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Abstract—Wireless sensor network (WSN) technologies and
distributed processing are essential to develop ubiquitous sensing
in the Internet of Things (IoT) paradigm, wherein sensors
pervasively collect data and perform information processing and
communication tasks to achieve a common objective. This article
presents the formulation and analysis of distributed estimation
algorithms based on the diffusion cooperation scheme in the
presence of errors due to the unreliable data transfer among
nodes. In particular, we highlight the impact of transmission
errors on the least-mean squares (LMS) adaptive networks. We
develop the closed-form expressions of the steady-state mean-
square deviation (MSD) which is helpful to assess the effects of
the imperfect information flow on the behavior of diffusion LMS
algorithms in terms of the steady-state error. The model is then
validated by performing Monte Carlo simulations. It is shown
that local and global steady-state MSD values are not necessarily
monotonic increasing functions of the error probability. We
also assess sufficient conditions that ensure mean and mean-
square stability of diffusion LMS strategies in the presence of
transmission errors. We examine a practical scenario where
errors occur at the medium access control (MAC) level. To
overcome the problem of unreliable data exchange, we implement
a random pairwise strategy that improves the performance of the
estimation algorithm in the presence of high transmission error
rates. Moreover, issues such as scalability in the sense of network
size and regressor size, convergence rate during the transient
phase, spatially correlated observations, as well as the effect of
the distribution of the noise variance are studied.

Index Terms—Adaptive networks, diffusion LMS algorithm,
MAC layer, spatially correlated observations, spatially correlated
regressors, distributed estimation, distributed signal processing.

I. INTRODUCTION

INTERNET of Things (IoT) is envisioned to seamlessly
connect billions of sensors and actuator devices in order

to create a smart world [1], [2]. Wireless sensor networks
(WSNs) are indispensable to the IoT paradigm and their
deployment as monitoring and diagnostic systems is receiving
significant attention in recent years because of their clear

This work was supported by Hydro-Quebec, the Natural Sciences and
Engineering Research Council of Canada and McGill University in the
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advantage of being cost-effective and easy to deploy compared
to the traditional wired-based ones. Furthermore, through the
implementation of WSNs operating in a collaborative mode, a
wide variety of applications foreseen in the IoT, such as smart
grid, precision agriculture, intelligent transportation systems,
disaster relief management, radar and target detection and
tracking, robot networks, vehicular networks, smart cities, etc,
would benefit from highly reliable and flexible monitoring
and diagnostic systems that rapidly respond to the changing
conditions as well as instantaneous faults. Distributed imple-
mentation of estimation algorithms are recently forming an
active area of research in the context of distributed adaptive
filtering. In the conventional estimation systems, the nodes
collect measurements and send them to a fusion center for final
centralized processing. The central node would also broadcast
the information to the individual nodes. Hence, the sensors
achieve an estimate that is as accurate as the one that would
be obtained if each sensor had access to all the information
available across the network. However, such a traditional
scheme has the disadvantages of a high communication over-
head and power consumption. Furthermore, the centralized
implementation is not scalable in terms of the communication
bandwidth and computational complexity and lacks robustness
in terms of the link failures.

A different approach for information exchange is the dis-
tributed in-network processing algorithms. In distributed pro-
cessing, each node collects noisy observations related to a
certain parameter or phenomenon of interest. The nodes would
then communicate with their neighbors rather than a fusion
center in order to arrive at an estimate of the parameter
of interest. Distributed signal processing leads to significant
saving in terms of bandwidth and power resources by reducing
the communication overhead and the processing load [3]–[6].
Based on the topology of the network, different distributed
adaptive algorithms can be implemented [7]–[11]. Several
distributed consensus-based algorithms have been proposed in
[12]–[14]. Throughout this paper, we study the diffusion mode
of cooperation in which each node communicates with all
its immediately adjacent neighbors according to the network
topology [9], [10], [15], [16]. Due to space constraints, we
report here the results obtained for combine-then-adapt (CTA)
diffusion algorithm. It is straightforward to extend the analysis
to the adapt-then-combine (ATC) strategy. The CTA imple-
mentation consists of two steps: first, the local estimate and
the ones obtained from the neighbors are linearly combined
and in the second step the adaptation is performed. The CTA
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algorithm has been first proposed in [9], [17]–[19] and later
its modified versions appeared in [11], [20], [21].

There exists previous literature for performance analysis
of diffusion algorithms, but most of these studies consider
an ideal and error-free transmissions [9]–[11]. There are
useful studies that examine the performance of distributed
consensus algorithms over networks with imperfect commu-
nications [22]–[24]. Some studies have already considered the
diffusion algorithms with noisy information exchanges [25],
[26]. Theses studies introduce an additive noise component
to model the noisy link in different steps of the diffusion
algorithms. The analytical framework that we propose differs
from the literature in the way that we model imperfect infor-
mation exchange. In particular, we incorporate the discrete-
event random errors into the formulation which enables the
analysis to account for the random transmission errors arising
from several factors such as collisions, node failure, link
failure and link congestion. To resolve the problem of random
link failures, recently, a useful distributed consensus-based
algorithm which uses a power control strategy to estimate and
control the connectivity of ad-hoc networks was introduced
in [27]. Reference [28] proposes algorithms to overcome
the problem of channel fading and noise when using dif-
fusion LMS algorithms. The performance comparison and
conclusions are indicative of some trends, but are based on
simulations. Different from [28], we analytically investigate
the performance of diffusion LMS algorithms in the presence
of transmission errors. Furthermore, it is assumed in [28] that
each agent always receives the information but it includes
some distortion and noise component. The way we model such
errors is different from [28] as in our problem formulation it
is possible that a transmission fails at any iteration. The way
we model transmission errors is important and significantly
more realistic in several applications such as large-scale and
very large-scale dense networks (e.g., IoT systems, biological
networks, social networks) where link congestions or other
sources of errors prevent successful delivery of information.

Imperfect communications and channel noise were studied
in [29] where the authors use the model that we developed and
initially published in [30] to represent the link failures along
with the additive noise model. Even though the results of [29]
are useful, the following shortcomings have to be stressed.
The authors of [29] do not address the mean-square stability
analysis which is of considerable importance in the context
of adaptive filters from theoretical and practical perspectives.
One of the contributions of our paper is to provide conditions
on step-sizes to ensure stability in the mean-square sense when
transmission errors exist. Furthermore, reference [29] does not
study how to model and/or quantify the transmission errors in a
real network. Evidenced from the simulations, the discussions
and results are limited to identical and time-invariant error
probabilities (p = 0.1) which are not realistic assumptions.
Based on such simulations over a very small network with
8 nodes, it is concluded that additive noise components are
the main factor in performance degradation of diffusion LMS
algorithms. We will conclude that such results are limited
to specific experiments and can not be extended to general
realistic scenarios and particularly dense networks. Unlike

[29], we describe different sources of errors and we consider
practical MAC level transmissions to accurately quantify such
errors. We study realistic experiments where the probabilities
of failures are non-identical over the links and they might be
time variant as well. Furthermore, we show that in a dense
network, the errors arising from congested links can seriously
degrade the performance of diffusion LMS algorithms. Addi-
tionally, reference [29] does not provide a solution to mitigate
the problem of transmission errors and noisy links. Finally,
the assumption of independent regressors is used in [29], an
assumption that is relaxed in our work. It is worth noticing
that recently, diffusion strategies were proposed for adaptive
estimation over networks where spatial correlation among
noise signals is exploited according to a Gaussian Markov
random field (GMRF) model [31]. But, it is assumed in [31]
that the regressors are spatially independent (see Assumption
2 (independent regressors) of [31]) which is too strong of
an assumption in realistic applications. Different from [29]
and [31], we remove the independence assumption and in the
sequel we examine the spatially correlated regressors.

