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Abstract—As sensors are adopted in almost all fields of life,
the Internet of Things (IoT) is triggering a massive influx of data.
We need efficient and scalable methods to process this data to
gain valuable insight and take timely action. Existing approaches
which support both batch processing (suitable for analysis of
large historical data sets) and event processing (suitable for real-
time analysis) are complex. We propose the hut architecture,
a simple but scalable architecture for ingesting and analyzing
IoT data, which uses historical data analysis to provide context
for real-time analysis. We implement our architecture using
open source components optimized for big data applications and
extend them where needed. We demonstrate our solution on two
real-world smart city use cases in transportation and energy
management.

Index Terms—big data, complex event processing, context-
aware, energy management, ingestion, internet of things, machine
learning, smart cities, spark, transportation

I. INTRODUCTION

Sensors are by no means a new phenomenon: the first
thermostat was invented in the 19th century and space travel
would have been impossible without them. What is revolu-
tionary today about the Internet of Things (IoT) lies in its
recent adoption on an unprecedented scale, fueled by economic
factors such as dramatic drops in costs of sensors, network
bandwidth and processing. Moreover, unlike the Internet (of
humans), the IoT allows data to be captured and ingested
autonomously, avoiding the human data entry bottleneck. IoT
data will arguably become the Biggest Big Data, possibly over-
taking media and entertainment, social media and enterprise
data. The question then becomes how to make effective use
of this vast ocean of data?

The nature of IoT applications beckon real time responses.
For example, in the transportation domain one might want
to plan a travel route according to current road conditions,
and in smart homes one might want to receive timely alerts
about unusual patterns of electricity consumption. Some IoT
sensors are capable of actuation, meaning that they can take
some action, such as turning off the mains power supply in
a smart home. Therefore real time insights can be translated
into timely actions.

The importance of collecting and analyzing historical IoT
data is less immediately apparent. Because of its sheer size,
this is a costly endeavour, although the most relevant data

P. Ta-Shma, G. Gerson-Golan and G. Hadash are with the IBM
Research, Haifa, Israel (email: paula@il.ibm.com; guyger@il.ibm.com;
guyh@il.ibm.com)

A. Akbar, F. Carrez and K. Moessner are with the Institute for Communi-
cation Systems, University of Surrey, UK (email: adnan.akbar@surrey.ac.uk;
f.carrez@surrey.ac.uk; k.moessner@surrey.ac.uk)

for real time decisions would seem to be the most recent
data. We argue that historical data analysis is essential in
order to reach intelligent decisions, since without it one cannot
understand the context of real time data. For example, does
the current traffic (15 kph, 300 vehicles per hour) represent
normal conditions for a city centre intersection in rush hour, or
extreme congestion on a highway after a major accident? Does
a sudden increase in home energy consumption result from
heating in cold weather, or a faulty appliance? The answer is
clear on analysis of the temporal patterns in historical sensor
data.

We found that a large and important class of IoT applica-
tions has a focused set of requirements which can be handled
using a highly streamlined and simplified architecture. We
focus on applications which learn from IoT device history
in order to intelligently process events in real time. Example
applications include event classification (e.g. classifying a
traffic event as ‘good’ or ‘bad’), anomaly detection (e.g.
alerting when unusual traffic conditions occur), and prediction
(e.g. predicting future traffic conditions). We apply our work
to smart city transportation and energy management, but it is
generally applicable to almost all IoT domains. For example,
anomaly detection can also be applied to car insurance (altert-
ing on unusual driving patterns), utility management (alerting
on water/oil/gas pipe leakage) and goods shipping (alerting
on non compliant humidity and temperature). We present our
simple streamlined architecture in this paper, and apply it to
both event classification and anomaly detection in two IoT use
cases.

To achieve high scalability and low deployment cost, we
adopt a cloud based micro-services approach, where each
capability (ingestion, storage, analytics etc.) is embodied in a
separate scalable service. This approach is gaining widespread
popularity for cloud platform-as-a-service (PaaS) [1], since
each service specializes in what it does best, and can be
managed and scaled independently of other services, avoiding
monolithic software stacks. To achieve low development cost
we adopt open source frameworks, and we also implemented
our solution on the IBM Bluemix PaaS. We choose “best
of breed” open source frameworks for each capability, and
show how they can be assembled to form solutions for IoT
applications.

The following contributions are made in this paper.

• We propose a streamlined and simplified architecture
for a large and important class of IoT applications.
We name it the hut architecture because its flow
diagram takes the form of a hut as shown in Figure
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1. We use historical (batch) analytics to improve the
quality of real-time analytics on IoT data.

• We implement our proposed architecture using a
micro-services approach with best of breed open
source frameworks while making extensions as
needed. Our proposed solution is flexible with re-
spect to the choice of specific analysis algorithms
and suitable for a range of different machine learning
and statistical algorithms.

