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Abstract— Smart energy in buildings is an important research 

area of Internet of Things (IoT). Buildings as important parts of 

the smart grids, their energy efficiency is vital for the environment 

and global sustainability. Using a LEED-gold-certificated green 

office building, we built a unique IoT experimental testbed for our 

energy efficiency and building intelligence research. We first 

monitor and collect one-year-long building energy usage data and 

then systematically evaluate and analyze them. The results show 

that due to the centralized and static building controls, the actual 

running of green buildings may not be energy efficient even 

though they may be "green" by design. Inspired by "energy 

proportional computing" in modern computers, we propose a IoT 

framework with smart location-based automated and networked 

energy control, which uses smartphone platform and cloud 

computing technologies to enable multi-scale energy 

proportionality including building-, user-, and 

organizational-level energy proportionality. We further build a 

proof-of-concept IoT network and control system prototype and 

carried out real-world experiments which demonstrate the 

effectiveness of the proposed solution. We envision that the broad 

application of the proposed solution has not only led to significant 

economic benefits in term of energy saving, improving 

home/office network intelligence, but also bought in a huge social 

implication in terms of global sustainability. 

Index Terms— Internet of Things; Smart Energy; Energy 

Efficiency; Multi-scale Energy-Proportionality; Intelligent 

Buildings; Location-based Networked Control 

I. INTRODUCTION 

Smart energy in buildings is an important research area of 

Internet of Things (IoT). Buildings as important parts of the 

smart grids, their energy efficiency is vital for the environment 

and global sustainability. According to a general survey [1], in 

United States, buildings are responsible for around 38% of the 

total carbon dioxide emissions; 71% of the total electrical 

energy consumption; 39% of the total energy usage; 12% of 

water consumption; 40% of non-industrial waste. In the 

meantime, cost of traditional fossil fuels is rising and its 
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negative impacts on the planet’s climate and ecological balance 

make it important for us to explore new clean-energy sources 

and improve the energy efficiency in the consumer-side smart 

grids of various buildings. 

However, buildings are complex systems and many factors 

can affect the total energy consumption in different buildings. 

Also, conventional buildings are not with too many intelligent 

designs. It is meaningful to monitor the real energy 

consumption data and find the major factors and patterns 

through systematic modeling and analysis for different types of 

buildings. Such results can be used to further design and 

implement appropriate IoT based networking system to 

construct appropriate methods and strategies improving the 

energy efficiency for both “green” and “non-green” 

(conventional) buildings. We summarize the research on the 

topic into three sequential key aspects: 

(1) Energy Monitoring: Through communication networks, 

the consumption and generation of energy are monitored and 

logged in different granularities including the whole building, 

floors, departments, labs, rooms, and even occupants. 

(2) Energy Modeling and Evaluation: Through off-line 

modeling and evaluation, identify the energy consumption 

patterns and factors that may influence the consumption and the 

extent of their impact. 

(3) IoT System to Apply Practical Changes and Strategy 

Adjustments: The modeling and evaluation results are used to 

identify the key energy components of the building, to apply 

adjustments, and to devise strategies to reduce energy 

consumption. IoT based networking system is designed and 

prototyped to realize the strategies and achieve the goal. 

Our research covers all the three aspects. We monitored and 

collected the building energy usage data for almost a year. 

Based on our data traces, we systematically identified the 

energy consumption patterns and explored potential methods to 

improve the energy efficiency. The results show that due to 

centralized and fixed pattern control, the actual running of 

green buildings may not be energy efficient even though they 

may be "green" by design. Inspired by "energy proportional 

computing" in modern computers, we propose a smart 

location-based automated energy control IoT framework using 
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smartphone platform and cloud computing technologies to 

enable smart mobile control and multi-scale energy 

proportionality, which includes building-, user-, and 

organizational-level energy proportionality. We further built 

an experimental IoT prototype system to demonstrate the 

effectiveness of our proposed idea. Our results show potential 

economic and social sustainability benefits. 

Unlike simulation based solution, our work is based on real 

measured data traces for a currently in-use on-campus green 

building, and a real IoT system to control the energy 

automation. We use the latest information technologies such as 

mobile smartphones with location service, distributed control, 

and cloud computing to actively involve the occupants in the 

energy-saving process. Energy-saving policies from multiple 

sources such as individuals and organizations are considered in 

an integrated policy framework in deciding the final energy 

saving strategies. We aim to create an energy-efficiency IoT 

testbed that can be easily migrated to all kinds of buildings and 

achieve energy savings in multiple scales. 

In this journal version paper, we first summarize and refine 

our previous work in two conference papers [2, 3]. In [2], we 

evaluated the building energy usage data and presented our 

findings in identifying the major issues in these buildings. 

Based on that, we proposed a smart location-based networked 

energy control IoT system design to tackle the issue and 

improve the energy efficiency [3]. 

In this paper, however, we add new contributions to 

complete the three steps described above. Particularly,  

(1) We synthesize the previous separate contributions into a 

complete IoT framework design. It includes research and 

work in the whole process of identifying the key problems, 

finding methods to solve them, and developing prototype 

system to prove the effectiveness of the proposed method. 