When dealing with practical and error-prone transmissions,
a careful modeling and performance analysis is required to
highlight the effects of transmission errors on the behavior of
the diffusion algorithms. Since adaptive filters are inherently
nonlinear time-varying systems, often theoretical development
of a single stand-alone LMS filter is a difficult task and
involves a number of assumptions on the observed data. This
mathematical hurdle would be more challenging when dealing
with the coupling effects arising from the diffusion algorithm
and the inherently time-varying transmission errors.

In detail, the contributions of this paper are as follows:
1) The main contribution of our research is to formulate
and analyze the performance of LMS adaptive networks for
distributed estimation considering transmission errors. We
already examined a two-node network [30] with regressor
vectors of size M × 1 which can be considered as a special
case of this article that focuses on a network including N
nodes. 2) The mathematical foundation proposed in this article
brings the advantage of avoiding the procedure of inverting
a matrix of size N2M2 × N2M2 (as required in [8]–[11])
which might lead to computational problems for large N
and/or M , for instance, in large-scale networks and future
IoT systems. 3) We assess sufficient conditions that ensure
mean and mean-square stability of diffusion LMS strategies in
the presence of transmission errors. 4) Our proposed analyt-
ical framework incorporates spatially correlated observations.
Specifically and different from [8]–[11], we do not impose
the constraint of spatially independent regressors across the
distributed nodes. 5) We investigate the medium access control
(MAC) level errors for a practical scenario, wherein a set
of nodes employing a backoff procedure, compete with each
other to access the channel. We quantify such errors and study
their impacts on the performance of diffusion LMS algorithms.
6) We implement a random pairwise strategy that improves
the performance of the diffusion estimation algorithm in
the presence of high transmission error rates, meanwhile it
provides savings in terms of energy and bandwidth by reducing
the amount of data exchange among nodes.
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The remainder of the paper is organized as follows. In
Section II, we formulate the problem of diffusion algorithms
over distributed adaptive networks in the presence of trans-
mission errors. In this section, we provide the mean analysis,
mean-square analysis and closed-form derivation of the steady-
state MSD. We also derive sufficient conditions to ensure the
stability of the algorithm in the mean and mean-square sense.
In Section III, We quantify transmission errors by studying a
case scenario where errors occur at the MAC layer. In order to
verify the accuracy of the proposed theoretical framework and
observe the impact of transmission errors on the distributed
estimation algorithms, we present the simulation results in
Section IV. Finally, we conclude the paper in Section V.

II. ANALYSIS OF DIFFUSION LMS OVER A NETWORK
INCLUDING N NODES

A. Problem Formulation

Consider a distributed network with a set of nodes N =
{1, 2, . . . , N} and a predefined topology including L links.
In a typical wireless deployment, a link (k, `), k, ` ∈ N exists
between two nodes if and only if the physical distance between
the end nodes is less than the maximum radio transmission
range. Let L = {(k, `)}, k, ` ∈ N denote the set of all
links of the network. Let Nk denote the set of nodes in the
neighborhood of node k (i.e., those with which node k has a
link) including node k itself. The objective of the network is
to estimate the unknown parameter vector wo in a distributed
manner from measurements of N nodes. In a diffusion strategy
every node k at each time i ≥ 0 employs some mixing
coefficients to combine estimates from its neighborhood Nk
[9]. However, in practice not all of the linked nodes are able
to send their estimates to node k due to the errors at different
layers of the communication protocol stack. Consequently,
unlike the ideal situation in which no error occurs, each
iteration of the adaptive algorithm builds up a different set
of mixing coefficients that depends on the error probabilities.

Let Sk,i ⊆ N denote the set of neighbors of node k that
successfully transmit their information to node k at time i
including node k. We introduce the adaptive filter of node
k in a distributed network based on diffusion LMS with
transmission errors as follows:

wk,i+1 = φk,i + µkek,iuk,i, i ≥ 0, (1)

where

φk,i =
∑
`∈Sk,i

ak,`,iwl,i, (2)

ek,i = dk,i − φT
k,iuk,i, (3)

dk,i = vk,i +woTuk,i. (4)

In the above expressions, wk,i (for k = 1, 2, . . . , N, and i ≥
0) are the M -dimensional coefficient weight vectors of the
adaptive algorithm at node k and iteration i, µk is the step size
at node k, ak,`,i, ` = 1, 2, . . . , N are the mixing coefficients
at iteration i, φk,i are the intermediate variables to obtain the
new weight vectors after information exchange among nodes,

uk,i are the M -dimensional input vectors, ek,i are the error
signals, vk,i are the noise signals and dk,i are the desired
signals obtained from the unknown weight vector wo through
the linear regression model (4). The superscript (.)T denotes
transpose operation.

Throughout this article we assume that a failure occurs in
information flow from node ` to node k at each iteration i with
probability pk,`. The difficulties that cause such failures or
transmission errors may include, but are not limited to: mobil-
ity of nodes and time-varying network topology, interference
and multipath fading, signal attenuation at the physical (PHY)
layer, packet loss at the MAC layer and attacks originated by
attackers or intruders. Thus, it is reasonable to assume that in
general such errors are independent non-identically distributed.
However, our analysis is not restricted to independent errors
assumption. For the sake of mathematical tractability, we
assume that the error probabilities are time-invariant which
is reasonable in stationary or slowly time-varying practical
scenarios. However, we verify in Section IV that the proposed
analysis is valid even if the error probabilities are time-variant.
Furthermore it is reasonable to assume that transmission errors
that occur with probabilities pk,` and the measurement errors
vk,i are independent. As an example, a node may observe a
low measurement noise variance (for example if it is close
to a target in tracking applications) but still experience high
transmission error due to the high density of nodes in that
area.

We notice that unlike the previous formulation (ideal trans-
mission) [9]–[11], here, the intermediate variable φk,i is
constructed by a weighted sum over the set of nodes who have
successfully transmitted their local information to node k. To
further demonstrate the new formulation, a different way to
express φk,i is described in Appendix A. In order to incorpo-
rate the transmission errors in the formulation of diffusion al-
gorithm, we subsequently define some useful notation. Define
Λ = [λk`], k, ` ∈ N as the N×N adjacency matrix represent-
ing the network connectivity, i.e, each entry λk` is 1 if there is
a link between nodes k and ` and is 0 if there is not. Assume
that E is the number of 1’s not located on the main diagonal of
Λ, i.e., E = 2L. Motivated by the aforementioned discussion
and assumptions regarding unreliable transmissions, we define
a set of possible events E = {ε1, . . . , εV }, their corresponding
probabilities P = {p1, . . . , pV }, where V = 2E and the set of
combining matrices A = {A(1), . . . ,A(v)}. We also introduce
the set V = {1, . . . , V } whose jth element corresponds
to the occurrence of event ej , j = 1, . . . , V . We note that
A(j) = [a

(j)
k,`], j = 1, . . . , V is the N ×N combining matrix

that collects the nonnegative mixing coefficients of diffusion
update followed by event εj during information exchange
period satisfying∑

`∈Nk

a
(j)
k,` = 1, for all k ∈ N and j ∈ V. (5)

At each time iteration i, we collect the mixing coefficients as
Ai = [ak,`,i]. Followed by the occurrence of event εj , we have
that Ai = A(j). It follows from the above diffusion algorithm
that each entry a

(j)
k,` of matrix A(j) represents the weight
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given to node ` in order to find the intermediate variable at
node k conditioned that event εj occurred during information
sharing. As an example, suppose that ε1 represents the event in
which all transmissions fail due to congested links. Under the
independent errors assumption, the probability associated to
this case is p1 =

∏
(k,`)∈L pk,` and it follows that A(1) = IN ,

where IN is the N × N identity matrix, i.e., each node
establishes the update only according to its local observation.

