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Abstract—The Internet of Things is expected to be overpop-
ulated by a very large number of objects, with intensive inter-
actions, heterogeneous communications and millions of services.
Consequently, scalability issues will arise from the search of the
right object that can provide the desired service.

A new paradigm known as Social Internet of Things (SIoT)
has been introduced and proposes the integration of social
networking concepts into the Internet of Things. The underneath
idea is that every object can look for the desired service using its
friendships, in a distributed manner, with only local information.

In the SIoT it is very important to set appropriate rules in the
objects to select the right friends as these impact the performance
of services developed on top of this social network. In this work
we addressed this issue by analyzing possible strategies for the
benefit of overall network navigability. We first propose five
heuristics which are based on local network properties and that
are expected to have an impact on the overall network structure.
We then perform extensive experiments, which are intended to
analyze the performance in terms of giant components, average
degree of connections, local clustering and average path length.

Unexpectedly we discovered that minimizing the local clus-
tering in the network allowed for achieving the best results in
terms of average path length. We have conducted further analysis
to understand the potential causes, which have been found to be
linked to the number of hubs in the network.

Index Terms—Internet of Things, social networks, SIoT,
navigability, search engine

I. INTRODUCTION

The Internet of Things (IoT) integrates a large number of

heterogeneous and pervasive objects that continuously gener-

ate information about the physical world. Most of this infor-

mation is available through standard Web browsers and several

platforms already offer application-programming interfaces

(APIs) for accessing to sensors and actuators. Accordingly,

the IoT technologies make possible to provide new services to

end-users in disparate fields, from the environment monitoring

to the industrial plants running, from the city management to

the house management.

As explained in [1], the search of each specific service

provided by the devices in the IoT represents a crucial

challenge: the number of objects connected to the network

is increasing exponentially, leading to an enormous searching

space. According to [2], by 2015 the RFID devices alone

will reach hundreds of billions. The network traffic, both in

terms of the number of accesses to the devices and of the

number of queries received by the search engines, will soon

become too large to be managed efficiently by the existing

platforms. Additionally, nowadays the interaction model is

based on humans looking for information provided by objects

(human-object interaction), but in the near-future this model

will quickly shift to the object-object interaction, where objects

will look for others to provide composite services for the

benefit of the humans, increasing the interaction complexity.

Consequently, scalability issues will arise from the search of

the right object that can provide the desired service.

In this context, several approaches for real-time search

have been proposed, such as those described in [3] and [4]. A

common feature is that these engines are based on centralized

systems and, as such, can not scale properly with the number

of devices or/and the number of queries.

To cope with scalability issues of centralized systems, a

new paradigm known as Social Internet of Things (SIoT) has

been introduced [5]. SIoT proposes the integration of social

networking concepts into the IoT solutions. In the SIoT, every

node is an object capable of establishing social relationships

with other things in an autonomous way according to rules set

by the owner.

A SIoT network is based on the idea that every object can

look for the desired service by using its relationships, querying

its friends and the friends of its friends in a distributed manner,

in order to guarantee an efficient and scalable discovery

of objects and services following the same principles that

characterize the social networks for humans. The assumption

that a SIoT network will be navigable is based on the principle

of the sociologist Stanley Milgram about the small-world

phenomenon. This paradigm refers to the existence of short

chains of acquaintances among individual in societies [6];

starting from Milgram’s experiment, Kleinberg concluded that

there are structural clues that help people to find a short path

efficiently even without a global knowledge of a network [7].

According to this paradigm, each object has to store and

manage the information related to the friendships, implement

the search functions, and eventually employ additional tools

such as the trustworthiness relationship module to evaluate the

reliability of each friend. Clearly, the number of relationships

affects the memory consumption, the use of computational

power and battery, and the efficacy of the service search

operations. The friendships usefulness varies from friend to

friend and then which object to promote as a friend among the

potential candidates is the a key aspect for the overall system

performance. It results that the selection of the friendships is

key for a successful deployment of the SIoT.

