
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 1

Predictive Analytics for Complex IoT Data Streams
Adnan Akbar, Abdullah Khan, Francois Carrez, and Klaus Moessner

Abstract—The requirements of analyzing heterogeneous data
streams and detecting complex patterns in near real-time have
raised the prospect of Complex Event Processing (CEP) for many
internet of things (IoT) applications. Although CEP provides
a scalable and distributed solution for analyzing complex data
streams on the fly, it is designed for reactive applications as CEP
acts on near real-time data and does not exploit historical data.
In this regard, we propose a proactive architecture which exploits
historical data using machine learning (ML) for prediction
in conjunction with CEP. We propose an adaptive prediction
algorithm called Adaptive Moving Window Regression (AMWR)
for dynamic IoT data and evaluated it using a real-world use
case with an accuracy of over 96%. It can perform accurate
predictions in near real-time due to reduced complexity and
can work along CEP in our architecture. We implemented our
proposed architecture using open source components which are
optimized for big data applications and validated it on a use-case
from Intelligent Transportation Systems (ITS). Our proposed
architecture is reliable and can be used across different fields
in order to predict complex events.

Index Terms—Complex event processing, data streams, inter-
net of things, machine learning, predictive analytics, proactive
applications, regression, time series prediction

I. INTRODUCTION

Internet of things (IoT) has significantly increased the num-
ber of devices connected to the Internet ranging from sensors
and smart phones to increasingly soft aspects such as crowd
sensing or users as sensors. The availability of data generated
by these diverse devices has opened new opportunities for
innovative applications across different fields; supply chain
management systems [1], Intelligent Transportation Systems
(ITS) [2] and smart buildings [3] are few of them.

Most of IoT applications such as traffic management system
or supply chain logistics of big super markets involve large
data sets which have to be analyzed in near real-time in
order to make decisions. Data from different sensors in IoT
is generated in the form of real-time events which often form
complex patterns; where each complex pattern represents a
unique event. These unique events must be interpreted with
minimal time latency in order to apply them for decision mak-
ing in the context of current situation. The need for processing,
analyzing and inferring from these complex patterns in near
real-time forms the basis of a research area called Complex
Event Processing (CEP) [4]. It includes processing, analyzing,
and correlating event streams from different data sources to
infer more complex events in near real-time. The inherent
distributed nature of CEP [5] makes it ideal candidate for many
IoT applications as evident by examples found in literature

A. Akbar, F. Carrez and K. Moessner are with the Institute for Communi-
cation Systems, University of Surrey, UK (email: adnan.akbar@surrey.ac.uk;
f.carrez@surrey.ac.uk; k.moessner@surrey.ac.uk)

A. Khan is with department of Information Engineering, University of Pisa,
Italy (email: abdullah.khan@ing.unipi.it

for instance analyzing real-time traffic data [6] or providing
automatic managing systems for smart buildings [7].

CEP provides solutions to deal with data streams in near
real-time but it lacks the predictive power provided by many
machine learning (ML) and statistical data analysis methods.
Most of the CEP applications found in the literature are
intended to provide reactive solutions by correlating data
streams using predefined rules as the events happen and does
not exploit historical data due to its limited memory. However,
in many applications, prediction of a forthcoming event is
more useful than detecting it after it has already occurred. For
example, it will be more useful to predict traffic congestion as
compared to detecting it, so that traffic administrators can take
preventive measures to avoid it. The advantages of predicting
an event are more obvious if we imagine the gain of predicting
natural disasters and epidemic diseases.

On the other hand there are several methods found in
literature based on ML and statistics which have the ability
to provide innovative and predictive solutions in different
domains, for example predicting passengers travel time for ITS
[8] and energy demand for buildings [9] are two of the many
examples found in literature. However, they are not suitable for
analyzing and correlating different data streams in near real-
time as they require historical data to train the models. ML
methods exploit historical data and applies diverse approaches
such as probability, statistics and linear algebra to train the
models in order to make predictions about the future. They
have the potential to provide the basis for proactive solutions
for IoT applications but they lack the power of scalability
and processing multiple data streams in real-time which is
provided by CEP.

A. Related Work

In literature, CEP and ML have been explored extensively as
separate research fields and were mostly targeted for different
types of applications. CEP has been designed for processing
and correlating high speed data on the fly without storing it
[5]. Whereas ML methods are targeted for applications which
are based on the historical data for extraction of knowledge
[10].

In recent years, the diverse requirements for processing
data in IoT led to the increase of hybrid approaches where
predictive analytics (PA) methods based on ML and statistics
are combined with CEP in order to provide proactive solutions.
Initially, it was proposed in [11], where authors presented
a conceptual framework for combining PA with CEP to get
more value from the data. The approach of combining both
methods lead to encouraging results; however, they did not
support their idea with any practical application. Another
example is given in [12] where authors used probabilistic



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 2

event processing network to detect complex events and then
used these complex events to train multi-layered Bayesian
model to predict future events. Their proposed prediction
model employs expectation maximization (EM) algorithm
[13]. EM being an iterative optimization algorithm has high
computational cost. Its complexity increases exponentially as
the training dataset increases, therefore making it unsuitable to
large scale IoT applications. They demonstrated their solution
on the simulated traffic data with the assumption of availability
of statistical data of vehicles which is unlikely to be available
in a real-world use-case.

In [14], authors provide a basic framework for combining
time series prediction with CEP to monitor food and phar-
maceutical products in order to ensure their quality during
the complete cycle of supply chain. The authors highlighted
the open issues related to prediction component such as model
selection and model update as new data arrives but they did not
address these issues and left it for their future work. Another
example of using time series prediction of data for CEP in
order to provide predictive IoT solutions is mentioned in [15],
where authors implemented neural network for prediction.
They demonstrated their approach on the traffic data and used
60 days of data to train the neural network. Once trained,
model parameters are static which is a major drawback. The
statistics and behavior of underlying data may change over
time due to concept drift [16] which can effect the accuracy
and performance of the neural network. The model is unable
to update and adapt to changes. In case of erroneous readings,
errors will propagate and potentially will keep on increasing
eventually effecting the reliability of the system.