Regarding the statistics of the measurement data and noise
signals, we assume that the regressors uk,i are temporally
independent identically distributed (i.i.d.) zero-mean white
Gaussian random variables with covariance matrices Ruk

=
E[uku

T
k ] = σ2

uk
IM , where E[(.)] denotes the expected-

value operator. However, we explore the spatial correlation
between nodes by assuming that two locally observed vectors
uk and u` are correlated Gaussian random vectors with
cross-correlation matrix Ruk,u`

= σ2
uk`
IM , where σ2

uk`
=

ρk`σuk
σu`

and ρk` is the spatial correlation index between
nodes k and `. The noise signal vk,i is zero mean i.i.d.
white Gaussian random variable with variance σ2

vk
. The input

vectors uk,i and noise signals vk,i are temporally and spatially
independent of each other.

Note that (2) represents a linear combination of the received
weight vectors to produce the intermediate variable φk,i at
node k at iteration i. In general, the combiners may be
nonlinear or even time-variant to reflect variations in network
topology or to respond efficiently to nonstationary conditions
[9]. In the following discussion the mixing coefficients are
considered to be time-varying in order to capture the effects of
transmission errors. We use the above formulation throughout
the forthcoming sections to work out the detailed mean and
mean-squared analyses of diffusion estimation algorithms in
the presence of transmission errors.

B. Mean Analysis

In this subsection, we provide the mean analysis which
will be used later in order to find the expression for the
steady-state mean-square deviation (MSD). Let εj(i) represent
transmission errors during iteration i which corresponds to
εj . Using (1)-(4) and conditioned that transmission errors
during iteration i correspond to εj , we can obtain a recursive
expression to calculate E[wk,i|εj(i)] as follows

E[wk,i+1|εj(i)] = a
(j)
k,kρkE[wk,i] + ρk

∑
`∈N
` 6=k

a
(j)
k,`E[w`,i] + ck,

(6)
where

ρk = 1− µkσ2
uk
, k ∈ N , (7)

ck = µkσ
2
uk
wo, k ∈ N . (8)

In order to find E[wk,i+1], we consider all possibilities
according to set E and replace (6) in the following equation

E[wk,i+1] =
∑
j∈V

pjE[wk,i+1|εj(i)], (9)

which yields

E[wk,i+1] = ak,kρkE[wk,i] + ρk
∑
`∈N
` 6=k

ak,`E[w`,i] + ck, (10)

where

ak,k =
∑
j∈V

pja
(j)
k,k, ak,` =

∑
j∈V

pja
(j)
k,`, (11)

for all k, ` ∈ N , ` 6= k. It follows from (5) that∑
`∈Nk

ak,` = 1, k ∈ N . (12)

From Appendix B, we conclude that

E[wk,s] = wo, k ∈ N , (13)

i.e., the weights converge to the optimal value.

C. Mean Stability

In the solution procedure of the previous subsection and
in particular in using the Cramer’s law in Appendix B, we
should verify that z = 1 is not a root of the polynomial of
order N obtained from det(En) = 0. This polynomial can
be written as F (z) =

∑N
k=0 fkz

−k. Moreover, for stability
in mean, it is required that all roots of F (z) lie within the
unit circle. Using the structure of En defined in (61), it is
easily verified that F (z) is the characteristic polynomial of
E ′n,s = [ρiai,j ]N×N , i, j = 1, 2, . . . , N and it is immediate
that the roots of F (z) are the eigenvalues of the square matrix
E ′n,s. Let λk, k = 1, 2, . . . , N denote the eigenvalues of E ′n,s.
We also use ρ(E ′n,s) to denote the spectral radius of E ′n,s. In the
sequel, we find the sufficient condition that guarantees that the
maximum absolute eigenvalue max1≤k≤N |λk| or equivalently
the spectral radius ρ(E ′n,s) is less than one. This condition is
sufficient to place the roots of F (z) within the unit circle and
hence ensure stability in mean. Considering (12), we notice
that one interesting feature of the rows of E ′n,s is that

∑
`∈N

ρkak,` = ρk, k = 1, 2, . . . , N. (14)

Consider the induced infinity-norm of matrix E ′n,s defined as

‖E ′n,s‖∞ = max
1≤k≤N

∑
`∈N

|ρkak,`|. (15)

It is also known from the characteristics of a matrix norm that

ρ(E ′n,s) ≤ ‖E ′n,s‖. (16)

To satisfy max1≤k≤N |λk| < 1, we use (14)-(16) to write

|ρk| < 1, k = 1, 2, . . . , N, (17)

which is equivalent to impose the following lower and upper
bounds on the step-sizes

0 < µk <
2

σ2
uk

, k = 1, 2, . . . , N. (18)
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We conclude that in a network including N nodes de-
ploying distributed diffusion estimation algorithm (1)-(4) with
combining weight matrices satisfying (5), in the presence
of multiplicative transmission errors modeled as (57), the
sufficient condition for mean stability is provided by (18).
It is important to note that (18) coincides with sufficient
condition for mean stability when transmissions are assumed
to be perfect [11]. In other words, if step sizes satisfy (18),
then transmission errors described in Section II-A and modeled
according to a Bernoulli process (57) do not diverge diffusion
estimation algorithm (1)-(4) in the mean sense.

D. Mean-Square Analysis

We aim at finding the closed form expressions for the
steady-state MSD. Notice that the steady state MSD value for
weight vector at node k is defined as follows:

MSDk = lim
i→∞

E[(wk,i −wo)T(wk,i −wo)]. (19)

It is shown in Appendix C that we can write the following
expression for E[wT

k,i+1w`,i+1|εj(i)]:

E[wT
k,i+1w`,i+1|εj(i)]

= ηk`{
∑
m∈N

a
(j)
k,ma

(j)
`,mE[wT

m,iwm,i]

+
∑

m,n∈N ,m 6=n

(a
(j)
k,ma

(j)
`,n + a

(j)
k,na

(j)
`,m)E[wT

m,iwn,i]}

+
∑
m∈N

(a
(j)
k,m(ε` − νk`) + a

(j)
`,m(εk − νk`))woTE[wm,i]

+ νk`w
oTwo, (20)

where

ηk` = 1− (µkσ
2
uk

+ µ`σ
2
u`

)

+ µkµ`(σ
2
uk
σ2
u`

+ (M + 1)σ4
uk`

), (21)

εk = µkσ
2
uk
, (22)

νk` = µkµ`(σ
2
uk
σ2
u`

+ (M + 1)σ4
uk`

). (23)

In order to consider the set of all possible events during
information exchange period, we write:

E[wT
k,i+1w`,i+1] =

∑
j∈V

pjE[wT
k,i+1w`,i+1|εj(i)]. (24)

Using (20) and (24), it follows that:

E[wT
k,i+1w`,i+1]

=
∑
m∈N

ck`,mmE[wT
m,iwm,i] +

∑
m,n∈N
m 6=n

ck`,mnE[wT
m,iwn,i]