Even if social-related measures have been used to exploit

the influence of a node, to the best of our knowledge, this
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is the first time they are used to select a set of nodes in a

Social IoT scenario. This issue has been addressed in [8],

of which this paper is an extension. Specifically, we have

analyzed possible strategies to be implemented by each node

when adding new friends taking into account the impact on

the network navigability. The major contributions of the paper

are the following:

Firstly, we proposed five heuristics which are based

on local network properties: neighborhood degree and local

clustering. These heuristics are used to rank the nodes in

decreasing order and choose the ones that maximize the

chosen heuristic.The performance has then been analyzed in

terms of global network navigability, i.e., routing is performed

by assuming that each object has a view about the global

social network topology. From simulations, it resulted that the

approach reaching the best results is the one when objects

select friends (or substitute old friends) so that on average the

resulting friends have a low local neighbor degree.

Secondly, we analyzed how the proposed strategies behave

when the routing is performed by each objects only exploiting

local information about their friends, namely their degree. In

this way each node is not obliged to have the local network

topology, reducing the routing complexity. Unexpectedly, it

has been discovered that minimizing the local clustering in

the network allowed to achieving the best results in terms of

average path length, and identified the concentration of hubs as

the motivation of this discovery. Accordingly, we proposed a

new methodology to dynamically adjust the number of friends

allowed per object on the basis of the number of hubs in the

network, so that the degree distribution is kept closer to a

power law distribution. In this way, we are able to guarantee

local network navigability at the limited expenses of the need

of a central server monitoring the number of hubs in the

network.

The paper is organized as follows. In Section II we present

the scenario of the social IoT and provide a quick survey of the

solutions for the search of services in the IoT. In Section III

we introduce the key aspects of network navigability and the

strategies for link selection, whereas Section IV presents the

experimental evaluation. In Section V, we show the differences

between global and local navigability while Section VI draws

the final remarks.

II. BACKGROUND

A. Social IoT

The idea of using social networking elements in the IoT

to allow objects to autonomously establish social relationships

is gaining popularity in the last years. The driving motivation

is that a social-oriented approach is expected to boost the dis-

covery, selection and composition of services and information

provided by distributed objects and networks that have access

to the physical world [9], [10], [11] and [12].

Without losing the generality, in this paper we refer to

the Social IoT model proposed in [5] (we use the acronym

SIoT to refer to it). According to this model, a set of forms of

socialization among objects are foreseen. The parental object

relationship (POR) is defined among similar objects, built in

the same period by the same manufacturer (the role of family

is played by the production batch). Moreover, objects can

establish co-location object relationship (CLOR) and co-work

object relationship (CWOR), like humans do when they share

personal (e.g., cohabitation) or public (e.g., work) experiences.

A further type of relationship is defined for objects owned

by the same user (mobile phones, game consoles, etc.) that

is named ownership object relationship (OOR). The last

relationship is established when objects come into contact,

sporadically or continuously, for reasons purely related to

relations among their owners (e.g., devices/sensors belonging

to friends); it is named social object relationship (SOR). These

relationships are created and updated on the basis of the

objects’ features (such as: type, computational power, mobility

capabilities, brand, etc) and activities (frequency in meeting

the other objects, mainly).

B. Service search in IoT

In this section, we provide some examples of the existing

solutions for service search in IoT context, in order to highlight

existing problems. [13] and [4] cope with the large number

of real-world entities by using a hierarchy of mediators: the

ones in the lower level are responsible for groups of sensors

in geographical areas, while the single mediator on the top

level maintains an aggregated view of the entire network.

These approaches are not scalable in case of frequent data and

network changes whereas work well in case of pseudo-static

metadata.

In [3], the authors propose a centralized system where ob-

jects are contacted based on a prediction model that calculates

the probability of matching the query. In this way, the search

engine does not need to contact all the sensors leading to good

scalability with the number of objects; nevertheless, it is not

scalable with the network traffic, since the number of possible

results is significantly larger than the number of actual results,

so a lot of sensors are contacted for no reason.

III. REFERENCE SCENARIO

A. Distributed search in the IoT

In the same way the search of contents of different kind,

such as videos and web pages, is one of the most popular

services on the Internet, the search of data from sensors and

real-world entities is expected to be a major service in the IoT

in the near future. However, the huge number of objects and

the frequent changes in their data put a great stress on the

service search.