In literature, prediction using conventional machine learning
methods have also been deployed for real-time applications.
One such work is mentioned in [17], where authors demon-
strated the use of traditional machine learning algorithms for
predicting the trajectory of sea vessels in real-time. They
implemented their system using Massive Online Learning
(MOA) framework [18] which is an open source tool for
scalable data stream mining. They proposed a service based
system where models are trained using large historical data and
saved in a service container which can be called by queries
to get the prediction result. Such service based methods are
not compatible with event driven systems like CEP. In service
based systems, data is pulled with every request in contrast to
CEP systems where data is pushed continuously.

B. Motivation

CEP enables to correlate data coming from heterogeneous
sources and extract high-level knowledge. Most CEP systems
have SQL-like query language which enables to perform tasks
like filtering, aggregation, joint and sliding window operations
on different data streams and combine it with the help of
simple rules. In contrast to batch processing techniques which
store the data and later run queries on it, CEP instead stores
queries and runs data through these queries. The inbuilt capa-
bility of CEP to handle multiple seemingly unrelated events
and correlate them to infer complex events provides CEP an
edge on ML methods for many IoT applications. However, the

notion of many IoT applications have changed from reactive
to proactive in recent times leading to many research efforts
towards hybrid solutions based on ML and CEP.

Although there is growing interest in the research com-
munity to combine CEP and ML for predicting complex
events, most of the research conducted in this direction is
theoretical and lacks implementation details or real-world use-
case examples. To the best of authors knowledge, no work in
literature has addressed the different challenges and open re-
search issues for the efficient implementation of ML prediction
with CEP. The complexity of underlying ML algorithms play
an important role as more complex algorithms are not suitable
for real-time prediction and are unable to cope with the fast
and dynamic IoT data streams. Although, streaming regression
algorithms (e.g. Spark Streaming [19]) based on micro batch
analysis [20] can provide faster solution but these algorithms
do it at the expense of less accuracy. In our earlier work
[21], we proposed a solution highlighting these drawbacks and
presented initial results. In this paper, we improve our initial
approach, extend our experimental evaluation and implement
the overall architecture using open source components which
are optimized for large scale IoT data.

C. Contributions

Following contributions are made in this paper.
• We propose and implement a generic architecture

based on open source components for combining
ML with CEP in order to predict complex events
for proactive IoT applications.

• We propose an adaptive prediction algorithm called
Adaptive Moving Window Regression (AMWR) for
dynamic IoT data streams and implemented it on
a real-world use-case of ITS achieving accuracy up
to 96%. In our work, we proposed a novel method
for finding optimum size for training window by
exploiting spectral components of time series data.

• We model the error introduced by our prediction
algorithm using a parametric distribution and derive
expressions for the overall error of the system, as the
error propagates through the CEP.

D. Organization

The remainder of the paper is organized as follows. Section
II explains our proposed architecture along with the descrip-
tion of different components involved for the implementation
of our solution. We have demonstrated the feasibility of our
proposed solution by implementing a prototype and evaluating
the results on a real-world use-case scenario in Section III.
Finally we draw conclusion and highlight our future work in
section IV.

II. PROPOSED ARCHITECTURE

The proposed architecture illustrating our approach is shown
in the Figure 1. One of the priority of our research is to propose
a practically implementable solution and therefore, we have
opted for scalable open source components. There are several



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 3

Historical Data

Adaptive Moving 
Window 

Regression 
(AMWR)

Predicted 
data

Kafka
Event Collector

Complex Event 
Engine

Event Producer

Kafka
Esper CEP Engine

Data Source 2 Node-RED

Data Source 1

Data Source 3

Real-time data
Python scikit-learn

Fig. 1. Proposed Architecture and Block Diagram

issues which needed to be considered when choosing different
components for the proposed architecture such as scalability
and reliability of the system, integration of ML component
with CEP, exchange of data across different components in
near real-time, a common data format across all components
in the architecture, are few of them.

In our architecture, Node-RED [22] provides the front end
where data from different sources such as MQTT data feeds
or a RESTful api are accessed; and after performing pre-
processing tasks such as filtering redundant data and convert-
ing to required data format; it is published under a specific
topic on the Kafka message broker. More details about the
Kafka and Node-RED can be found in the next section. The
AMWR block represents the ML component, it accesses the
real-time data from the Kafka topic and publishes back the
predicted data under different topic on Kafka in the form of
an event tuple. The implementation was done in python using
Scikit-learn module [23]. The event collector module of CEP
is listening to events and as soon as new events are available,
it collects them, performs pattern matching using CEP engine
and produces the complex events.

More details about the proposed prediction algorithm and
different components involved in our architecture are described
below.

A. Adaptive Moving Window Regression (AMWR)

We propose and develop an adaptive prediction algorithm
called Adaptive Moving Window Regression (AMWR) for
dynamic IoT data. In general, prediction models are trained
using large historical data and once the model is trained it is
not updated due to limitations posed by large training time.
Such models are not optimized to perform under phenomenon
such as concept drift [16].

The context of the application may change resulting in
the degradation of performance for prediction model. For
such scenarios, we propose a prediction model which utilizes
moving window of data for training the model; and Once

new data arrives, it calculates an error and retrains the model
accordingly. We proposed to find the optimum size for training
window by exploiting spectral components of time series data
using Lomb Scargle method [24]. Our proposed approach is
adaptive in nature as it tracks down errors and prevents it from
propagating by retraining the model periodically. The size of
the prediction window or forecast horizon is also adaptive and
is derived by the performance of the model in order to ensure a
certain reliability in the prediction. The flowchart of the overall
approach is shown in the Figure 2. There are three main steps
involved in the implementation of AMWR as described below:

1) Selection of regression algorithm;
2) Finding optimum training window size;
3) Size of the prediction horizon.