+
∑
m∈N

ck`,omw
oTE[wm,i] + νk`w

oTwo, (25)

where

ck`,mm = ηk`
∑
j∈V

pja
(j)
k,ma

(j)
`,m, (26)

ck`,mn = ηk`
∑
j∈V

pj(a
(j)
k,ma

(j)
`,n + a

(j)
k,na

(j)
`,m), (27)

ck`,om =
∑
j∈V

pj [a
(j)
k,m(ε` − νk`) + a

(j)
`,m(εk − νk`)], (28)

for all k, `,m, n ∈ N , k 6= ` and m 6= n. In a similar way,
we can write:

E[wT
k,i+1wk,i+1]

=
∑
m∈N

ckk,mmE[wT
m,iwm,i] +

∑
m,n∈N
m6=n

ckk,mnE[wT
m,iwn,i]

+
∑
m∈N

ckk,omw
oTE[wm,i] + νkw

oTwo +Mµ2
kσ

2
uk
σ2
vk
,

(29)

where

ckk,mm = ηk
∑
j∈V

pja
(j)2

k,m, (30)

ckk,mn = 2ηk
∑
j∈V

pja
(j)
k,ma

(j)
k,n, m 6= n, (31)

ckk,om = 2
∑
j∈V

pja
(j)
k,m(εk − νk), (32)

cvk = Mµ2
kσ

2
uk
σ2
vk
, (33)

and:

ηk = 1− 2µkσ
2
uk

+ µ2
k(M + 2)σ4

uk
, (34)

νk = µ2
k(M + 2)σ4

uk
. (35)

Let Wk` denote the one-sided z-transform of E[wT
k,iw`,i].

Taking the z-transform of both sides of (25) and (29) and
after some algebra we obtain

(1− z−1ckk,kk)Wkk − z−1
∑

m∈N ,m 6=k

ckk,mmWmm

− z−1
∑

m∈N ,m 6=k

ckk,mnWmm

= z−1
∑
m∈N

ckk,omw
oTWm +

νkw
oTwo + cvk
1− z−1

, (36)

and

(1− z−1ck`,k`)Wk` − z−1
∑
m∈N

ck`,mmWmm

− z−1
∑

m,n∈N ,m 6=n
m 6=k,n 6=`

ck`,mnWmm

= z−1
∑
m∈N

ck`,omw
oTWm +

νk`w
oTwo

1− z−1
. (37)

Note that (36) and (37) are the expressions at one-node level
and two-node level that completely describe the coupling
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effects among different nodes in a diffusion estimation algo-
rithm. The total number of equations in a network including
N nodes would then be Q = N(N+1)/2. In order to build the
equations in a compact form, we consider writing all one-node
level equations followed by those representing two-node level.
Thus, ensuring that the permutation of the set of equations
is selected as {11, . . . , NN, 12, . . . , 1N, 23, . . . , 2N, . . . , N −
2 N − 1, N − 2 N,N − 1 N}, the system description in z-
domain can be represented as (38) shown at the bottom of the
page.

Denoting the ith column of C by Ci, i = 1, 2, . . . , Q, we
write

[C1 C2 . . . CQ]Q×Q [W]Q×1 = [D]Q×1 . (39)

Recall that our objective is to find Wkk, k = 1, 2, . . . , N ,
i.e., the first N elements of W from the set of equations
described in (38). Let CDi, i = 1, 2, . . . , N denote the matrix
obtained after replacing the ith column of C by D. Then, using
Cramer’s rule we obtain Wkk as follows:

Wkk =
det(CDk)

det(C)
, k = 1, 2, . . . , N, (40)

where det(.) denotes the determinant operator.
We can rewrite matrix D as follows:

D =


z−1

∑
m∈N c11,omw

oTWm + ν1w
oTwo

1−z−1

z−1
∑
m∈N c22,omw

oTWm + ν2w
oTwo

1−z−1

...
z−1

∑
m∈N cN−1 N,omw

oTWm + νN−1 NwoTwo

1−z−1


︸ ︷︷ ︸

[Dwo ]

+


cv1

1−z−1
cv2

1−z−1

...
0


︸ ︷︷ ︸

[Dv ]

. (41)

It follows that

det(CDi) = det(C1 · · · Dwo CQ) + det(C1 · · · Dv CQ).
(42)

Using (42) in (40), we obtain the following expression

Wkk =
det(C1 · · · Dwo CQ)

det(C)
+

det(C1 · · · Dv CQ)

det(C)
, (43)

for all k ∈ N . To proceed, we define the square matrix C′
of size Q as C′ = [ck`,mn]Q×Q with c,mn obtained from
(26),(27),(30) and (31) and arranged as in C in (38). To
simplify, we define cs, cwo,s at the steady-sate as follows,
as well as cvk,s, k = 1, 2, . . . , N according to (44) as shown
at the bottom of the next page.

cs = lim
z→1

det(C) = det(IN − C′), (45)

cwo,s = lim
z→1

(z − 1) det(C1 · · · Dwo CQ) = woTwo det(C).
(46)

Notice that the derivation of (46) is given in Appendix D. Let
wk,s denote the expectation of the norm of the weight vector
corresponding to the kth node at the steady-state as expressed
in (19). Then, using the final value theorem,Wkk as described
in (43) and the steady-state quantities as defined in (44) and
(45), we arrive at the following result:

wk,s , lim
i→∞

E[wT
kwk]

= lim
z→1

(z − 1)Wkk = woTwo +
cvk,s
cs

. (47)

Finally, the closed-form expression for local MSDk is given
by

MSDk =
cvk,s
cs

. (48)

We notice that the global network MSD is obtained by
averaging over the local MSD’s as follows:

MSD =
1

N

∑
k∈N

MSDk. (49)


1− z−1c11,11 −z−1c11,22 · · · −z−1c11,N−1 N

−z−1c22,11 1− z−1c22,22 · · · −z−1c22,N−1 N

...
...

. . .
...

−z−1cN−1 N,11 −z−1cN−1 N,22 · · · 1− z−1cN−1 N,N−1 N


︸ ︷︷ ︸

[C]Q×Q


W11

W22

...
WN−1 N


︸ ︷︷ ︸

[W]Q×1

= (38)


z−1

∑
m∈N c11,omw

oTWm +
ν1w

oTwo+cv1
1−z−1

z−1
∑
m∈N c22,omw

oTWm +
ν2w

oTwo+cv2
1−z−1

...
z−1

∑
m∈N cN−1 N,omw

oTWm + νn−1 nw
oTwo

1−z−1


︸ ︷︷ ︸

[D]Q×1

.
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E. Mean-square Stability

In this subsection, we discuss the mean-square stability of
diffusion LMS algorithms in the presence of transmission
errors. In particular, our aim is to answer the following
questions. How do transmission errors affect the convergence
of diffusion algorithms in the mean-square sense? Is there an
explicit sufficient condition to ensure mean-square stability?
To address these important issues, we use the same approach
as the one presented in Subsection II-C.