In the SIoT, the objects inherit some capabilities of the hu-

mans and mimic their behavior when looking for new friends

or services [11]. Indeed, the relationships devised for the SIoT

follow the ones studied in sociological and anthropology fields,

such as [14] and [15], since the owner sets the rules for their

creation. The object then creates and manages several kinds of

relationships and uses them to navigate the network, looking

for services. The object asks its friends if they can provide

a particular service or if they “know”, i.e. if they have any

connections to, nodes that can provide it.
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Figure 1 provides a simple example of a SIoT network,

where links represent friendship ties while the bold line is

the best route for node 1 to reach the requested service. In

this network, when node 1 needs a particular service, it does

not send a request to a centralized search engine, but it uses

its own friendships to look for, in a decentralized manner, a

node with the desired service, by contacting its friends and the

friends of its friends. In this scenario, we aim to evaluate the

impact of several strategies for link selection in order to select

an optimal set of friendships to limit the use of computational

resources needed for the search operations.

B. Key aspects of Network Navigability

In the past years, the problem of network navigability

has been widely studied. As defined by Kleinberg [16], a

network is navigable if it “contains short paths among all (or

most) pairs of nodes”. Several independent works, such as

[17] and [18], formally describe the condition for navigability:

all, or the most of, the nodes must be connected, i.e. a

giant component must exist in the network, and the effective

diameter must be low. In other words, the greatest distance

between any pairs of nodes should not exceed log2(N), where

N is the number of nodes in the network.

When each node has full knowledge of the global network

connectivity, finding short communication paths is merely a

matter of distributed computation. However, this solution is

not practical since there should be a centralized entity, which

would have to handle the requests from all the objects, or

the nodes themselves have to communicate and exchange

information among each other; either way a huge amount of

traffic would be generated.

Nevertheless, starting from the Milgram experiment [6],

Kleinberg concluded that there are structural clues that can

help people to find a short path efficiently even without a

global knowledge of a network [7] [19]. This means that

there are properties in social networks that make decentral-

ized search possible. Let us suppose to have a network as

represented in Figure 1, where node 1 wants to get access

to the information owned by node 10 (1 doesn’t know where

the information is located); obviously the optimum path leads

through nodes 5 and 7. However, node 1 has three possible

paths to choose from and only knows few information about

its neighbors: the property that will guide node 1 to select node

5 as a next hop is that node 5 has a high degree of centrality,

i.e. it has many connections. As such, node 5 represents then

a network hub, i.e. a node that is connected to many other

nodes. The ability for a node to quickly reach a network hub

is assured by the existence of network clusters where nodes

are highly interlinked: this characteristic is assured with high

value of the local clustering coefficient, described by Watts and

Strogatz [20], and is calculated for each node in a network.

It measures how close the neighbors of a node are to being a

clique, i.e. a complete graph, and it is calculated as follows:

Clocal(n) =
2 ∗ en

kn ∗ (kn − 1)
(1)

where kn represents the number of neighbors of the node

n and en is the number of edges among the neighbors.
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Fig. 1: Decentralized search

Still, node 5 needs some additional hints in order to

choose node 7 over node 6, since both of them have the

same degree. This characteristic is the node similarity, an

external property to the network, derived from some additional

information about the nodes. In the SIoT, node similarity will

depend on the particular service requested and on the types of

relationships involved.

The problem of global network navigability is then shifted

to the problem of local network navigability, where neighbor-

ing nodes engage in negotiation to create, keep or discard their

relations in order to create network hubs and clusters.

C. Selection of network links

As described in Section II-A, objects can create, through

the mimic of their owner’s behavior, several types of rela-

tionships. Other types of friendships could be added in the

future, leaving to the node the hard work to cope with a huge

number of connections. To make the service search process

more efficient and scalable, we propose five heuristics to help

the nodes in the process of selection of the best set of friends.

At first, a node accepts all the friendship requests until

it reaches the maximum number of connections allowed -

Nmax. This parameter is intended to limit the computational

capabilities a node needs to resolve a service search request.

Then, to manage any further request, a node sorts all the

friendships and the new request based on one of the following

strategies:

1) A node refuses any new request of friendships so that

the connections are static.

2) A node sorts its friends in decreasing order of their

degree, with the aim to maximize the number of nodes

it can reach through its friends, i.e. to maximize the

average degree of its friends.