(2) We build a novel experimental prototype IoT system which 

demonstrates the real time location-based automated energy 

policy control across multiple buildings. It is the basic step 

in changing from the current centralized control and static 

energy consumption modes to distributed and dynamic 

energy control in the consumer-side smart grids containing 

various common buildings.  

(3) Based on these, we propose to create a future of multi-scale 

energy proportionality. The central idea is to generalize the 

smartphone and location-based energy control idea and 

include policies of multiple levels of organizations. It 

aggregates the energy saving of individual users and allows 

distributed and dynamic energy control, which is the key 

for energy proportionality. 

The rest of this paper is organized as follows. Section II 

presents the testbed description, methodology, and detailed 

energy efficiency data analysis and discussions. Section III 

describes our idea on the smart location-based automated 

energy control IoT architecture. Section IV discusses the 

prototype system and the experimental results, and the 

discussions on multi-scale energy proportionality. Section V 

reviews some related work and Section VI concludes the paper. 

II. ENERGY EFFICIENCY EVALUATION AND ANALYSIS 

In this section, we describe our energy monitoring testbed, 

evaluation methodology, and data modeling and analysis 

results. This section is mostly based on our contributions in [3]. 

A. Energy Monitoring Testbed and Justification 

We realize that buildings can be very different from each 

other and it is extremely important to find the common “thing” 

or pattern among them in terms of energy efficiency. So in our 

project we talked to some on-campus building maintenance 

experts thoroughly and investigated the common structure of 

these buildings in U.S. For our testbed, we pick a very typical 

office building constructed in 2010 (actually two latest 

on-campus buildings constructed in 2014 also show that they 

share exactly the same technologies as our testbed due to the 

reason that traditional building-based systems are not an area 

that is developing as fast as those IT technologies). Besides our 

experimentation on this particular office building, we also 

investigated a case in another extreme end, a Net-Zero Energy 

Building named “Tyson Research Center”, which is a small 

office building. It received prestigious award in the “living 

building challenge”. We found that for such small office 

buildings or home buildings, it is relatively simpler and easier 

to apply networking technologies to control or change their 

energy policy. In comparison, large buildings like our testbed 

are more difficult to change and it is also one of the reasons 

why in this paper we primarily focus on such large office 

buildings. With our findings in this testbed, it is relatively 

easier to tailor and generalize the system to solve the issue with 

other buildings of the same type or different types.   

Our testbed building received a Gold certificate from LEED 

rating system [4] by U.S. Green Building Council (USGBC) [5]. 

It adopts a series of energy efficiency and sustainability 

features. The overall resource usage data for the building are 

monitored and logged through a series of meters every 30 

minutes (some are 15 minutes) through wired network for 

future off-line data modeling and analysis. It is a very typical 

large green office building with typical monitored subsystems 

such as HVAC (Heating, Ventilation, Air-conditioning, and 

Cooling), lighting, and water systems. We believe that the 

experiments and further data analysis findings from this testbed 

apply to other large office buildings. 

B. Data Source and Analysis Methodology 

We sorted out the most useful measured data by analyzing 

the relationships among various parameters. Based on it, the 

data points that we use include: the total electrical energy 

consumption, the heating and cooling energy consumption, and 

the outdoor and indoor environmental data such as 

temperature and humidity. The heating and cooling parts are 

deemed as the HVAC consumption while the total electricity 

consumption covers a wider range of loads in the building. 

Though separate lighting data may be useful, such data is not 

currently available. Moreover, we unify the semi-hourly or 

hourly logged data to an hourly basis for uniform analysis. 

Our primary modeling and evaluation goal is to identify the 

energy consumption pattern and know how it is related to: (1) 

environmental factors, and (2) occupancy rate. So, we first 

analyze the relationship between electricity, heating, and 
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cooling energy consumption and the outdoor environmental 

factors. Our method is to combine the short period (longer than 

1 day and less than 1 week) and the long period (several months) 

correlation analysis to show the overall trends. We group the 

hourly data into multiple granularities such as weekly and 

monthly to reveal the complete correlation differences over a 

relatively long period. We also develop Multiple Polynomial 

Regression (MPR) model and Multiple Linear Regression 

(MLR) model to reveal longer term average seasonality trends.  

C. Detailed Evaluation and Analysis 

In this section, we present the detailed modeling and 

evaluation results and the corresponding analysis. 
 

1) Environmental Impacts Analysis 

Here, we focus on temperature and humidity, and study their 

impacts on the total electrical and HVAC energy consumption. 
 

a) Short Period Basic Trend and Correlation Analysis 

We put two groups of factors together: (1) group 1 made of 

electric consumption, heating energy, and cooling energy; (2) 

group 2 containing temperature and humidity. We want to see if 

there is any straightforward connection. Fig. 1 shows the 

relationship between electrical energy consumption and 

temperature. It shows almost no correlation.  

Fig. 2 shows the relationship between heating energy and 

temperature, in which we still do not find very strong 

correlation (due to the similar patterns between heating and 

cooling, in this paper, we only show results of heating data). 

Note that in the figures we use the British Thermal Unit (BTU) 

as the unit for heating and cooling. 1 BTU is equal to 1055 joule 

or 0.293 watt-hours. 