1) Selection of Regression algorithm: There are several
algorithms available for time series regression (prediction)
ranging from statistical to pure ML domain. Traditionally, sta-
tistical methods like auto regressive moving average (ARMA)
and auto regressive integrated moving average (ARIMA) [25]
were used for time series regression. However, recently the
trend is shifted towards more sophisticated ML models such
as different variants of support vector regression (SVR) and
artificial neural networks (ANN) because of their robustness
and ability to provide more accurate solutions. We have
implemented our approach using SVR due to its ability to
model non-linear data using kernel functions. SVR is an
extension of SVM which is widely used for regression analysis
[26]. The main idea is the same as in SVM, it maps the
training data into higher feature space using kernel functions
and find the optimum function which fits the training data
using hyper-plane in higher dimension. Methods based on
SVR often provide more accurate models as their counterpart
regression algorithms at the expense of additional complexity.
However, as in our algorithm we propose to use a small
training window, the added complexity is almost negligible for
such small datasets. We compared the performance of several
variants of SVR and finally SVR with radial basis function



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 4

Data AcquisitionData Acquisition

Choose specific 
regression method

Choose specific 
regression method

Find optimized 
training window size

Find optimized 
training window size

Model training and 
deployment

Model training and 
deployment

Error > 20% or Error < 5% ?Error > 20% or Error < 5% ?Real-time 
data

Real-time 
data

Predicted valuesPredicted values

Increase or decrease 
Prediction window

Update Model

Yes

Fig. 2. Flowchart for Adaptive Moving Window Regression

(RBF) kernel was chosen as underlying regression algorithm.
2) Optimum Training Window Size: The choice of the

optimum training window size for ML models is an open
research issue. In general, the accuracy of prediction model
increases as the size of training data increases which reflects
to have large historical data for training prediction models
so that it covers all possible patterns spanning time series.
Although this approach generates generic and accurate model
for prediction in most cases, there is one major drawback
associated with it which was mentioned earlier as well: If
the behavior or statistics of the underlying data changes,
trained model is unable to track the changes and result into
erroneous readings and the error will start accumulating in
future predictions.

In contrast to this approach, researchers have proposed to
use the moving window for training the ML model in which
most recent data is fed to the models. The size of the optimum
window is a challenging task with no generic solution. A large
window size can have more accurate results but it increases
the complexity of the model making it unsuitable for real-
time applications whereas a small window size can result into
an increased error and hence effecting the reliability of the
system.

In order to overcome this issue, we propose a novel and
generic method based on time series analysis (Lomb Scargle
method) to find the optimum window size and validated our
results using real-world data. In our method, we exploited
the inherit periodic nature of most of the real world time
series data. Consider a simple example of a temperature data

generated by a sensor deployed in Rio de Janeiro, Brazil [27]
as shown in the Figure 3; although the pattern formed by the
temperature data is very irregular, a repeating pattern in the
temperature readings can be observed after every twenty four
hours. In our approach, we exploit the fact that if the training
window used is equal to the inherent periodicity of the data,
it will learn all the local patterns and would be able to predict
more accurately. It should be noted that our approach does not
assume the underlying data as periodic but instead looks for
the highest periodic component.

Fig. 3. Temperature Data [27]

A Fast Fourier Transform (FFT) algorithm is the most
commonly used method for finding periodicity by searching
for the sharp peaks in the periodogram calculated by Fourier
transform of the time series. FFT requires the time series to
be evenly spaced which is not always possible for most of the
IoT data. Missing values is a common phenomenon in IoT and
the inability of FFT to deal with it makes it unsuitable for our
system. For such systems, another method called least-squares
spectral analysis (LSSA) or more commonly known as Lomb
Scargle can be used to find the highest periodic component
in a time series data. Lomb first proposed the method while
studying variable stars in astronomy [24] and is defined by
following equations:

PX(f) =
1

2σ2

{[ N∑
n=1

(x(tn)− x)cos(2πf(tn − τ))
]2

N∑
n=1

cos2(2πf(tn − τ))

+

[ N∑
n=1

(x(tn)− x)sin(2πf(tn − τ))
]2

N∑
n=1

sin2(2πf(tn − τ))

} (1)

where x and σ2 are the mean and variance of data and the
value of τ is defined as

tan(4πfτ) =

( N∑
n=1

sin(4πftn)
)

( N∑
n=1

cos(4πftn)
) (2)

In our architecture, we have used Lomb Scargle method to
find optimum window size for training ML models.

3) Adaptive Prediction Window: In our work, we propose
to have an adaptive size for prediction window or more
commonly known as prediction horizon in order to ensure
a certain level of accuracy. The intuition behind it is to



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 5

increase the size of prediction window if the accuracy of
model is high and decrease it if the performance of the
prediction model decreases. The performance of the model
is evaluated by comparing the predicted data with actual data
when it arrives. Algorithm 1 shows our approach for adaptive
prediction window.

Algorithm 1 Adaptive Prediction Window Size
1: function PREDICTIONWINDOW(yact, ypred)
2: MAPE = mean(abs((yact − ypred)/yact) ∗ 100)
3: if MAPE > 20% then
4: PredictionWindow = PredictionWindow − 1
5: else if MAPE < 5% then
6: PredictionWindow = PredictionWindow+1
7: else
8: PredictionWindow = PredictionWindow
9: end if

10: return PredictionWindow
11: end function

B. Other Components

A brief introduction of components used in our architecture
is given below.