3) A node sorts its friends in increasing order of their

degree, with the aim to minimize the number of nodes

it can reach through its friends, i.e. to minimize the

average degree of its friends.

4) A node sorts its friends in decreasing order of their

common friends, with the aim to maximize its own local

cluster coefficient.

5) A node sorts its friends in increasing order of their

common friends, with the aim to minimize its own local

cluster coefficient.

From the so-constructed rank list, a node accepts as its

friends only the first Nmax nodes. If the friendship with a
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Fig. 2: Selection of network links

node is already active then nothing happens, otherwise a new

friendship is created and the node with the lowest value is

discarded.

Let us consider a network example, as shown in Figure 2,

where the maximum number of connections is set to Nmax =
5 and let us suppose that node 2 sends a friendship request to

node 1 (dashed line). Since node 1 has already reached Nmax

connections, the decision on this request will depend on the

implemented strategy. If node 1 implements strategy 1, it will

simply refuse the request; with strategy 2, node 1 checks the

degree of all its friends and of node 2 and then it terminates

the relationship with node 4, which has only one more friend,

in order to accept the request from node 2 (3 friends). In the

same way, using strategy 3, node 1 terminates the relation with

node 6, which has Nmax connections, and accepts the request.

With strategy 4, node 1 compares the common friends among

its friends and with the requester node and discards the node

3 with which it has no common friends. In a similar way, with

strategy 5, node 1 discards the relation with node 5 to which

it has the highest number of common friends.

IV. EXPERIMENTAL EVALUATION

A. Simulation setup

With this simulation analysis, we want to study the impact

of each of the proposed strategies on the objects’ network

navigability.

To analyze the navigability of a SIoT network, we would

need information about the requests of establishing new rela-

tionships the objects would receive on the basis of their profile,

settings and movements. And we would need this information

for huge numbers of real objects. Even if some platforms

already exist that implement the SIoT paradigm, such as [21],

this data is not available to date as real applications have

not been deployed yet. For this reason we had to adopt an

alternative solution to test our heuristics as follows:

1) first we analyze a social network of humans;

2) from this, we extract the information needed to build the

social network of objects;

3) in the next stage, we extract the characteristics of this

network and use these to run a model that generates

synthetic networks with similar properties;

TABLE I: Parameters of Brightkite, SIoT network and Barabási-
Albert model

Brightkite SIoT network BA model

Nodes 12275 14557 15000

Number of
Edges

39515 67363 75000

Average Path
Length

4.570 4.534 3.905

Average Clus-
tering Coeffi-
cient

0.247 0.375 0.255

Diameter 14 14 6

Average
Degree

6.631 9.808 10

Giant Compo-
nent

84.32% 93.45% 100%
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Fig. 3: Degree distribution for Brightkite and SIoT

4) and finally we apply the strategies described previously

and analyze the results.

For the first step we relied on the real dataset of the

location-based online social network Brightkite obtained from

the Stanford Large Network Dataset Collection [22]. This

dataset consists of more than 58k nodes and more than 200k

edges, so in order to better analyze its properties and compare

them to synthetic data, we consider only the nodes enclosed

between Atlanta and Boston for a total of approximately 12k

nodes and 40k nodes. However, the output of the Brightkite

dataset is a trace of the position of humans and of their

relationships; since we are interested in the relationships of

the objects we have extended it as follows (step 2): starting

from the scaled network, we suppose that every person carries

at least one smart object, for example a smartphone, so when

they get in touch with their friends their objects also come

into contact and have then the possibility to create a SOR.

In a similar way, we also simulate the creation of CWOR

and CLOR. The resulting SIoT network has around 14.5k

nodes and 67k edges. The parameters of the two networks,

obtained from Gephi [23], are showed in Table I, while the

node distribution is shown in Figure 3 for Brightkite (in red)

and SIoT (in blue) networks.

Both networks comply with the condition for network

navigability: at global level, there is a giant component and the

average path length is low; at local level, we can observe how

the nodes are highly interlinked, thanks to the high values of

the clustering coefficients, and the networks have a scale-free
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Fig. 4: Giant component for all the strategies

degree distribution thus indicating the existence of hubs.

