most applications
(excluding standard memory storage), memristors seem to
have found a very solid niche as parameter-setting elements.
This seems to be highly beneficial even for systems where
most of the signal processing around them is performed in the
digital (or even time) domain. The idea of “using analog to
trim digital”, as in the cases where analog weights trim the
decision surface of an artificial neural network or analog pa-
rameters determine the “hit” window for a template-matching
function, seems to be very fundamental and powerful. At its
limit it may generate a powerful “technological resonance”
with standard digital techniques, by enabling futuristic sys-
tems where extremely down-scaled digital circuits are held
within their operating parameters via aid from analog trim-
ming (imagine a nanoscale resistor near every 2nm transistor,
trimmed to ensure an entire array of nano-transistors has
exactly the same channel on resistance). Once again, it is
unclear exactly how far this concept may go.

VI. CONCLUSION

Memristor related research has provided a practical solution
in the era beyond CMOS. Nevertheless, precisely executing
write and read, select and control, and verifying the non-
volatility of a multi-state memristor are still a leading-edge
research direction in both material science and electrical
engineering. In this paper, we introduced and reviewed the
state-of-the-art multi-state memristive systems. More impor-
tantly, combining the most advanced research results with our
previous studies and observations, we analysed the challenges
of designing a multi-state CMOS/Memristor system in the
aspect of device, memristor modelling, peripheral circuits
design, and layout and post-processing. While memristor is
an emerging device and as of today there are still areas
which require further research and improvement, we have
also highlighted a number of promising applications where
the multi-state memristor technology could be game changers
as the technology advances. We believe the promising results
obtained recently in these applications (e.g. the AI accelerator
[78] and neural signal processing [83] chips reported very
recently) will drive the research community to improve the
technology further. Overall, the picture for the field of multi-
state memristive technologies seems to consist of two major
elements: a) the past and present, where a host of applications
and intriguing ideas have been demonstrated and are maturing
on the back of what the technology can already deliver or is
judged to be very likely to deliver in the not too distant future
and b) the future, where the big questions to be uncovered
revolve around exactly how much more potential memristors
have; this in terms of everything from down-scaling and multi-
state precision to retention, richness of internal mechanics
and even manufacturing costs, material choice (e.g. what can
we achieve using only Silicon and a few relatively abundant
dopants?). Thus, in our view, the field promises an exciting fu-
ture spanning new technologies and science from fundamental
electrochemistry and fabrication and all the way up to large-
scale memristor-enabled systems.
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