1) Node-RED: Node-RED serves as the front-end interface
for our architecture. IoT has provided the researchers with
a global view enabling access to truly heterogeneous data
sources for the very first time. These data sources can be
RESTful web service, MQTT data feed or any other external
data source. Data format is not limited to any specific format
in IoT. XML and JSON are two most commonly used formats
which are used extensively for transmitting IoT data. Also,
different data feeds from different sources may contain data
which might be redundant for a specific application and needs
to be filtered out. Node-Red provides all of these functionali-
ties with a fast prototyping capacity to develop rapid wrappers
for heterogeneous data sources.

Node-RED is an open source visual tool which is used
extensively for wiring the Internet of Things. It provides APIs
for connecting different components, and with the help of user
provided Java code, it can be used to filter the data change the
format as well. It is designed to make the process of integration
of different components and data sources in IoT easier.

2) Apache Kafka: We have used Apache Kafka as the
message broker for real-time generated events. It is also an
open source tool for real-time publishing and subscribing of
messages or data. It provides a scalable architecture for high
throughput data feeds with very low latency. It was developed
by LinkedIn and was open sourced later in 2011. Like other
publish-subscribe messaging systems, Kafka maintains feeds
of messages in topics. Producers write data to topics and
consumers read from topics. Since Kafka is a distributed
system, topics are partitioned and replicated across multiple
nodes. A single topic can have one or more consumers.
Messages are simply byte arrays and the developers can use
them to store any object in any format with String, JSON,

and Avro being the most common. In our architecture, all the
messages are published in JSON format. What makes Kafka
unique on other available systems is its persistent nature to
hold the messages for a set amount of time in the form of a
log (ordered set of messages).

3) Esper Complex Event Processing: Although there are
several CEP platforms available in the market, Esper was
our preferred choice due to its enriched Java embedded ar-
chitecture which supports strong CEP features set with high
throughput. An open source status of Esper is another major
factor which makes it as ideal candidate for the proposed
architecture.

Esper is specifically designed for latency sensitive appli-
cations which involve large volumes of streaming data such
as trading system, fraud detection and business intelligence
systems. In contrast to other big data processing techniques
which store the data and later runs the queries on it, Esper in-
stead stores the queries and run data through these queries.The
queries are written using Event Processing Language (EPL)
which can support functions like filtering, aggregation and
joins over individual events or set of events using sliding
windows. EPL is a SQL-like language with clauses such as
SELECT, FROM, WHERE, GROUP BY, HAVING and ORDER
BY; where streaming data replaces tables and events acting
as the basic unit of data. In Esper, events are represented
as Plain Old Java Objects (POJO) following the JavaBeans
conventions.The resulting Complex Events detected from EPL
statements are also returned as POJOs.

CEP can be divided into three functional components where
event collector is the first component responsible for reading
data streams from different sources such as Kafka, MQTT
or any RESTful web service in varying data formats. In our
architecture, we have configured it for reading from Apache
Kafka in a JSON format. After collecting the data, the event
collector converts it to the specific format (i.e. POJOs for
Esper) and forwards it to the CEP engine. The CEP engine
is the core of CEP which detects events by matching patterns
using EPL statements and finally, detected Complex events
are forwarded to the relevant applications in a required data
format using adapters in event producer component.

C. Error Propagation in CEP
The output of the prediction block is forwarded to CEP in

the form of an event tuple through Kafka where CEP engine
applies pre-defined rules in order to detect the complex event.
According to [28], an abstract event tuple can be defined as
e = 〈s, t〉 where e represents an event, s refers to a list of
content attributes and t is a time stamp attached to an event.
In our architecture, every predicted event is accompanied
by prediction error, and CEP correlates these events using
different rules. Prediction error introduces uncertainty in the
complex events effecting the reliability of the system. In
order to take prediction error into account, we have adopted
a probabilistic event processing approach for defining event
tuples as mentioned in [29] encapsulating prediction error
with attribute’s value in event tuple as e = 〈s = {attr =
val, pdf(µ1, σ1)}, t〉 where pdf shows the probability density
function of prediction error.



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 6

In this section, we demonstrate how this error is propagated
through the system while applying different CEP pattern
matching rules.

1) Filtering: Event filtering is the most basic functionality
which supports other more complex patterns. Not every event
is of interest for the consumers and a user might be interested
in only specific events. Let’s consider a simple example of a
temperature sensor which generates a reading every second; If
a user is only interested in temperatures higher than a specified
threshold, it is defined in the filter. Then if only the conditions
become true, the event would be published to the observer.
Typical conditions include equals or greater/less than etc.

In such cases, when the rule is applied to a single event then
the total error associated with the complex event will be the
probability of prediction error for that particular data source.
For example, for a rule which generates an event if the data
stream A1 is less then threshold, the resulting error will be;

pdfE(total) = pdfE(A1) (3)

where pdf represents probability density function.
2) Joins: The functionality of Joins is to correlate events

from different data streams using simple logical operations
such as conjunction (and) and disjunction (or).

In case of conjunction, the probability of error associated
with individual data stream will be multiplied with each other.
For example if there are two events A1 and A2, and a complex
event is defined as if A1 is greater then threshold and A2 is
less then threshold; overall error is given by:

pdfE(total) = pdfE(A1) ∗ pdfE(A2) (4)

Disjunction operator (or) is used to trigger a complex event
when either of multiple conditions become true. For example,
if a rule is defined as if A1 is greater then threshold or
A2 is greater the threshold, generate a complex event. In
such scenario, total error will be equal to the highest of the
individual data stream prediction error as shown below;

pdfE(total) = GreaterOf(pdfE(A1), pdfE(A2)) (5)

3) Windows: Windows provide a tool to extract temporal
patterns from the incoming events to infer a complex event.
The two most basic type of windows are:
a) Time Window: It enables to define a time window to
extract events lying only in that window. The temporal relation
between different events plays an important role in evaluating
complex event. For example five degree centigrade tempera-
ture change in a room in one hour will have different meaning
as compared to the same temperature change in one minute.
The former observation can be resulting from the heater being
switched on and later might be caused by a fire. The time
window can be a fixed time window or a sliding time window.
Simple arithmetic tasks like finding maximum, minimum or
aggregated value also require the definition of time window.
b) Tuple Window: In contrast to time window, tuple window
acts on the number of events defined. Aggregation of every
five samples is a typical example of tuple window operation.