Moreover, it is important to point out that even if the SIoT

is expected to have a shorter average path length with respect

to classical social networks, this does not happen since the new

relationships are due to CLORs and CWORs that are indeed

short range; however, for the same reason, it is possible to

observe a 50% increment of the average local clustering.

To generate and analyze similar networks, we rely on the

Barabási-Albert model [3], which is able to generate scale-

free networks based on preferential attachment. Starting with

a small number of nodes, at each step, it adds a new node

with m edges (m is a parameter for the model) linked to

nodes which are already part of the system. The probability

pi that a new node will be connected to an existing node i
depends on its degree ki, so that pi = ki/(

∑
j kj ) leading to

the name preferential attachment. The results of this model,

using 15k nodes, connecting each node to m = 5 other nodes

and averaged over 5 runs, are shown in Table I, and it can be

observed that it represents a good approximation for the real

scenario.

B. Simulation results

This section describes the simulation results in terms of

giant component, average degree of connections, local clus-

tering and average path length for all the heuristics described

previously. Due to their complexity, we decided to run the sim-

ulations considering a maximum number of connections for a

node equals to Nmax = 50, 30, 10 friends. The results show

this approximation is adequate to understand the behavior of

the network.

Figure 4 shows the percentage of the giant component

for all strategies. It is important to note that if we try to

minimize the neighborhood degree or the local clustering,

we can always achieve a giant component which includes all

nodes. This happens due to the fact that, when a node with

Nmax connections receives a friendship request from a low

connected node, it will always accept it to the detriment of a

node with higher connectivity which has high probability to

remain connected to the network. Moreover, we can observe

that when using the strategy 1, 2 or 4, the dimension of the

giant component naturally decreases with the reduction of the

Nmax value, thus making the network not fully navigable. In

the case of using the strategy 2, a node connected to other
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Fig. 5: Average degree for all the strategies
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Fig. 6: Local cluster coefficient for all the strategies

nodes with Nmax friends will not accept any other relation

request, similarly to a node in a near-clique in strategy 4.

Furthermore, we also want to point out, that with strategy 2

and 4 a node can not refuse or discard relationships if this

action is going to isolate a node; in this way, we can achieve

larger giant component and we do not have isolated nodes but

at least isolated couples of nodes.

From Figure 5 we can observe how the average degree

changes with different strategies. Strategy 3 tries to equalize

the number of friendships between the nodes, resulting in

a higher number of relationships in the network and conse-

quently a higher average degree. Similarly, strategy 5 discards

the nodes with higher local cluster coefficient, to connect with

nodes with low values. Yet, since the local cluster coefficient

is not directly connected to the number of friends, the average

degree is lower than in strategy 3. Strategy 2 achieves the

lowest average degree due to the fact that the resulting network

has a core of high degree nodes, with Nmax friendships, and

highly interconnected between themselves. These nodes hardly

accept any new friendship, leaving many nodes with a low

degree.

Figure 6 shows the local cluster coefficient. Strategy 4

and 5 exhibit the highest and lowest value respectively, since

they are designed to achieve these results. Strategy 1 has a

high value due to the triad formation step in the model and to

the fact that there is not further rearrangement of relationships

after these has been created; this effect is even stronger when

the number of maximum connections is decreasing. Strategy

2 achieves a higher value than the model since the core nodes
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in the network are highly interconnected. It is important to

point out the behavior of the local clustering coefficient for

Strategy 3: it has a lower value than the model and decreases

with Nmax. This is a result of the equalization of the number

of friendships, leading to a high average degree and easily

destroying the triad formation step in the model.

V. GLOBAL VS LOCAL NAVIGABILITY

In this section, we show how the different strategies

impact on the navigability of the network both at global and

local levels.

Figure 7 shows the average path length when the nodes

have global knowledge of the network. This means that every

node is able to find the best path to reach its destination. In

particular, we can observe that for Nmax set to 50 friends all

the strategies perform around the same; however, if we reduce

the number of friends allowed, some differences emerge:

strategies 3 and 5 provide shorter paths than the others. This

is due to the fact that these strategies manage to create many

long distance relationships. On the other hand, strategy 4 has

the worst performance for the exact opposite reason: nodes

are too close to create a clique, i.e., a subset of nodes with a

full mesh topology, and have difficulties reaching other nodes;

similar reasons also hold for strategies 1 and 2.