We start with arguing that in order to use Cramer’s law
in (38) around |z| → 1, we must provide condition to
prevent any root of det(C) = 0 be placed on the unit circle.
Furthermore, all of the corresponding roots must lie within
the unit circle to guarantee stability in the mean-square sense.
We note that these roots are the eigenvalues of C′. For
convenience, we rewrite matrix C′ as C′ = [γi,j ]Q×Q and
define η′i, i = 1, 2, . . . , Q to denote the common factor (ηk
in (34) and ηk` in and (21)) of elements in the ith row of C′.
Let us define λ′k, k = 1, 2, . . . , Q to refer to the eigenvalues of
C′. Using (12), (26),(27),(30) and (31) and noting the structure
of C′, we find one important feature of the rows of C′

Q∑
j=1

γi,j = η′i, i = 1, 2, . . . , Q. (50)

Using this result and considering the induced infinity-norm
of matrix C′ and the similar principles already discussed in
Subsection II-C, we find out that to satisfy max1≤k≤Q|λ′k| <
1, it is sufficient to ensure that |η′i| < 1, i = 1, 2, . . . , Q, or
equivalently

|ηk| < 1, k ∈ N , and |ηk`| < 1, k, ` ∈ N , k 6= `. (51)

It is worth mentioning that (34) suggests that ηk only
depends on the local step size of the individual filter of a single
node and the statistics of the filter input. On the other hand,
from (21), it is evident that ηk` accounts for the interaction
among node pairs and is a function of step sizes and the
statistics of the inputs at two different nodes. The solution
of (51) provides useful and practically applicable lower and
upper bounds for step sizes which can be written as follows:

0 < µk <
2

(M + 2)σ2
uk

, k = 1, 2, . . . , N. (52)

The following important result is drawn from the above
discussions. In a network with N nodes using distributed
diffusion estimation algorithm (1)-(4) with combining weight
matrices satisfying (5), in the presence of multiplicative

transmission errors modeled as (57), the sufficient condition
provided by (52) ensures stability in the mean-square sense.
An important feature of the condition (52) is that it is not
dependent on error probabilities pk,`. This suggests that if
step sizes satisfy (52), then transmission errors as described in
Section II-A and modeled according to a Bernoulli distribution
(57) do not lead to the mean-square divergence of diffusion
estimation algorithms (1)-(4).

It is worth mentioning that condition (52) represents a novel
bound which can be used even in the case of perfect informa-
tion exchange. Considering perfect transmissions, it has been
argued that sufficiently small step-sizes that satisfy mean sta-
bility, will also ensure mean-square stability [11]. Sufficiently
small step-sizes may however lead to slow convergence rates
and thus high energy requirements at individual nodes. This
is undesirable given that in WSNs energy is crucially scarce.
Furthermore, in certain applications where minimizing the
speed of convergence is more important than achieving a small
steady-state error one should not select very small step-sizes
during the transient time [32]. Another practical significance
of (52) is that the condition is fully distributed, i.e, each node
can locally select the step-size according to the estimate of
second-order statistics of its regression data.

III. MODELING TRANSMISSION ERRORS

As previously discussed, there exist various uncertainties in
WSNs such as mobility of nodes and time-varying network
topology, interference and multipath fading, signal attenua-
tion at the PHY layer, packet loss at the medium access
control (MAC), etc. Any of these uncertainties may result
in transmission errors during information exchange. Thus, in
order to accurately evaluate transmission errors in WSNs, it
is required to consider all sources of errors depending on the
type of application. Given the scope of this paper, we limit our
discussion to the MAC-level errors as one example of how to
quantify pk,` throughout the rest of this section.

There is a vast literature on designing efficient channel
access mechanisms for WSNs and due to page restrictions,
we refer the reader to [33]–[35] for further details. For our
purpose it is sufficient to concentrate on the exponential
backoff procedure that has been standardized as the basic
access mechanism in IEEE 802.11 [36] and the contention
phase of the IEEE 802.15.4 [37] which is designed for low
rate WSNs. In this mechanism, every node that has a packet
to transmit senses the channel and if it is idle for a period
called distributed interframe space (DIFS), the node transmits.
Otherwise, it waits until the channel is idle for a DIFS and
then starts a backoff. The random backoff period is uniformly

cvk,s = lim
z→1

(z − 1) det(C1 C2 · · · Dv CQ)

= det


1− c11,11 −c11,22 · · · cv1 −c11,N−1 N

−c22,11 1− c22,22 · · · cv2 −c22,N−1 N

...
...

. . .
...
...

−cN−1 N,11 −cN−1 N,22 · · · 0 1− cN−1 N,N−1 N

 . (44)
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selected between 0 and the contention window. The initial
size of the contention window is CW and is doubled at
each retransmission. Let R denotes the maximum number of
retransmissions. Then, the maximum contention window size
is CWmax = 2RCW . The backoff counter is decremented after
each slot time provided that the channel is sensed idle. The
transmission starts when the backoff counter is zero. If an
acknowledgement (ACK) is received from the destination, the
transmission is successful; otherwise, a collision is inferred.
Let qk,` k ∈ N , ` ∈ Nk denote the probability of collision
assigned to the transmissions with node k as destination and
node ` as source. Furthermore, we assume that each node k has
nk neighbors (degree of node k is nk). Node k successfully
receives a packet from node ` if none of its remaining
neighbors or itself transmit simultaneously. We assume that
all nodes are deploying the same set up for backoff procedure,
i.e., the maximum number of retransmissions and the initial
window sizes are identical. Consequently, each node transmits
a packet with probability τ . Thus, the collision probability qk,`
can be written as follows:

qk,` = 1− (1− τ)nk , k ∈ N , ` ∈ Nk. (53)

We assume that each node knows how many neighboring
nodes it has; thus, nk is known. Additionally, we consider the
seminal paper of Bianchi that develops a two state Markov
chain to evaluate the performance of the exponential backoff
algorithm to express τ as a function of R, CW and qk,` as
follows [38]:

τ =
2(1− 2qk,`)

(1− 2qk,`)(CW + 1) + qk,`CW (1− (2qk,`)R)
. (54)

Solving (53) and (54), we find the probability of collision on
each link. In a channel access mechanism based on the expo-
nential backoff procedure as described above, packet collisions
are closely related to the transmission errors pk,`. If a packet
collides more than the maximum number of retransmissions
during the information exchange period, then the packet is
discarded and a transmission error occurs. In other words,
transmission errors pk,` on all directional links to node k are
identical and equivalent to the packet loss experienced by node
k which is given by

pk,` = qR+1
k,` , k ∈ N , ` ∈ Nk. (55)

IV. SIMULATIONS

In the first phase of simulations, we consider identical
failure probabilities. To justify the assumption of identical
error probabilities, consider as an example a scenario where
each node randomly turns into sleep mode for power saving
and does not share information with its neighbors. For such
source of failure, it is reasonable to assume identical error
probabilities in a network with homogeneous nodes. In the
second phase of simulations, we consider another practical
scenario where errors occur at the MAC level while nodes
access the channel using a backoff procedure. In such scenario,
we use (53)-(55) to model non-identical error probabilities
experienced by each node.

A. Uniform Error Probabilities

We consider a small 7-node network where nodes are
randomly distributed in a square area with side S = 100 units.
There exists a link between any pair of nodes with a distance
less than 50 units. The network topology is shown in Fig. 1.
For convenience, we denote the error probability by p since
through this simulation, transmission errors are assumed to be
identical for all links, i.e., pk,` = p, (k, `) ∈ L.