For both cases, total error will be the product of prediction
error for the events falling in the window. For example; if a
rule is defined as to generate a complex event if event A1
is greater then threshold and A2 is greater then threshold for
n consecutive readings. In such case, the probability of total
Error will be given by:

pdfE(total) = n ∗ (pdfE(A1) ∗ pdfE(A2)) (6)

Equations 3-5 show relative simple examples of applying
different rules. In practice, CEP rules can be more complex
by combining all these functionalities but overall error can be
calculated by simply replacing the functionality with the above
equations. Now, if we have the expressions for probability of
prediction error for individual data stream, it can be replaced
in the equations 3-5 in order to calculate the expression for
overall error. In the next section we demonstrate how we can
calculate the expression for prediction error.

III. EXPERIMENTAL EVALUATION

In order to evaluate the proposed method, we have used the
traffic data provided by city of Madrid. The city of Madrid
has deployed hundreds of traffic sensors at fixed locations
around the city for measuring several traffic features including
average traffic intensity (number of vehicles per hour) and
average traffic speed which are direct indicatives of traffic
state. The city of Madrid council publishes this data as a
RESTful service1in xml format. This data needs then to be
analyzed automatically in near real-time in order to detect
traffic patterns and to generate complex events such as bad
traffic or a congestion. Esper CEP provides the optimum
solution for such scenario as it provides the capability to
analyze this streaming data on the fly. Esper rules can be
configured using EPL for pattern recognition in order to
generate complex events.

Pseudo code of one simple rule for inferring complex event
(bad traffic or congestion) is described in the algorithm 2.
In this example, we assume traffic speed and traffic intensity

1http://informo.munimadrid.es/informo/tmadrid/pm.xml

Fig. 4. Periodogram for Traffic Speed data



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 7

(a) Location 1(MAPE=9.59 %) (b) Location 2(MAPE=3.69%)

(c) Location 3(MAPE=3.24%) (d) Location 4(MAPE=11.29%)

Fig. 5. Prediction results on average traffic speed data from four different locations.

TABLE I
ERROR ACCUMULATED OVER 1 MONTH PERIOD WITH DIFFERENT

TRAINING WINDOW SIZE

No. Training window MAPE(%)
1 5 17.67
2 10 15.48
3 15 14.36
4 20 14.63
5 25 15.01
6 30 14.38
7 35 14.86
8 40 15.06
9 45 14.79
10 50 14.72

data streams as inputs. A more complex rule may involve other
data sources like weather forecast or social media data. CEP
generates a complex event when the average traffic speed and
average traffic flow is less than the threshold values for 3
consecutive readings. Now if the input is predicted data as
in our approach, the complex event detected will also be in
the future and traffic administrators can take precautionary
measures in order to avoid congestion. This is just one example
that demonstrates how CEP rules can be exploited to find more

complex events.

Algorithm 2 Example Rule for CEP
for (speed, intensity) ∈ TupleWindow(3) do

2: if (speed(t) < speedthr and intensity(t) <
intensitythr AND

speed(t + 1) < speedthr and intensity(t + 1) <
intensitythr AND

4: speed(t + 2) < speedthr and intensity(t + 2) <
intensitythr) then

Generate complex event Bad Traffic
6: end if

end for

Four different sensing locations from city of Madrid were
chosen randomly with different characteristics to get fair anal-
ysis of the results. As described in section II, we applied the
proposed Lomb Scargle method for finding optimum window
size for training ML model. The resulting periodogram from
one location for traffic speed is shown in the Figure 4. X-
axis shows the frequency of data on per sample basis and y-
axis represents the power spectral density. Data periodogram
has a peak at 0.066 which corresponds to a window size



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 8

(a) Location 1(MAPE=12.82 %) (b) Location 2(MAPE=5.63%)

(c) Location 3(MAPE=8.19%) (d) Location 4(MAPE=11.66%)

Fig. 6. Prediction results on average traffic intensity data from four different locations.

of 15 samples. We validated our method by using different
window sizes for prediction on one month of traffic data
and noted corresponding Mean Absolute Percentage Error
(MAPE). MAPE is an accurate metric for evaluating the
performance of prediction models and can be calculated as:

MAPE(%) = 1/n

n∑
t=1

|(Yt − Y
′

t

Yt
)| × 100 (7)

where Yt represents actual data, Y
′

t represents predicted
data and n represents the total number of predicted values.
Table I shows the MAPE(%) for different window sizes and
it can be seen that error is minimum when the window size
of 15 samples or multiple of 15 is used which validates our
approach.

Prediction results for traffic speed and traffic intensity data
for all four locations is shown in Figure 5 and Figure 62. As
it can be seen, that predicted values are tracking the actual
data quite accurately. The reason behind it is that if there is
an error in the predictions, it is incorporated and the model
is updated accordingly and hence it prevents the error from
propagating.

2Implementation Code and input data is available at https://github.com/
adnanakbr/predictive analytics

Finally, once we have the predicted values for traffic speed
and traffic intensity, CEP can be used to infer traffic state using
the rules mentioned in algorithm 2. Event detected by CEP will
be in future providing enough time for traffic administrators
to manage traffic pro-actively and avoiding congestion before
it happens.