However, as we said in Section III-B, we are interested in

local navigability, i.e., in the ability of each node to reach the

destination making use of only local information. To this we

consider the following straightforward local routing approach.

The scenario is of object A that wishes to communicate with

node B. The first task is to check whether it has a direct

connection with it, i.e., B is among its friends. If not, A

asks to its friends with the highest connectivity degree, say

X, to find a route to B. X then repeats the process till B

is reached. Figure 8 shows the results, in terms of average

path length, when the nodes only exploit local knowledge of

the network. This figure shows that in the network generated

with the Barabási-Albert model, without applying any of the

proposed strategies, the average number of hops is around 7.5,

while the best strategy needs an average of around 32 hops to

reach the destination when we consider Nmax equals to 50.

This value is unthinkable if applied to a real network; however,

these simulations do not take into account three fundamental

aspects:

• we have considered all the possible pairs of nodes to be

uniformly distributed over the network; however, it has

been proved that friends share similar interests (bringing

to the homophily phenomenon [24]), so that it is highly

probable to find another node in the friends list or in the

friend of a friend (FOAF) list, thus reducing the average

path length among all the pairs of nodes;

• we have not considered node similarity for the discovery

operations: indeed, in our simulations, nodes try to reach

their destination using only information about the degree

of their neighbors. However, external properties could

be used to select the right nodes (among the available

friends) to which ask for the desired service. One of

these properties is the profile of the friend involved, its
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Fig. 7: Average path length for all the strategies with global knowl-
edge of the network
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trustworthiness [25], and the type of relationship that

links it to the requester;

• we have not discussed about delivery of the service:

depending on how the SIoT model is implemented,

the service can be delivered either directly relying on

the communication network (non-overlay structure) or

through the friends that discovered the service, i.e. the

social networks is used to transmit the service on top of

the existing transport network (overlay network). In the

latter case, the average path length is still an important in-

dicator, however a longer path does not necessarily mean

a higher end-to-end delay, since the delay is influenced

by several factors such as the congestion of the nodes.

The analysis of the average path length is quite surprising

also for another reason. As we expected, when Nmax is equal

to 50 friends, the best strategies are the 2nd and the 4th, which

try to maximize the parameters for local navigability, namely

the degree and the local clustering coefficient, respectively.

But, if we decrease Nmax, the best strategy becomes the

number 5, in complete contrast with Kleinberg’s findings, as

it tries to minimize the local clustering. To understand this

behavior, we analyze the degree distribution of the network,

as shown in Figure 9 for strategy 2; we analyze only this

strategy for simplicity but the same considerations hold for

the others as well. The red + mark shows the behavior of the

network without any limit for the number of friendships, while

the green square, the blue diamond and the purple star refer
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Fig. 9: Degree distribution for different value of Nmax

to the case of Nmax set to 50, 30 and 10 friends respectively.

Without any strategies to select the friendship, the degree

distribution resembles a perfect power law. If we set a maxi-

mum number of friendships we can notice two different effects

that make the distribution deviates from a power law: firstly,

there are a certain number of nodes with few connections,

less than four, that have more difficulties to reach the rest

of the network: the lower Nmax the greater the number of

isolated nodes. Secondly, there are a lot of nodes that reach

the maximum number of friends allowed: once again, the

lower Nmax the greater the number of nodes with Nmax

connections. With Nmax equals to 10, the degree distribution

is not a power law anymore, while in the other scenarios, it

still follows a power law for the interval [5, (Nmax − 1)].
In particular, this last aspect deeply impacts on the naviga-

bility of the network. When a node has to choose which other

node deliver a message to, its choice is driven by the degree

of its neighbors: if the networks has too many hubs with the

same degree, the nodes have no clues to select the next hop.

For this reason, when we reduce Nmax, the properties for local

navigability no longer apply and strategies that perform better

at global level, start to perform efficiently even at local level.