Without loss of generality, we apply the relative variance
rule which gives more weight to nodes with lower noise
variance to obtain the mixing coefficients [11]. Hence, it
follows that ak,`,i = σ−2

v` /(
∑

m∈Sk,i
σ−2
vm

) for ` ∈ Sk,i and
otherwise we have that ak,`,i = 0. Notice that any rule for
finding the mixing coefficients (e.g., uniform [39], Laplacian
[40], Metropolis [41], maximum degree [15], relative degree
variance [11], Hasting [42], etc.) is possible as long as it
satisfies the condition

∑
`∈N ak,`,i = 1, k = 1, 2, . . . , N for

all i, as discussed in Section II-A. Each node has access to
the distorted and noisy version of the same unknown vector
wo = col{1, 1, . . . , 1}/

√
M , with M = 2 according to (4)

which may represent for example, the location coordinates of
a moving object [43]. The M -dimensional input regressors are
assumed to be temporally independent Gaussian, but spatially
correlated. The spatial correlation index ρk` between two
nodes k and ` is obtained according to ρk` = ρ|k−`|, where ρ
is a constant that lies between 0 and 1. The measurement noise
is assumed to be white and Gaussian. The noise variances are
generated randomly from [−40, 0) dB and shown in Fig. 2
(top). The variances of input regressors are randomly selected
over (0, 1] and depicted in Fig. 2 (bottom). For all nodes
we choose identical step-sizes, i.e., µk = µ and we select
two distinct sets of step-sizes (µ = 0.01 and µ = 0.05)
to illustrate the trade-off between the convergence rate in
transient phase and the error in steady-state. In order to
obtain the performance measures, the results are averaged over
500 independent experiments each using 1, 000 iterations. A
random noise is generated at each run according to the noise
profile shown in Fig. 2 (top).

Fig. 3 shows the learning curves in terms of the global
MSD for different values of error probability, i.e., p ∈
{0, 0.2, 0.5, 0.7, 1} and different values of step-sizes. Both
step-sizes are selected according to (52) to ensure stability.
As it can be seen from Fig. 3, a large step-size (µ = 0.05)
makes the algorithm converge in less than 100 iterations.
Contrarily, a small step-size (µ = 0.01) decreases the steady-
state error with a price paid in terms of a slower convergence
rate. To meet the conflicting requirements of large step-sizes
in transient phase and small step-sizes in steady-state, variable
step-size diffusion LMS algorithms should be exploited (see
[32] for details).

To investigate the effect of the transmission errors on the
steady-state MSD, we notice that in the presence of trans-
mission errors, i.e. p > 0, the global network MSD at the
steady-state increases compared with the error-free scenario
(p = 0). Another important observation is that the global
convergence rate might increase when the error probability
increases. In other words, transmission errors might prevent
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1 2 3 4 5 6 7
−40

−35

−30

−25

−20

−15

−10

−5

0

Node number, k

N
o
is
e
va
ri
a
n
ce

(d
B
)

1 2 3 4 5 6 7
−2

0

2

4

6

8

10

Node number, k

R
eg
re
ss
o
r
va
ri
a
n
ce

(d
B
)

Fig. 2. Noise power profile σ2
vk

(top) and regressor power profile σ2
uk

(bottom) for 7-node network in Fig. 1.

the negative effect of a slow node on a fast converging node
and thus improve the global convergence rate. In this network,
for example, it might be better for node 7 with a low noise
level to discard information received from node 5 with a
high noise level rather than giving it some weight according
to the relative variance rule. The policy of discarding such
worthless received information is equivalent to not receiving
the information at all due to transmission errors.

Notice that in general, we need to look at the convergence
modes of adaptive algorithms to exploit their transient be-
havior. In a diffusion mode of cooperation, we may identify
the modes of convergence by evaluating the N eigenvalues
corresponding to matrix E ′n,s = [ρiai,j ]N×N , as well as the Q
eigenvalues of matrix CQ×Q. We plot the convergence modes
of the 7-node network in ascending order for different values
of error probability, i.e., p ∈ {0, 0.2, 0.5, 0.7, 1} in Fig. 4. In
Fig. 4, we also illustrate the magnified view of the dominant
convergence mode (the eigenvalue with the largest absolute
value) and the second largest eigenvalue. We observe that in
the presence of transmission errors (p ∈ {0.2, 0.5, 0.7}), the
first and second dominant modes of convergence are smaller
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Simulation, p = 0, Error-free transmission
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Simulation, p = 1, Non-cooperative

Simulation, Time-varying error, p̄ = 0.5

Theory

 µ=0.01

 µ=0.05

Fig. 3. Learning curve in terms of the global MSD in dB for different
values of time-invariant error probability p ∈ {0.2, 0.5, 0.7} and time-varying
errors p̄ = 0.5 compared with non-cooperative (p = 1) and error-free (p =
0) scenarios in 7-node network with two distinct sets of step-sizes (µ =
0.01 and µ = 0.05). The dashed lines show the theoretical expression (49)
for the steady-state MSD.
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Fig. 4. Modes of convergence in 7-node network with uniform errors for
different values of error probability p ∈ {0, 0.2, 0.5, 0.7, 1}. First and second
largest modes are shown in the magnified images.

compared with the error-free scenario (p = 0) which makes
the algorithm converge faster.

Up to now, we assumed that the error probability pk,`
is time-invariant. Note that however, the error patterns are
time-variant. The assumption that pk,` is time-invariant, is
reasonable in stationary or slowly time-varying scenarios.
In such scenarios, the error probability can be assumed to
be time-invariant during the whole period required for the
algorithm to converge. In most wireless sensor environments
with limited sources of energy, fewer number of iterations
before convergence is desirable. Although, in scenarios with
fewer iterations to converge, it is reasonable to assume a
time-invariant pk,`; our analysis is valid even if the error
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Fig. 5. Local steady-state MSD in dB for nodes 1,3,4,5 and 7 as a function of
error probability in 7-node network. The solid lines curves show the theoretical
values obtained from expression (48) and the markers represent the simulation
results. The magnified image shows the Local steady-state MSD for node 7
around its minimum at p = 0.375.

probabilities pk,` have instant variations even between two
successive iterations. To illustrate, we plot a distinct curve
corresponding to time-variant error probabilities in Fig. 3.
The error probability pk,` at each time iteration i is generated
uniformly from [0, 1]. Consequently, a node receives the packet
on average in half of the iterations and the average probability
of error is p̄k,` = p̄ = 0.5. As it can be seen from the figure,
the theoretical steady-state MSD match very well with this
simulation curve.

To further investigate the impacts of the errors on the
performance of the diffusion estimation algorithm, we eval-
uate the local steady-state MSD associated to each node by
averaging over the last 1,000 samples of the individual learning
curves. Local steady-state MSD curves as a function of error
probability for nodes {1, 3, 4, 5, 7} are illustrated in Fig. 5.
We observe that the MSD values obtained from analysis and
simulation coincide with each other. It is seen that the MSD
curves for a group of nodes {1, 3, 4, 5} are monotonically
increasing functions of the error probability; on the contrary,
for node {7} there exist non-zero values of probability of
error that minimizes the corresponding local MSD. From the
magnified image of the local MSD curve corresponding to
node 7, we observe that the minimum MSD is −56.05 dB
occurring at p = 0.375. This is due to the fact that the noise
variances of neighbors of node 7 ({2, 4, 5}) are significantly
higher than that of {7}. As a result, there exist certain optimum
points in terms of the error probability that minimizes the
noise amplification effect and consequently minimizes the
local steady-state MSD of the nodes with low noise variances.
Thus, we conclude that in general the local and global steady-
state MSD values are not necessarily monotonically increasing
functions of the error probability.
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Fig. 6. MAC-collision based error probability pk,` corresponding to backoff
parameters R = 1 and CW ∈ {1, 3, 7, 15} for 7-node network in Fig. 1.
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Fig. 7. Learning curve in terms of the global MSD in dB when errors
arise from collisions at the MAC level of 7-node network in Fig. 1, for
different values of contention window CW ∈ {1, 3, 7, 15} compared with
non-cooperative and error-free scenarios with two distinct sets of step-sizes
(µ = 0.01 and µ = 0.05). The dashed lines show the theoretical expression
(49) for the steady-state MSD.