Observation: (1) Overall, correlations between both heating 

and electric energy consumption and the outdoor weather 

conditions are small. (2) Overall, the electrical consumption 

also shows very little variation between days and nights, which 

means that it possibly has a small correlation with occupancy. 
 

b) Long Period Correlation Analysis 

We now study the correlation among multiple factors over a 

longer period. After filtering out incomplete and inaccurate 

data, we get a continuous dataset for about 10 months (39 

weeks). It ranges from 3/18/2011 to 12/31/2011. We group the 

data into weeks and every week has 24*7=168 data points. For 

each 168 data point set, we calculate the correlations among 

multiple factors. These factors include: temperature (denoted as 

X), humidity (Y), total electrical energy consumption (Z), 

heating energy (H), and cooling energy (C). We also mark the 

seasons according to the Missouri climate convention. 

The correlations between electrical energy consumption and 

weather conditions are shown in Fig. 3. They are mostly below 

0.5. Interestingly, the correlation for summer season is a bit 

higher than that for fall and winter seasons. The results validate 

the results we showed in Fig.1 and 2. Note that the X and Y in 

the figures do not mean x-axis and y-axis, but temperature and 

humidity in our notation. The results for the correlations of 

heating energy with weather conditions are shown in Fig. 4.  

Observation: The figures roughly indicate that the heating 

and cooling systems do not actively take the outdoor weather 

condition as factors to dynamically adjust the running 

schedule and policies to save energy. 

 
Fig. 1. Total electrical energy consumption with temperature 

 

 
Fig. 2. Heating energy consumption with temperature 

 

 
Fig.3. Correlations between electrical energy (Z), temperature (X), and 

humidity (Y) 
 

 
Fig. 4. Correlations between heating energy (H), temperature (X) and 

humidity (Y) 
 
 

c) Daily Average Data Analysis 

So far, we studied hourly electricity, heating, and cooling 

energy data (1 data sample per hour). We also aggregate the 

data into daily averages to see if there are any new findings. 

Specifically, we calculate the daily average temperature and 

humidity, and the daily total electric, heating, and cooling 

energy consumption. Then we have a data set for each day and 

a total 245 data sets from 5/1/2011 to 12/31/2011. 

The daily heating and cooling trends are shown in Fig. 5. The 

seasonality is clear for both heating and cooling data in that 
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there is more cooling and less heating energy in the summer. In 

total, for the above period, the energy usage is 8.1 billion BTU 

for heating and 16.9 billion BTU for cooling. It is interesting 

that the cooling system uses about twice the energy than heating. 

In the summer months the cooling energy usage is 

significantly higher than that in other months. The daily 

electrical energy consumption in Fig. 6 shows a very regular 

fluctuation. Seasonality is not that obvious. 

Observation: the electricity provisioning in this building is 

relatively fixed and “extra capacity” is generally provided to 

satisfy any burst usage. In other words, a lot of electrical 

energy is wasted, especially, during afterhours. 
 

d) Regression Modeling and Analysis 

We further use regression models to analyze the 

relationship among multiple factors and use the statistical 

approaches to examine whether they can justify our findings. 

We try both Multiple Polynomial Regression (MPR) and 

Multiple Linear Regression (MLR) models, and compare the 

two results. 

First, we use the same daily average dataset and we have a 

vector of data point for each day. The vector is <daily average 

temperature, daily average humidity, daily electrical energy, 

daily heating energy, daily cooling energy> and we have 245 

data vectors in total. We compute the coefficients of each factor 

in the two types of regression models, calculate the errors and 

conduct tests to check the models' effectiveness.  

Table I presents results of the MPR and MLR on electrical, 

heating, and cooling energy predictions with temperature and 

humidity as two parameters. As shown in Table I, the 

coefficient of determination R
2
 is the fraction of the total 

variation explained by the regression [6]. For example, for 

electrical energy MPR, R
2
 is 0.1902 which means that the 

MPR regression model can only explain 19.02% of the 

variation of electrical energy usage. In comparison, the R
2
 

value for cooling energy is 0.9884 which means that the MPR 

can explain 98.84% of the variation of the cooling energy 

consumption. This result validates our previous conclusion. 

Observation: The regression reminds us that various energy 

subsystems of the buildings are impacted differently by the 

environmental factors; hence, for better energy efficiency, we 

should tune each subsystem separately. For example, heating 

and cooling respond more to the environment and we may use 

environment condition to tune the running policy of the HVAC 

system and save energy. 
 

2) Occupancy Impact Analysis 

In this section, we focus on the occupancy and study how it 

can impact the energy consumption. 
 

a) Weekdays/Weekends Energy Comparisons 

We roughly divide the data into three subsets: regular 

office hours (8:00am to 8:00pm of weekdays), after hours 

(8:00pm to 8:00am of weekdays), and weekend (whole days of 

Saturday and Sunday). We study the data by weeks and for 

every week we have three subsets. For each subset, we 

calculate their electrical and heating energy averaged in 24 

hours, and compare them to see the differences. The results are 

shown in Fig. 7 and Fig. 8, respectively. From Fig. 7, we can 

see that the electrical energy consumption during office hours is 

about 15% more than that for afterhours and weekends. The 

numbers for after hours and weekends are not as low as 

expected which also illustrates that the current building 

operation is far from efficient and is not proportional to the 

actual usage or occupancy. 