A. Performance Comparison

In order to compare the performance of AMWR with other
regression models, we implemented several state-of-the-art
regression algorithms available in python machine learning
library scikit-learn [23]. Figure 7 and 8 shows the MAPE
(%) plot of different regression algorithms implemented for
all four locations , and Table II and III shows the results in
tabular form. As it can be seen that AMWR outperforms other
regression algorithms as it tracks the incoming data stream
accurately. There are two main reasons for high accuracy
provided by AMWR. 1) As new data arrive; AMWR takes
the prediction error into account and retrain the model using
more recent data. As the size of training window is very small,
it is able to retrain and predict in near real-time. 2) It tracks
the error and if prediction error starts to increase, it decreases



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 9

the size of prediction window in order to maintain the level
of accuracy.

0

5

10

15

20

25

30

35

Location 1 Location 2 Location 3 Location 4

M
A

P
E 

(%
)

AMWR SVM (ker=RBF) Linear  Reg

Decision Tree Reg Random Forest Reg

Fig. 7. AMWR comparison with different models for traffic speed data

0

5

10

15

20

25

30

35

40

45

Location 1 Location 2 Location 3 Location 4

M
A

P
E 

(%
)

AMWR SVM (ker=RBF) Linear  Reg

Decision Tree Reg Random Forest Reg

Fig. 8. AMWR comparison with different models for traffic intensity data

MAPE accumulated over a period of time is dependent
on the data characteristics of underlying sensing location. If
the data has more variations with a high value of standard
deviation, the resulting accuracy on prediction readings will
be lower. Table IV shows the input standard deviation for
traffic speed and traffic intensity for all locations . Location
1 and location 4 have high standard deviation and hence high
variance which resulted into more error as the spread of data
points is effecting the predictions.

To further validate the performance of our prediction algo-
rithm, we captured a congestion point in the input data for
location 1. Figure 9 shows the comparison of AMWR based
SVR with conventional SVR for predicting incoming data. As
it can be seen in the figure that there is a congestion point
after 170th minute when traffic speed suddenly drops to 0.
A conventional SVR regression algorithm is unable to track
the data whereas AMWR based SVR tracks the actual data

accurately and hence captures the congestion point.3

Fig. 9. Capturing a congestion event

TABLE II
MAPE(%) FOR TRAFFIC SPEED DATA

Method location 1 location 2 location 3 location 4
AMWR 9.59 3.69 3.24 11.29

SVM-RBF 19.57 14.83 11.84 21.84
Linear Reg 25.80 18.61 18.90 30.25

Decision Tree Reg 19.82 14.57 12.40 21.76
Random For Reg 20.04 14.63 12.22 22.80

TABLE III
MAPE(%) FOR TRAFFIC INTENSITY DATA

Method location 1 location 2 location 3 location 4
AMWR 12.82 5.63 8.19 11.66

SVM-RBF 33.20 19.70 22.94 31.61
Linear Reg 33.16 32.50 32.81 39.63

Decision Tree Reg 36.06 21.35 22.68 31.19
Random For Reg 36.53 21.25 22.85 31.73

B. Error Estimation

Overall error propagated through the system depends on
the underlying CEP rule. As an example, consider the rule
mentioned in algorithm 2. Equations 3-5 can be used to
calculate the expression for overall error as:

pdfE(total) = n ∗ (pdfE(speed) ∗ pdfE(intensity)) (8)

where n is the window length, pdfE(speed) is the proba-
bility density function for speed error and pdfE(intensity)
is probability density function for intensity error. If we
have the generalized expressions for pdfE(speed) and
pdfE(intensity), they can be substituted in equation 8 to get
an expression for the overall error of the system.

3Implementation Code and input data is available at https://github.com/
adnanakbr/predictive analytics



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 10

(a) Error distribution for traffic speed (location 1) (b) Error distribution for traffic intensity (location 1)

Fig. 10. Error modeling for location 1

TABLE IV
INPUT STANDARD DEVIATION (σ)

Locations traffic speed traffic intensity
location 1 0.22 0.31
location 2 0.15 0.15
location 3 0.17 0.17
location 4 0.20 0.29

In order to get the probability of density functions for
predicted traffic speed and traffic intensity, prediction error
was calculated for one month data and plotted in the form
of an histogram. An histogram is a graphical representation
of the data which provides an estimation of the probability
distribution of the data. Error distribution for traffic speed
and traffic intensity for location 1 is shown in the Figure
10. Firstly, the Gaussian distribution was chosen to model the
error propagation curve because of the bell shaped nature of
the histogram as shown in figure 8. The probability density
function for the Gaussian distribution is as follows:

pdfE(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(9)

where µ represents the mean and σ represents the standard
deviation of the distribution. The Gaussian distribution was ap-
plied by using the curve fitting techniques and the parametric
distribution for the error was found. The Gaussian distribution
fitted well to model most of the data in error propagation
histogram but it was ill-fitted for the outliers on the error
histogram. Therefore a better fitted curve for error modeling
was still needed.

The Student’s t distribution due to its heavy tail nature can
better model the outliers. Also, the Student’s t distribution has
a degree of freedom parameter which can be changed to tune
the shape of the distribution according to the nature of error
propagation data. Hence the Student’s t distribution can be
used to further improve the modeling of error propagation data.
The probability density function for Student‘s t-distribution is

TABLE V
ERROR DISTRIBUTION PARAMETERS FOR TRAFFIC INTENSITY

No. Gaussian distribution t-distribution
location 1 µ = 0, σ = 0.27 ν = 1.79, µ = 0, σ = 0.13
location 2 µ = 0, σ = 0.21 ν = 1.90, µ = 0, σ = 0.10
location 3 µ = 0, σ = 0.22 ν = 1.73, µ = 0, σ = 0.10
location 4 µ = 0, σ = 0.26 ν = 1.67, µ = 0, σ = 0.12