B. MAC-collision Based Errors

In the second phase of simulations, we concentrate on the
MAC-level errors. First, we consider the small-scale network
as shown in Fig. 1 with the simulation parameters identical
to those used in the previous subsection. To model the trans-
mission errors we perform a discrete-event simulation with
one retransmission (R = 1) and contention window sizes
CW ∈ {1, 3, 7, 15}. The probability of errors due to collisions
at the MAC level for different values of contention window
is shown in Fig. 6. As expected, nodes in dense areas with
more neighbors (for example, node 5) experience more colli-
sions and higher error rates. As the contention window size
increases, the error probability decreases. We now simulate
the diffusion estimation algorithm for the corresponding MAC
level errors. Learning curves in terms of the global MSD for
different values of contention window and two distinct step-
sizes are shown in Fig. 7. From Fig. 7, it is seen that the
theoretical values match very well with the steady-state values
obtained from simulation and as the contention window size
increases, the performance of the algorithm tends to the error-
free case.

As the last experiment, we consider a medium-scale network
including 30 nodes randomly placed in a square region with
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side S = 100 units as shown in Fig. 8. Nodes communicate
with neighbors located within the range of 25 units. Noise
levels are generated randomly from [−30 dB,−10 dB] and
variances of input regressors are randomly selected from (0, 2].
We select M = 2 and identical step-sizes: µ = µk = 0.1.
Similar to the previous experiment, we test the performance
of the diffusion LMS algorithm in the presence of MAC level
errors. From Fig. 9, we observe that the error probability
is considerably higher than the previous case due to the
congested links and the high density of the network. In such a
dense network, the imperfect data transfer among nodes during
information exchange, results in a significant performance
degradation in terms of the network global MSD as shown in
Fig. 10. From Fig. 10 we observe that for CW = 1, the steady-
state error is significantly higher than the error-free scenario
and the network behavior is close to the non-cooperative mode.
To resolve this problem, we implement an energy-efficient
technique aimed at limiting the number of data transmissions.
In this implementation each node communicates solely with
one neighbor which is selected randomly during each informa-
tion exchange period. From Fig. 9, we observe that the error
probability for random pairwise strategy is significantly lower
compared with standard diffusion algorithm. A small window
size for contention at the MAC level is preferable to save en-
ergy in WSNs. From Fig. 10, we observe that the performance
of the random pairwise strategy is improved compared with the
standard diffusion in the presence of high transmission error
rates, i.e., when CW ∈ {1, 3}. The random pairwise strategy
thus, increases the energy efficiency by reducing the number
of data transmissions; meanwhile it enhances the performance
of the distributed estimation algorithm in the presence of high
transmission error rates.

V. CONCLUSION

We formulate the problem of distributed estimation based
on the diffusion cooperation scheme over adaptive networks in
the presence of transmission errors. We propose a theoretical
framework and derive the closed-form expressions for the
local and global steady-state MSD’s under the assumption of
imperfect information flow. Compared to the related work in
the context of diffusion algorithms with error-free information
exchange, the proposed analysis has less complexity and
ensures scalability in terms of the input regressor size and the
network size. Additionally, the present study does not impose
the independence assumption between the observation vectors
which in turn allows us to examine the performance measures
of the distributed nodes with spatially correlated regressors.
Simulation and analysis verify that a well-designed diffusion
estimation algorithm will converge slower, achieving a higher
steady-state MSD as a result of transmission errors. More
importantly, we conclude that the local and global steady-
state MSD values are not necessarily monotonically increasing
functions of the error probability. We also derive practically
applicable sufficient conditions to assure the stability of dif-
fusion LMS strategies with imperfect information sharing.
Finally, we study a practical case scenario where errors occur
at the MAC layer and implement a random pairwise technique
to mitigate the negative effects of such errors.
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APPENDIX A
DIFFERENT REPRESENTATION OF φk,i

An alternative method to represent φk,i is as follows:

φk,i = a′k,k,iwk,i +
∑

`∈Nk\{k}

a′k,`,iw`,i (56)

−
∑

`∈Nk\{k}

δk,`,ia
′
k,`,iw`,i +

∑
`∈Sk,i

a′′k,`,iw`,i,

where δk,`,i, k = 1, 2, . . . , N, ` ∈ Nk \ {k} is a Bernoulli
random variable with parameter pk,`:

δk,`,i :=

{
1 with probability pk,`

0 with probability 1− pk,`
. (57)

In (56), the coefficients a′k,`,i represent the mixing coeffi-
cients when perfect information exchange is established and
0 ≤ a′′k,`,i < 1 are some virtual coefficients added to the
expression to ensure a convex combination of weight vectors.
The interpretation of the third term on the right hand side of
(56) is to eliminate the local weight vectors of those nodes that
have not been able to successfully transmit their information
to node k. In the case of error-free transmissions (δk,`,i = 0),
the virtual coefficients are set to 0. Otherwise, they are non-
zero and less than 1. We call them virtual, because they don’t
actually exist and the mixing coefficients ak,`,i are calculated
over the set of neighbors that successfully transmitted their
information, as written in (2).

APPENDIX B
DERIVATION OF (13)

Define the one-sided z-transform of the weight vector wk

asWk = Z{E[wk]}. Taking the z-transform of (10), we arrive
at

(1−ak,kρkz−1)Wk− z−1
∑

`∈N , 6̀=k

ak,`W` =
ck

1− z−1
. (58)

Thus, we can write the set of equations (59) as shown at the
bottom of the next page. For convenience, we define matrix
E ′n,s to collect ak,` and ρk, k, ` ∈ N as E ′n,s = [ak,`ρk]N×N .
Using the Cramer’s rule we obtain the following expression
for Wk

Wk =
det(En,Fk

)

det(En)
wo, k = 1, 2, . . . , N, (60)

where

En = IN − z−1E ′n,s, (61)

and En,Fi
is obtained by replacing the ith column of En by

Fn defined as

Fn =
1

1− z−1

[
µ1σ

2
u1
µ2σ

2
u2

. . . µNσ
2
uN

]T
. (62)

Denote E[wk,s] as the expectation of the weight vector of the
kth node at the steady-state. Then, we yield

E[wk,s] =
det(En,s,Fk

)

det(En,s)
wo, k = 1, 2, . . . , N, (63)

where En,s = IN − E ′n,s and En,s,Fi
is obtained by replacing

the ith column of En,s by the N × 1 column vector Fn,s
whose kth element is µkσ2

uk
. Recall the following property of

determinant: if any column of the determinant is replaced by
a new column which is a linear combination of all columns,
then the value of the determinant is not altered. As a result,
for any arbitrary determinant and considering the sum of all
columns as a particular linear combination of the columns, we
can write

det(C1 C2 · · · Ci · · · CQ) = det(C1 C2 · · · C
′

i · · · CQ),
(64)

where C′i =
∑Q
j=1 Cj , for all i = 1, 2, . . . , Q. Let us denote

each column of En,s by Ej and find the sum of the columns
of En,s as follows:

∑
j∈N
Ej = [1− ρ1

∑
`∈N

a1,` . . . 1− ρN
∑
`∈N

aN,`]
T

= [1− ρ1 . . . 1− ρN ]T = Fn,s. (65)

Notice that in the first and second step, we used (12) and
(7) respectively. Hence, replacing any column of the En,s by
Fn,s does not alter the value of the determinant of En,s. The
expressions in (13) is then derived from (63).