The heating energy pattern shown in Fig. 8, however, is a 

little bit different. Overall, the heating energy consumption for 

afterhours is about 6% higher than weekends, and 19% higher 

than those for business hours. 

 
Fig. 5. Daily heating and cooling 

 

 
Fig. 6. Daily electrical energy consumption 

 

Table I. Regression results for electricity, heating, and cooling energy 

 Electrical Energy Heating Energy Cooling Energy 

MPR R2 0.1902 R2 0.8634 R2 0.9884 

MLR R2 0.0213 R2 0.8610 R2 0.9072 
 

 
Fig. 7. Comparison of electrical energy consumption averaged in 24 hours for 

office hours, after hours, and weekends 
 

It is interesting to know that the heating consumption for the 

business hours is the lowest compared to the other two. It is 

probably due to the fact that the occupancy rate is higher 

during the office hours and more people are active and 

providing body heat in the building and hence reduce 

external heating energy demands. 

Observation: the analysis clearly shows that the actual 

occupancy rate has very low impact to the energy 
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consumption. Ideally, the numbers for after hours and 

weekends should be much lower than those for office hours. 
 

 
Fig. 8. Comparison of heating energy consumption averaged in 24 hours for 

office hours, after hours, and weekends 
 

b) In-semester/Holidays Energy Comparison 

To further see the occupancy rates' impact, we selected out 

the data for in-semester days and summer holidays. Based on 

the academic calendar of Washington University for year 2011, 

we pick the period between Aug. 30 to Dec. 09 (101 days in 

total) as the fall semester, and the period between May 10 to 

August 29 (111 days in total) as the summer holiday season. 

Generally, the summer holiday season has lower occupancy 

rate than the regular fall semester in our testbed. 

Firstly, we compute the total electrical energy consumption 

for the above two periods and average them by the days. The 

results are shown in Fig. 9 which indicates that the electrical 

consumption varies very little for these two periods. We also 

compared the heating and cooling energy consumptions which 

are shown in Fig. 10. Daily average heating energy of the fall 

season is about 20% higher than summer, while daily cooling is 

65% lower than summer season. Such results are consistent 

with the analysis results of the previous several subsections. If 

we separate the two periods into office hours and after hours, 

then we have a more detailed view of the energy consumption 

patterns. As shown in Fig. 11, we scale the daily energy 

consumption in Y axis into a 0 to 100 range. We find that for 

electricity usage during after hours, it is almost fifty-fifty 

between summer and fall seasons, while summer is a little bit 

higher than fall for office hours (first two columns in Fig. 11). 

Summer and fall heating energy are almost even for both after 

hours and office hours (middle two columns in Fig. 11). 

Afterhours and business hours have also close cooling energy 

consumption (the 5
th

 and 6
th

 columns in Fig. 11). 

Observation: the comparison in different granularities 

shows that there is no direct and visible connection between 

the energy consumption and the occupancy rate. In other 

word, a lot of energy is wasted regardless of the actual usage. 

To summarize our findings with the energy efficiency 

modeling and evaluation results in the building-side smart grids 

and the HVAC system energy consumption, we find that both 

green buildings like our testbed and most of the conventional 

buildings are with centralized control and fixed running 

patterns, which leads to poor energy efficiency in operations 

though some of them may originally be designed to be "green". 

We further argue that to enable more energy efficient 

consumer-side building grids, we need to find a series of 

networking designs to enable distributed and dynamic control. 

We will discuss our major idea and corresponding prototyping 

and experimentation in the following two sections. 

 
Fig. 9. Summer and Fall daily electrical energy consumption comparison 

 

 
Fig. 10. Summer and Fall daily heating and cooling energy consumption 

comparison 
 

 
Fig. 11. The daily energy consumption comparison between Summer and 

Fall, considering after hours and office hours 

III. SMART LOCATION-BASED AUTOMATED ENERGY 

CONTROL FRAMEWORK 

In this section, we present our smart location-based 

automated energy control IoT framework. This section is 

mostly based on our contributions in [2]. 

A. Overall Structure 

There are multiple design components and aspects which 

interact with each other and form a complete framework of our 

idea to fulfill the goals. We envision an occupant oriented and 

involved networked system and depict it in Fig. 12. 

The key design components include: mobile devices based 

distributed energy monitoring and remote control, location 

application on smartphone, multi-source energy-saving policies 

and strategies, cloud computing platform based data storage 

and application, and energy data modeling and strategy 

formation. We discuss these below. 
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B. Smart Mobile IoT Devices as Remote Controls 

In the last several years, smart mobile devices have become 

very popular. Smartphones generally have multiple networking 

interfaces such as 3G, WiFi, WiMAX, Bluetooth, and have 

multiple sensors including GPS sensors. Because of various 

connectivity provisions and global accessibility to the Internet, 

they are suitable for use in any system that needs humans’ 

online participation or interaction. The “Internet of Things” [7] 

trend makes the cost even lower and the sensors are connected 

to the Internet at all time. 