As a result of this analysis, we have introduced a variant in the

strategies so that Nmax varies during the network life based on

two different aspects: the total number of nodes in the network

and the number of nodes that actually reach Nmax friends; in

other words, we want to monitor the percentage of hubs in

the networks. To this, we need to constantly know both the

number of nodes in the network and how many nodes have

already reached Nmax connections. These values are related

to global statistics, but can be easily computed by the server;

in the SIoT scenario, objects continuously communicate with

the server in order to update their profile, send the data, look

for information and so on, and then have the possibility to

retrieve these statistics.

In particular, Nmax increases of 10% when:

there are x% of N nodes in the network with at

least y% of Nmax friends.

so that x represents the maximum percentage of hubs

in the network, while y represents the threshold for a node

to become a hub. It is then possible to regularly check the

TABLE II: Hubs percentage for all the strategies with different
threshold

No
Limit

First
Nmax

friends

Max
degree

Min
degree

Max
CC

Min
CC

y x

100% 0.23% 1.36% 1.49% 1.05% 1.37% 1.17%

90% 0.3% 1.71% 1.8% 1.33% 1.67 % 1.54%

80% 0.41% 2.23% 2.28% 1.67% 2.15% 1.97%

70% 0.55% 2.81% 2.88% 2.23% 2.69% 2.53%

60% 0.72% 3.62% 3.78% 3.01% 3.47% 3.29%

behavior of the network through the setting of these two

parameters and modify them to directly adjust the navigability

of the network.

We then studied the behavior of the networks obtained

with the Barabási-Albert model, with or without applying

the proposed strategies, to understand when a node can be

considered a hub and how many hubs are necessary in a

network to maximize network navigability in terms of the

average path length. Table II presents the best combinations

x-y for the different strategies, considering only the scenario

where Nmax is set to 50 friends, that is the only scenario

where Kleinberg’s findings still hold; for the network without

any strategies, we take into account a maximum number of

friends equals to 110, which represents the intersection of the

power law with the degree axis.

If we consider the “no limit” scenario, it is clear that the

number of hubs required for the network to be navigable is

really low, less than 1%. Moreover, if we relax the condition

for a node to become a hub, namely we lower y, the concen-

tration of hubs in the network rapidly increases. As expected,

strategies 3 and 5, have the lowest number of hubs since their

goal is to distribuite connections among all the nodes, while

the aim of strategy 2 is to maximize the connections of a nodes

and then it has naturally the highest concentration of hubs.

We then decided to analyze the behavior of the network

considering only strategies 2 and 5, because, as proved in

Figure 8, they show the best performance in terms of average

path length when using only local information when Nmax is

set to 50 or lower than 30 nodes, respectively.

Figure 10 shows the average path length for different

values of the maximum percentage of hubs x in the network.

By reducing the number of hubs, the performance of the

network increases as suggested by Kleinberg. However, the

choice of the best strategy is still an important issue: strategy

2 outperforms strategy 5 even with a higher threshold y. In

general, the lower the percentage of hubs or the threshold for

a node to be a hub, the lower the average path length. If we

relax too much these parameters, we reach the scenario “no

limit”. On the other hand, if they are set with too stringent

values, we fall again in the scenarios with a fixed Nmax.

Finally we present the maximum number of friends

reached by a node for several combinations x and y in

Figure 11. We can observe that, even if strategy 2 has the

lowest average path length, the hubs created using this strategy

reached a higher number of friends with respect to the one

obtained using strategy 5. However, in this case, the threshold

value has a greater impact on the creation of hubs highly
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connected. To avoid this problem, we could allow only nodes

with high computation capabilities, such as vehicles or smart

devices, to become hubs.

VI. CONCLUSION

This paper addresses the issue of link selection in the SIoT,

where objects establish friendship links each other creating a

social network of objects. We firstly analyze network naviga-

bility in SIoT networks through simulations, as it is important

for service discovery; secondly, we propose some heuristics for

local link selection that have different impact in the network

structure in terms of giant component, average degree and

local clustering. As a result, when the network has too many

hubs, selecting the friends that minimize the local neighbor

degree is the approach that allows for reaching the best global

network navigability. However, all these approaches have a bad

local navigability, suggesting the adoption of more powerful

friendship selection strategies. We then propose an approach to

dynamically adjust the threshold in the number of connections

on the basis of the number of hubs in the network.
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