TABLE VI
ERROR DISTRIBUTION PARAMETERS FOR TRAFFIC SPEED

No. Gaussian distribution t-distribution
location 1 µ = 0, σ = 0.24 ν = 1.16, µ = 0, σ = 0.08
location 2 µ = 0, σ = 0.19 ν = 0.07, µ = 0, σ = 0.03
location 3 µ = 0, σ = 0.20 ν = 0.03, µ = 0, σ = 0.07
location 4 µ = 0, σ = 0.24 ν = 0.45, µ = 0, σ = 0.10

given by:

pdfE(x) =
Γ(ν+1

2 )
√
νπΓ(ν2 )

(
1 +

x2

ν

)− ν+1
2

(10)

where ν is the degrees of freedom parameter and Γ is the
gamma function. The degrees of freedom parameter ν can tune
the variance and leptokurtic nature of the distribution. With
decreasing ν, the tails of the distribution becomes heavier.
More details about the t-distribution can be found in [30][31].

Table V and VI shows the parameters for error distribution
for both the Gaussian and Student’s t distribution at all four
locations.

C. Large-Scale Implementation

In our proposed architecture, machine learning implemen-
tation and evaluation has been done in python scikit-learn.
Although it can support relatively large data-sets by scaling
up but it is not very cost efficient and have certain limit on
the amount of input data it can process. IoT has triggered a
massive influx of big data and at city level solutions, we might
potentially be analyzing data from hundreds of thousands
of sensors. In order to overcome this issue and make our



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 11

solution truly scalable (scaling out in contrast to scaling up),
we extended our work and implemented machine learning part
in Spark MLlib which is machine learning library for Apache
Spark [32].

Apache Spark is a general-purpose analytics engine that
can process large amounts of data from various data sources
and is gaining significant attraction in the big data domain.
It performs especially well for iterative applications which
include many machine learning algorithms. Spark maintains
an abstraction called Resilient Distributed Datasets (RDDs)
which can be stored in memory without requiring replication
and are still fault tolerant. Moreover, Spark can analyze data
from any storage system implementing the Hadoop FileSystem
API, such as HDFS, Amazon S3 and OpenStack Swift. Further
details about the large-scale implementation of our proposed
solution can be found in [33] [34].

D. Other Use cases

Our proposed architecture provides a generic predictive
solution for different IoT applications. Different components
involved can easily be configured according to requirements
of a specific application. Another example is smart health
management in which different sensors are used to monitor
patient’s health. These devices generate data at high rates
and this data needs to be analyzed and correlated as soon
as possible in order to ensure patient’s safety. If a patient’s
heart beat or blood pressure starts to increase, our solution
can detect the increasing trend and predict it in time before
it reaches to dangerous level. CEP adds the capability to
correlate the predictive readings with other data sources such
as patient’s physical or eating activities in order to detect a
possible complex event (health warning for patient).

The optimum window for training will be different for
every data stream. And even though, many IoT data streams
have some element of periodicity but nevertheless it is not
always true. In such cases, we can define the default size for
training window. The default size will be dependent on the
requirements of the scenario as large training window will take
more time in training. The definition of real time is scenario
dependent, for instance in health monitoring scenario real time
is under 10 seconds whereas for ITS a delay of 1-2 minutes
will still be counted as real time. All the components used
in our architecture are open source, easily available and can
easily be made scalable for large scale applications.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed and implemented an ar-
chitecture for predicting complex events for proactive IoT
applications. Our proposed architecture combines the power
of real-time and historical data processing using CEP and
ML respectively. We highlighted the common challenges for
combining both technologies and implemented our proposed
solution by addressing those challenges. In this regard, we
proposed a prediction algorithm called AMWR for near real-
time data. In contrast to conventional methods, it utilizes a
moving window for training ML model enabling it to perform
accurately for dynamic IoT data. The performance of the

prediction algorithm was validated on traffic data with an ac-
curacy up to 96%. The feasibility of the proposed architecture
was demonstrated with the help of a real-world use case from
ITS where early predictions about the traffic state enables the
system administrators to manage traffic in a better way.

Our experiments of using ML based predictions combined
with CEP have shown an extra advantage on existing solutions
by providing early warnings to traffic administrators about
traffic events with high accuracy and given the generality of the
proposed architecture, the same combination can also lead to
better performances in other IoT scenarios such as monitoring
goods in supply chain or smart health care. In future, we aim to
evaluate our architecture for other IoT applications where early
predictions about complex events can contribute to proactive
solutions.

ACKNOWLEDGMENTS

The research leading to these results was supported by
the EU FP7 project COSMOS under grant No 609043 and
EU Horizon 2020 research project CPaaS.io under grant No
723076.

REFERENCES

[1] B. Yan and G. Huang, “Supply chain information transmission based
on rfid and internet of things,” in 2009 ISECS International Colloquium
on Computing, Communication, Control, and Management, vol. 4, Aug
2009, pp. 166–169.

[2] L. Xiao and Z. Wang, “Internet of things: A new application for
intelligent traffic monitoring system,” Journal of networks, vol. 6, no. 6,
pp. 887–894, 2011.

[3] A. Akbar, M. Nati, F. Carrez, and K. Moessner, “Contextual occupancy
detection for smart office by pattern recognition of electricity consump-
tion data,” in 2015 IEEE International Conference on Communications
(ICC), June 2015, pp. 561–566.

[4] O. Etzion and P. Niblett, Event Processing in Action, 1st ed. Greenwich,
CT, USA: Manning Publications Co., 2010.

[5] G. Cugola and A. Margara, “Processing flows of information: From
data stream to complex event processing,” ACM Comput. Surv.,
vol. 44, no. 3, pp. 15:1–15:62, Jun. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2187671.2187677

[6] A. Akbar, F. Carrez, K. Moessner, J. Sancho, and J. Rico, “Context-
aware stream processing for distributed iot applications,” in Internet of
Things (WF-IoT), 2015 IEEE 2nd World Forum on, Dec 2015, pp. 663–
668.