Smartphones are ideal for monitoring, controlling, and 

managing the energy control systems remotely from anywhere 

at any time. After appropriate authentication and authorization, 

the occupants are allowed to modify and change their 

energy-saving policies online by interacting with the policy 

servers of their office and residential buildings. Such design 

allows dynamic changes to the energy-saving policies and 

offers better flexibility to the occupants. It can be a good 

complement to the general policy decision process based on the 

modeling results. Such an “app” can be easily developed for the 

smartphone based on the web technology.  

C. Multi-source Energy-saving Policies Hierarchy 

In a real environment, various parts of an organization, such 

as campus, building, department, and labs may be in charge of 

different components of a building. Each of these may have 

their own policies and requirements that need to be taken care 

of in controlling the energy consumption. Even in a single 

home building, locations of multiple family members and their 

preferences need to be taken into account. Therefore, in our 

location based automatic control scheme, we add policies 

coming from these levels of control hierarchy. 

Fig. 13 shows an example of the policy hierarchy. As shown, 

there may be a tree-like structure for the building control plane 

in which there are policy servers enforcing the energy-saving 

policies covering different levels. This also applies to the 

residential buildings in which the tree structure may be 

relatively simple. The mobile users can be connected to the 

Internet through smartphone, tablet, or even laptop with WiFi 

connections. In the example shown in Fig. 13, the mobile 

smartphone holder leaves the home building and travels 

towards his office building. The movement and location 

changes will trigger the policy servers to adjust the 

energy-saving policies for both buildings accordingly. The 

action steps are denoted as “①②③” in the figure. 

In our previous research on next generation Internet [8, 9] as 

well as the policy-oriented Internet architecture [10], we have 

experimented with several policy based control schemes. We 

apply similar ideas to the building and community 

environments. In particular, each control region can be defined 

as a “realm” [11] which is managed by a realm manager (also a 

policy server in our building testbed). Energy control policies 

may span multiple realms and sometime conflicts may have to 

be resolved. 

D. Mobile Device Location-Based Automatic Control 

Almost all phones can determine their location by referring 

to signal strengths from various transmission towers. New 

generations of smartphones can provide localization much 

more precisely with embedded GPS chips. We use this location 

information in designing automatic control policies that can 

turn on/turn off energy consuming devices at home or office 

depending upon the location and direction of movement of the 

user. By doing so, a dynamic and flexible policy can be applied 

which satisfies the user’s preferences for energy saving and 

comfort. An “App” on the device can automatically enforce 

these desired policies. 

 
Fig. 12. Overall structure of our design with components and their interaction 

 

 
Fig. 13. Example dynamic multi-source energy-saving policy adjustment by the 

mobile devices 
 

 

With the help of the location-aware mobile devices, these 

dynamic adjustment policies could also enable the cooperation 

and interaction among different buildings. For example, when 

the location detection daemon on the user’s smartphone detects 

that the user has moved out of a threshold distance range from 

his home building and is moving into a threshold distance range 

of his office building, then a message is sent to a centralized 

server to trigger the policy control process. The office building 

room owned by the user will start pre-heating/cooling to 

prepare a user-customized or optimized working environment, 

while the message also triggers the home building to transit into 

an energy-saving mode. 
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E. Cloud Computing and Storage 

Cloud computing has become very promising in the last few 

years. We have two basic kinds of jobs which need the 

cloud-computing platform: (1) The cloud-based data storage, 

and (2) the cloud-based modeling and analysis computation. 

We have a preliminary design of how to integrate the system 

into the cloud computing platform. As shown in Fig. 14, the 

cloud provides the basic data storage and retrieval service for 

the logged building energy consumption data. 

Computation-intense modeling and analysis jobs are mostly 

done in the cloud. The communication layer provides 

configurability, reliability, and security for the network 

communication between the cloud and the client. The middle 

layer in Fig. 14 is for cloud application development by using 

the open API provided by the cloud providers such as Google 

App Engine. The reason we incorporate this layer in our design 

is that it can alleviate the overhead to develop the cloud 

application and accelerate our application development and 

deployment process. It also becomes much easier to integrate 

other services using the same platform (such as authentication 

services, email services and user interfaces) to the application 

on demand and make the development of a cloud application a 

less complicated task. The top layer is the application layer. We 

are researching and developing a user-friendly prototype 

web-based user interface and application for the building 

environment, which can be easily configured and managed by 

the remote client. 

 
Fig. 14. Cloud computing components and interaction with the building side 

servers 

IV. PROTOTYPE SYSTEM, EXPERIMENTAL RESULTS, AND 

MULTI-SCALE ENERGY PROPORTIONALITY 

This section focuses on the prototype system we build to 

prove the effectiveness of the idea proposed in Section III. 

A. IoT Prototype Description 

In this IoT prototype system, we implemented a simple 

scenario involving a user associated to two groups of electrical 

appliances: those in his/her home apartment and those in his/her 

office room. It is a simplified scenario of what is shown in Fig. 

13. Our goal is to provide users the ability to dynamically adjust 

and control their devices across two buildings. The basic 

function is to enable the server to detect the user's location 

changes and trigger the energy policy changes by turning on/off 

the electrical appliances in both buildings associated to the user. 

By doing this, we essentially enable users to control and 

implement their own energy policies in real time, and enable 

their energy consumption to be proportional to their actual 

usage. 