APPENDIX C
DERIVATION OF (20)

We begin by replacing (2)-(4) in the weight update rule (1)
which gives the following equation:

wk,i+1 = ak,k,iwk,i +
∑

`∈Nk\{k}

ak,`,iw`,i + µkvk,iuk,i

+ µkuk,iu
T
k,iw

o − ak,k,iµkuk,iuT
k,iwk,i

−
∑

`∈Nk\{k}

ak,`,iµkuk,iu
T
k,iw`,i. (66)

Followed by multiplying recursion (66) with correct indexes
and taking the conditional expectation given that event εj(i)
occurs during data transmission at iteration i, we arrive at (20).

Note that in order to compute expressions of the form
E[wT

m,iu`,iu
T
`,iuh,iu

T
h,iwn,i], we use the independence as-

sumption in the context of adaptive filters, i.e., the statistical
correlations between the regressor vectors and the weight
vectors is negligible [44], [45]. Also recall that the observation
vectors are assumed to be temporally independent identically
distributed (i.i.d.) white Gaussian random variables. This en-
ables us to use the Gaussian moment factoring theorem [46].
With these in mind and omitting the time index i for simplicity,
a term of the form E[wT

mu`u
T
` uhu

T
hwn] can be written as:
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E[wT
mu`u

T
` uhu

T
hwn]

= E[
∑
k

wm,ku`,k
∑
j

u`,juh,j
∑
i

uh,iwn,i]

=
∑
k,j,i

E[wm,ku`,ku`,juh,juh,iwn,i]

=
∑
k,j,i

E[wm,kwn,i]E[u`,ku`,juh,juh,i], (67)

where the notations wm,k, k = 1, . . . ,M and u`,k, k =
1, . . . ,M are used to represent the kth elements of vectors
wm and um respectively. Notice that in the last step of
Equation (67), the independence assumption is used. Using the
Gaussian moment factoring theorem, it can be verified that

E[wT
mu`u

T
` uhu

T
hwn]

=
∑
i

E[wm,iwn,i](σ
2
u`
σ2
uh

+ 2σ4
u`h

)

+
∑
i

E[wm,iwn,i](M − 1)σ4
u`h

= [σ2
u`
σ2
uh

+ (M + 1)σ4
u`h

]
∑
i

E[wm,iwn,i]

= [σ2
u`
σ2
uh

+ (M + 1)σ4
u`h

]E[wT
mwn]. (68)

APPENDIX D
DERIVATION OF (47)

Using (41), we rewrite Dwo as follows:

[Dwo ]i = z−1
∑
m∈N

cj,omw
oTWm+

νjw
oTwo

1− z−1
, i = 1, . . . , Q,

(69)
where index j selects the proper coefficient for each index i
according to the permutation that is used to obtain the set of
equations in (38). The key is to prove that

lim
z→1

(z − 1)[Dwo ]i = woTwo
∑
m∈N

cj,om + νj , (70)

for all i = 1, 2, . . . , Q. Denote by En,i the ith column of En.
Then it holds that E ′n =

∑
i∈N En,i = [1 − z−1ρj ]j . Using

ρj = 1− µjσ2
uj

and (62), we obtain:

[E
′

n]j = 1− z−1(1− µjσ2
uj

)

= 1− z−1(1− (1− z−1)[Fn]j)

= (1− z−1)(1 + z−1[Fn]j). (71)

We know that

det(En) = det(En,1 · · · E
′

n · · · En,N )

= (1− z−1) det(En,1 · · · 1 + z−1Fn · · · En,N )

= (1− z−1)[ det(En,1 · · · 1 · · · En,N )

+ z−1 det(En,1 · · · Fn · · · En,N )]

= (1− z−1)[ det(En,1 · · · 1 · · · En,N )

+ z−1 det(En,Fn)].

Therefore (60) can be written as follows:

Wi =
wo

(1− z−1)ζ(z) + z−1(1− z−1)
, (72)

where

ζ(z) =
det(En,1 · · · 1 · · · En,N )

det(En,Fi)
. (73)

With these, (69) becomes

[Dwo ]i =
woTwo

1− z−1
[z−1

∑
m∈N

cj,om
ζ(z) + z−1

+ νj ], (74)

and we get

lim
z→1

(z − 1)[Dwo ]i

= lim
z→1

z woTwo[z−1
∑
m∈N

cj,om
ζ(z) + z−1

+ νj ]. (75)

Note that

det(En,Fi) =
1

1− z−1
det(En,1 · · · [µiσ

2
ui

]i∈N · · · En,N ).

Therefore, ζ(z) can be expressed as follows

ζ(z) =
(1− z−1) det(En,1 · · · 1 · · · En,N )

det(En,1 · · · [µiσ2
ui

]i∈N · · · En,N )
, (76)

and we arrive at (70) under one of the following conditions:
either If we have that [µiσ

2
ui

]i∈N = µσ2
u or we have that

det(En,1 · · · [µiσ
2
ui

]i∈N · · · En,N ) 6= 0. In order to proceed,
we use (70) to obtain the following expression for cwo,s

cwo,s = woTwo det(C1 C2 · · · Ds CQ), (77)

where [Ds]i =
∑
m∈N cj,om + νj , i = 1, . . . , Q. After some

algebra and using (28) and (32) to replace ck`,om, k, `,m ∈ N


(1− z−1a1,1ρ1)IM −z−1a1,2ρ1IM · · · −z−1a1,Nρ1IM
−z−1a2,1ρ2IM (1− z−1a2,2ρ2)IM · · · −z−1a2,Nρ2IM

...
...

. . .
...

−z−1aN,1ρNIM −z−1aN,2ρNIM · · · (1− z−1aN,NρN )IM


︸ ︷︷ ︸

[E]NM×NM


W1

W2

...
WN


︸ ︷︷ ︸
[W̄]

NM×1

=


c1

1−z−1

c2

1−z−1

...
cN

1−z−1


︸ ︷︷ ︸
[F ]NM×1

. (59)
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and then using
∑
`∈N ak,` = 1, k = 1, 2, . . . , N we obtain

[Ds]i = 1−ηj , i = 1, . . . , Q. Using (21), (22), (23), (34) and
(35) we arrive at

2εk − νk = 1− ηk, k = 1, 2, . . . , N, (78)
εk + ε` − νk` = 1− ηk`, k, ` ∈ N , k 6= `. (79)

With these, the sum of all columns of IN − C′ according to
(45) becomes:

Q∑
q=1

Cq = [1−
∑
k,`∈N

c11,k` . . . 1−
∑
k,`∈N

cN−1 N,k`]
T. (80)

Using (26), (27), (30) and (31), it can be checked that

Q∑
q=1

Cq =

[
1− η1

∑
j∈V

pj(
∑
m∈N

a
(j)
1,m)2 . . .

1− ηN−1 N

∑
j∈V

pj(
∑
m∈N

a
(j)
N−1,m

∑
n∈N

a
(j)
N,n)

]T
=

[
1− η1 . . . 1− ηN−1 N

]T
= Ds. (81)

Recalling the determinant property as stated in (64), we
conclude that replacing any of the columns of IN − C′
by Ds does not modify the value of its determinant, i.e.,
det(C1 · · · Ds · · · CQ) = det(C). As a result, equality (46)
holds.
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