[7] C. Y. Chen, J. H. Fu, T. Sung, P. F. Wang, E. Jou, and M. W.
Feng, “Complex event processing for the internet of things and its
applications,” in 2014 IEEE International Conference on Automation
Science and Engineering (CASE), Aug 2014, pp. 1144–1149.

[8] C.-H. Wu, J.-M. Ho, and D. T. Lee, “Travel-time prediction with support
vector regression,” IEEE Transactions on Intelligent Transportation
Systems, vol. 5, no. 4, pp. 276–281, Dec 2004.

[9] H. xiang Zhao and F. Magouls, “A review on the prediction of
building energy consumption,” Renewable and Sustainable Energy
Reviews, vol. 16, no. 6, pp. 3586 – 3592, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1364032112001438

[10] C.-W. Tsai, C.-F. Lai, M.-C. Chiang, and L. T. Yang, “Data mining
for internet of things: a survey,” Communications Surveys & Tutorials,
IEEE, vol. 16, no. 1, pp. 77–97, 2014.

[11] L. J. Fülöp, Á. Beszédes, G. Tóth, H. Demeter, L. Vidács, and L. Farkas,
“Predictive complex event processing: a conceptual framework for
combining complex event processing and predictive analytics,” in Pro-
ceedings of the Fifth Balkan Conference in Informatics. ACM, 2012,
pp. 26–31.

[12] Y. Wang and K. Cao, “A proactive complex event processing method
for large-scale transportation internet of things,” International Journal
of Distributed Sensor Networks, vol. 2014, 2014.

[13] T. K. Moon, “The expectation-maximization algorithm,” Signal process-
ing magazine, IEEE, vol. 13, no. 6, pp. 47–60, 1996.



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX 2017 12

[14] S. Nechifor, B. Trnauc, L. Sasu, D. Puiu, A. Petrescu, J. Teutsch,
W. Waterfeld, and F. Moldoveanu, “Autonomic monitoring approach
based on cep and ml for logistic of sensitive goods,” in IEEE 18th
International Conference on Intelligent Engineering Systems INES 2014,
July 2014, pp. 67–72.

[15] B. Thomas, F. Jose, S. Jordi, A. Almudena, and T. Wolfgang, “Real time
traffic forecast,” Atos scientific white paper, vol. 2013, 2013.

[16] G. Widmer and M. Kubat, “Learning in the presence of concept drift and
hidden contexts,” Machine learning, vol. 23, no. 1, pp. 69–101, 1996.

[17] A. Valsamis, K. Tserpes, D. Zissis, D. Anagnostopoulos, and T. Var-
varigou, “Employing traditional machine learning algorithms for big
data streams analysis: the case of object trajectory prediction,” Journal
of Systems and Software, 2016.

[18] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive online
analysis,” Journal of Machine Learning Research, vol. 11, no. May, pp.
1601–1604, 2010.

[19] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: an efficient and fault-tolerant model for stream processing on
large clusters,” in Presented as part of the, 2012.

[20] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[21] A. Akbar, F. Carrez, K. Moessner, and A. Zoha, “Predicting complex
events for pro-active iot applications,” in Internet of Things (WF-IoT),
2015 IEEE 2nd World Forum on, Dec 2015, pp. 327–332.

[22] Node-RED, “Node-RED: A visual tool for wiring the Internet of Things
,” http://nodered.org//, 2016, [Online; accessed 6-May-2016].

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[24] W. H. Press and G. B. Rybicki, “Fast algorithm for spectral analysis
of unevenly sampled data,” The Astrophysical Journal, vol. 338, pp.
277–280, 1989.

[25] M. A. Benjamin, R. A. Rigby, and D. M. Stasinopoulos, “Generalized
autoregressive moving average models,” Journal of the American Sta-
tistical Association, vol. 98, no. 461, pp. 214–223, 2003.

[26] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[27] Scouris, “Scouris‘s Arduino Adventures ,” https://scouris.wordpress.
com/2010/09/10/temperature-sensing-with-arduino-php-and-jquery/,
2010, [Online; accessed 5-May-2016].

[28] N. P. Schultz-Møller, M. Migliavacca, and P. Pietzuch, “Distributed
complex event processing with query rewriting,” in Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems, ser. DEBS ’09. New York, NY, USA: ACM, 2009, pp. 4:1–
4:12. [Online]. Available: http://doi.acm.org/10.1145/1619258.1619264

[29] G. Cugola, A. Margara, M. Matteucci, and G. Tamburrelli, “Introducing
uncertainty in complex event processing: model, implementation, and
validation,” Computing, vol. 97, no. 2, pp. 103–144, 2015. [Online].
Available: http://dx.doi.org/10.1007/s00607-014-0404-y

[30] K. L. Lange, R. J. Little, and J. M. Taylor, “Robust statistical modeling
using the t distribution,” Journal of the American Statistical Association,
vol. 84, no. 408, pp. 881–896, 1989.

[31] W. Rafique, S. M. Naqvi, P. J. B. Jackson, and J. A. Chambers, “Iva
algorithms using a multivariate student’s t source prior for speech source
separation in real room environments,” in 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), April
2015, pp. 474–478.

[32] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” Journal of Machine Learning Research, vol. 17, no. 34,
pp. 1–7, 2016.

[33] COSMOS, “D.4.1.3. Information and Data Lifecycle Management: De-
sign and open specification (Final) ,” http://iot-cosmos.eu/deliverablesl,
2016, [Online; accessed 6-April-2017].

[34] P. Ta-Shma, “Channeling Oceans of IoT Data ,” http://www.spark.tc/
channeling-oceans-of-iot-data/, 2016, [Online; accessed 6-April-2017].