Note that in this simple prototype, we only implement the 

case involving only one user with control devices in two 

buildings (the user’s office building and home building). In 

other words, we implement this small-scale proof-of-concept 

system and compare the energy saving with the case that is 

without the new design. After proving the effectiveness, then 

we could generalize it into a larger scale. In the future work, we 

plan to test the case with multiple users controlling their 

devices simultaneously by which we could show results with a 

larger scale energy saving. 

1) Hardware and networking structure 

In the prototype system, the hardware systems that we use 

include the "Kill-A-Watt
TM

" electrical meters [14], WeMo
TM

 

control devices [15], servers in each building which act as both 

web daemon server and in-building controller, WiFi routers, 

and smart devices with location sensors (GlobalSat GPS 

module). 

The networking structure of the prototype system of the 

home building side is shown in Fig. 15. The basic function is 

that a smart mobile device with a location sensor keeps sending 

its location data back to the web servers inside the home 

building and the office building. The web daemon servers 

behind the firewall and NAT (Network Address Translation) 

are accessed from outside by port mapping technology. It also 

calculates the distance between it and the mobile devices to 

decide if the distance passes a specific threshold to trigger 

energy policy changes in either of the buildings. If it does, then 

it initiates the controller to send instructions to turn on/off 

specific devices in its territory according to the energy policies. 
 

 
Fig. 15. Prototype system networking structure  

2) Software 

The software part includes the software for GPS location 

data recording and sending to the web server in NMEA 

(National Marine Electronics Association) 0183 compliant 

format, and the WiFi router's configuration and management 

software which provides a port mapping service for web access 

from outside of the NAT. The web server is programmed with 

CGI (Common Gateway Interface) scripts to execute Python 

codes controlling the WeMo devices through UPnP (Universal 

Plug and Play) protocol. Besides the location based automated 

control, these software parts working together with the 

hardware also enable the devices in both buildings to be 

controllable from Internet in real time through smart devices. 

B. Experiments and Results 

We first measure the baseline electricity appliances' power 

associated with the user in both buildings. The major 
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appliances in the home building of the prototype system and 

their baseline power measurement and estimation are shown in 

Table II. Note that in this prototype system, we primarily focus 

on electricity appliances, though in the real case, HVAC can be 

a significant energy consuming source worth applying dynamic 

control to make a difference in improving energy efficiency. 

Similarly, the appliances in office room and its baseline power 

measurements are shown in Table III. 

To compare and quantify the real savings of our prototype 

system, we divide the users' energy usage into three potential 

modes: luxury mode, moderate mode, and frugal mode. For 

each mode, we estimate how much energy will be consumed on 

a daily basis. The estimation results for home and office are 

shown in Table IV and Table V respectively, which also 

explain the three modes. 
 

Table II. Home electricity appliances' baseline power measurements 

 
 

 

Table III. Office room electricity appliances' baseline power measurements 

 
 

Table IV. Daily home electricity consumption estimation of three modes 

 
Then we apply our location based solution and dynamically 

control the appliances in both home and office to reduce the 

energy waste and maximize the energy efficiency. We track 

and record the location of the user in 24 hours' period and apply 

dynamic control and policy changes in both home and office. 

The location history shown in Google map is in Fig. 16. 

Note that for the detailed turning on/off policy changes, we 

consider some real-life limitations. For example, in our testbed, 

we did not control the on/off status of the refrigerator. We only 

apply changes to those devices such as lighting bulbs, desktop, 

and laptop, whose on/off status do not directly affect the normal 

living of the human being. 
 

Table V. Daily office electricity consumption estimation of three modes 

 
 

      
Fig. 16. Location history in a 24 hours' period 

 

In the real activity trace of our experiments, it shows that 

approximately the user spent 14 hours at home in which 8 hours 

for sleep, 2 hours for lunch and rest, and 4 hours for working at 

home. The total recorded real energy consumption at home 

during this period is 5.285 kWh, which includes 2.7kWh for 

lighting, 2.22kWh for refrigerator, 0.065kWh for microwave 

stove, 0.3kWh for laptop.  

Also, during this period, the appliances in office room are 

kept in "OFF" status by the control server of the prototype 

system. Location history also shows that about 6 hours are 

spent in office and almost half of the time the desktop is used 

and for the other half time the laptop is used. The real total 

energy consumption at office is 2.26kWh, which includes 

1.15kWh for lighting, 0.96kWh for desktop, and 0.15kWh for 

laptop. For the remaining 4 hours, the user is not at home/office, 

and all the devices are in "OFF" status, except the refrigerator at 

home. 

Thus, for comparison, we put the real recorded energy 

consumption data after applying our ideas together with the 

energy consumption estimation results of the three modes, to 

demonstrate how much energy can be saved. The results are 

shown in Fig. 17. The simple takeaway message is that the real 

energy consumption of the prototype system after applying our 

location based idea is very close to the frugal mode's energy 

consumption. It means that with our new idea, general users 

will enjoy luxury living style without special care or changes 

and they will pay what frugal mode users pay. 

C. System Implementation and Integration Challenges 

During the system prototyping process, we met multiple 

challenges and found corresponding solutions to address these 

Type Lighting Refrigerator
(GE)

Microwave 
Stove(Philips)

Laptop (Mac 
Pro 15’’)

HVAC

Items Porch: 54W Start: 200W,
gradually to 
170W

Compressor 
work for 9 min,
stop for 9 min

1.3kW Normal: 41W

Active or 
charging:
60W

N/A

Bedroom: 18*2 = 36W

Living 
Room:

54*2+42 = 
150W

Kitchen: 52*5 = 260W

Bathroom: 54W

Avg. Power 550W 185/2 W 1.3kW 50W

Type Lighting Desktop Laptop (Mac 
Pro 15’’)

HVAC

Items 32W * 6 = 
192W

Host: 
Boot – 110W
Normal – 67W

Normal: 41W

Active or 
charging:
60W

N/A

Monitor:
Normal—72W, Active—
80~90W

Avg. Power 192W 160W 50W

Lighting Refrig. Microwave Laptop HVAC

Luxury Mode 
(user is 
energy 
insensitive)

Always ON except 
sleeping

Constantly,
185w/2*24 
= 2.22 kWh

Constantly,
1.3kw*0.05= 
0.065 kWh

Always ON at home N/A

550w*24*2/3= 
8.8kWh

50w*24*2/3= 
0.8kWh

Moderate 
Mode

Only ON when at 
home awake

Only ON when at 
home awake

550w*24*1/3= 4.4 
kWh

50w*24*1/3= 0.4
kWh

Frugal Mode 
(user is 
energy 
sensitive)

Only 60% ON when 
at home awake

Only 60% ON when 
at home awake

4.4 *0.6 =2.64kWh
0.4*0.6 = 0.24kWh

Total Luxury:  11.90kWh ;         Moderate: 7.09kWh;           Frugal: 5.17kWh          

*Assuming 8 hours working in office, 8 hours at home awake, and 8 hours sleeping

Lighting Desktop Laptop HVAC

Luxury Mode 
(user is energy 
insensitive)

Always ON  when at 
office
192W*8= 1.54kWh

Always ON 24/7 Always ON when at 
office

N/A

160W*24
=3.84kWh

50W*24*1/3= 
0.4kWh

Moderate 
Mode

Only ON when at 
office

Only 50% ON when 
at office

160W*24*1/3
=1.28kWh

0.4*0.5= 0.2 kWh

Frugal Mode 
(user is energy 
sensitive)

Only 60% ON 
when at office

OFF when at office, 
use desktop

1.28*0.6=0.77kWh 0kWh

Total Luxury:  5.78kWh ;         Moderate: 3.02kWh;           Frugal: 2.31kWh          

*Assuming 8 hours working in office, 8 hours at home awake, and 8 hours sleeping
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issues. We discuss them here as follows. 

1) Extending Control Device Functions 

The first challenge for our system implementation was that 

we needed to find appropriate devices and methods to carry out 

the control functions. More importantly, these methods should 

not be limited by a specific software or platform. It is desirable 

to allow the devices to be controllable from anywhere at any 

time through the general PC platforms while not limited by 

those dedicated platforms such as iOS or Android. Therefore, 

we "hacked" the WeMo devices by wrapping up and extending 

some standard uPnP protocol control module and successfully 

realized the above functions. 

 
Fig. 17. Comparison of the real energy consumption after applying our idea 

with the three modes' energy estimation 
 

2) Integrating Multiple Components 

As shown in Fig. 15, in our prototype, we have a series of 

sub-components to be integrated into the prototype system. For 

example, the client mobile devices with GPS sensor, the client 

data uploading module, the data and web server, the controller, 

the appliances under control, and the WiFi router with port 

mapping function. It has been a challenge to organize and 

integrate these heterogeneous devices to work together as a 

coherent system. In our prototype, we successfully addressed 

this challenge and implemented a working system.  

3) GPS Data Fast Parsing 

In our prototype system, we used a GlobalSat GPS sensor, 

and the coordinate data were encoded in NMEA-0183 data 

format. The GPS sensor generates a large amount of coordinate 

data in real time which requires the server to receive them and 

perform fast parsing to get the accurate coordinates of the 

mobile user. We implemented the function in Python to fulfill 

this task, which also includes function implementing the 

distance calculation and the threshold comparison before 

triggering the energy policy changes in both sides of the 

buildings in the testbed. 

 

4) Handling GPS Location Inaccuracy 

Another challenge was that the GPS coordinate data 

generated by the GlobalSat sensor has its own accuracy limit, 

which means that even the mobile user does not move, the 

generated coordinate data may vary. The following Fig. 18 

approximately demonstrates this effect. In the figure, we can 

see that even for an unmoved mobile user, its coordinate data 

trace may vary by 20 meters given the inaccuracy of the GPS 

sensors. 

Therefore, to overcome such difficulty, we tuned the 

threshold distance and did comprehensive experiments before 

reaching a threshold that could minimize the false alarm or 

false positive rates. Our results proved to be satisfactory.  
 

 
Fig. 18. GPS location trace with an unmoved mobile user 

D. Multi-scale Energy Proportionality 

To summarize the experiments and results, we can see that 

the effect of energy saving is conspicuous, although given 

different types of buildings and occupants' energy using habits, 

there can be different degrees of savings.  

The above prototype system experiments vividly illustrate 

how user-scale energy proportionality is realized by using 

networking and computing technologies, since the user's 

energy consumption becomes approximately proportional to 

his/her actual usage. Besides user-level energy proportionality, 

applying similar idea into multi-scale organizations in a 

building, as described in Section III, it virtually enables both 

organization-level energy proportionality and building-level 

energy proportionality. Specifically, when a particular user 

controls and adjusts the appliance policies under his/her 

territory, he/she has to follow specialized group policies 

enforced by the organization such as a laboratory or a 

department. The organization also enforces the policies for 

publicly shared parts such as HVAC, lighting, fire and safety, 

and elevator systems. It could designate special working staff to 

control and apply energy proportionality for these subsystems. 

The laboratory or department aggregates each user' energy 

proportionality and the publicly shared subsystems' energy 

proportionality, to achieve an organization scale energy 

proportionality. Similarly, the idea can be generalized to 

building level since it basically aggregates multiple 

organizations inside the building and multiple public 

subsystems working for all the organizations in the building.  

Achieving multi-scale energy proportionality has profound 

economic impacts to the society in terms of avoiding huge 

energy waste and saving costs for users and organizations. The 

benefits would make a huge difference if the idea gets broadly 

implemented and deployed. The networking and computing 

technologies used for the system enable the buildings running 

and operation to be more intelligent and efficient, and in an 

automated manner without manual intervention, which is also 

very important goal for future smart home/office applications. 

All the stakeholders including the common occupants and users, 

organizations' authorities, and buildings' owners and tenants 

11.9

7.09
5.17 5.29

5.78

3.02

2.31 2.26

0

2

4

6

8

10

12

14

16

18

20

Luxury Moderate Frugal Real

Office

Home

D
ai

ly
 E

ne
rg

y 
(k

W
h)



U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2413397, IEEE Internet of Things Journal

 10 

could have total flexible control over their own energy policies, 

which is a very promising feature for our proposed idea. 

Moreover, the proposed system also involves every user and 

organization to participate in the energy saving efforts, which is 

potentially a very good training and education method to 

encourage everyone to study and participate in resolving global 

climate and sustainability issues in everyday life. Further 

incorporation of social network plugin into the smart mobile 

phone based energy control platform would generate even 

broader impacts [2]. 

V. RELATED WORK 

Due to the multi-disciplinary essence of the research topic, 

the related work covers a range of different areas. We discuss a 

few of them briefly. Limited by the space, a longer list of the 

related work can be found in papers [2, 3]. 

First related area is the building energy simulation. Many 

building simulation software take building parameters as input 

and after processing, output estimated energy usage [16]. A 

popular one is “EnergyPlus” [12] provided by the Department 

of Energy (DOE). In comparison, monitoring building energy 

consumption with real network system and analyzing the real 

energy consumption data can be more effective. 

Second area is the climate effect models research in which a 

lot of existing work is about the relationship between energy 

consumption and climate or weather factors [17, 18]. The 

related research consists of: (1) simulating the heat transfer 

processes and building structures (envelope, tree shelter, etc.) 

to find how the climate can impact building energy efficiency; 

(2) study of solar effects on heat and mass transfer and their 

impacts. Moreover, most of them are currently based on 

theoretical thermal calculations and simulations and very few 

of them are using the actual building energy data and research 

on how to reduce the energy consumption by incorporating 

occupants’ participation. A longer reference list of related 

efforts can be found at [19]. 

Third area is the application of Wireless Sensor Network 

(WSN) technologies into the building environment and 

experiments on a specific subsystem like lighting and 

thermostat. For example, it is used to sense and control the 

lights according to the detection results of the sunlight for a 

building based on human activities, to monitor the electrical 

energy consumption, to log the human activities and to adjust 

the HVAC working time to provide better comfort, etc. There 

are already a lot of such experimental researches. Typical ones 

are in [20, 21] and more can be found from the list at [19]. 

However, WSN were originally designed for other purposes but 

they are able to provide a good complement to other sensing 

and metering technologies in the building environment. 

Last related category lies in the information and computer 

science technologies. The iPhone, Android, and Windows 

Phones provide similar open platforms to develop versatile 

smart applications with multiple sensors including GPS. So far, 

there are not many wide-scale applications on building 

environment energy auditing and control. Cloud computing [13] 

certainly is a very hot topic related to our research. 

VI. CONCLUSIONS  

In this paper, we added new contributions besides 

summarizing our previous work regarding the IoT framework 

for smart energy in buildings. The work includes: (1) energy 

consumption data analysis of the green building testbed, (2) 

new smart location-based automated energy control framework 

designs, and (3) experimental prototype that applies IoT 

networking and computing technologies to improve the energy 

efficiency in buildings. We put them into a complete three-step 

research and added significant new contributions proving the 

ideas and concepts we proposed. By building this IoT 

framework in smart homes or offices, we aim to enable not only 

multi-scale energy proportionality, but also create an intelligent 

home space which is an important part of the future smart world. 

We envision that the idea will provide not only significant 

economic benefits but also huge social benefits in terms of 

global sustainability.  
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