• We demonstrate the feasibility of our proposed solu-
tion by implementing it for two real-world smart city
use cases in transportation and energy management.
We implement the transportation scenario on the
IBM Bluemix PaaS and make the code available as
open source.

The remainder of the paper is organized as follows.
Section II presents related work and explains how we extend

prior research. Section III explains our proposed architecture
along with descriptions of the various components involved in
its implementation. Section IV-A describes the application of
our proposed architecture to a smart transportation use case
scenario. Section IV-B demonstrates the application of our
solution to smart energy management. Finally we conclude
the paper and highlight future work in section V.

II. RELATED WORK

The massive proportions of historical IoT data highlight the
necessity of scalable and low cost solutions. At first glance,
IoT data is similar to Big Data from application domains
such as clickstream and online advertising data, retail and e-
commerce data, and CRM data. All these data sources have
timestamps, are (semi) structured, and measure some metrics
such as number of clicks or money spent. Similarly, the need
to scalably ingest, store and analyze data from these domains
is somewhat similar.

Analytics frameworks for Big Data can often be categorized
as either batch or real-time processing frameworks. Batch
processing frameworks are suitable for efficiently processing
large amounts of data with high throughput but also high
latency - it can take hours or days to complete a batch
job. Real-time processing typically involves time sensitive
computations on a continuous stream of data.

One of the most common and widely used techniques
for batch processing on Big Data is called MapReduce [2].
MapReduce is a programming model for carrying out compu-
tations on large amounts of data in an efficient and distributed
manner. It is also an execution framework for processing data
distributed among large numbers of machines. It was originally
developed by Google as a generic but proprietary framework
for analytics on Google’s own Big Data, and later was widely
adopted and embodied in open source tools. MapReduce was
intended to provide a unified solution for large scale batch
analytics and address challenges like parallel computation,
distribution of data and handling of failures.

Hadoop [3], an open source embodiment of MapReduce,
was first released in 2007, and later adopted by hundreds
of companies for a variety of use cases. Notably, Amazon

released Elastic Map Reduce (EMR) [4], a hosted version
of MapReduce integrated into its own cloud infrastructure
platform running Amazon Elastic Compute Cloud (EC2)[5]
and Simple Storage Service (S3)[6]. OpenStack has a similar
framework called Sahara which can be used to provision and
deploy Hadoop clusters [7].

Hadoop provides generic and scalable solutions for big data,
but was not designed for iterative algorithms like machine
learning, which repeatedly run batch jobs and save intermedi-
ate results to disk. In such scenarios, disk access can become
a major bottleneck hence degrading performance.

In order to overcome the limitations of Hadoop, a new
cluster computing framework called Spark [8] was developed.
Spark provides the ability to run computations in memory
using Resilient Distributed Datasets (RDDs) [9] which enables
it to provide faster computation times for iterative applications
compared to Hadoop. Spark not only supports large-scale
batch processing, it also offers a streaming module known as
Spark streaming [10] for real-time analytics. Spark streaming
processes data streams in micro-batches, where each batch
contains a collection of events that arrived over the batch
period (regardless of when the data was created). It works well
for simple applications but the lack of true record-by-record
processing makes time series and event processing difficult for
complex IoT applications.

The need for real time processing of events in data streams
on a record-by-record basis led to a research area known
as complex event processing (CEP) [11]. CEP is specifically
designed for latency sensitive applications which involve large
volumes of streaming data with timestamps such as trading
systems, fraud detection and monitoring applications. In con-
trast to batch processing techniques which store the data and
later run queries on it, CEP instead stores queries and runs
data through these queries. The inbuilt capability of CEP
to handle multiple seemingly unrelated events and correlate
them to infer complex events make it suitable for many
IoT applications. The core of CEP is typically a rule-based
engine which requires rules for extracting complex patterns.
A drawback of CEP is that the authoring of these rules requires
system administrators or application developers to have prior
knowledge about the system which is not always available.

Big Data analytics systems have the challenge of processing
massive amounts of historical data while at the same time
ingesting and analyzing real-time data at a high rate. The
dichotomy of event processing frameworks for real time data,
and batch processing frameworks for historical data, led to
the prevalence of multiple independent systems analyzing
the same data. The Lambda architecture was proposed by
Nathan Marz [12] to address this, and provides a scalable and
fault tolerant architecture for processing both real-time and
historical data in an integrated fashion. The purpose of this
architecture was to analyze vast amounts of data as it arrives
in an efficient, timely and fault tolerant fashion. Its focus was
on speeding up Online Analytical Processing (OLAP) style
computations, for example web page view and click stream
analysis. It was not designed to make per-event decisions or
respond to events as they arrive [13]. It comprises batch, speed
and serving layers, which must be coordinated to work closely
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together, and is complex and difficult to deploy and maintain
[14].

In contrast to existing solutions, our architecture focuses
on analyzing new events as they arrive with the benefit of
wisdom gained from historical data. This encompasses a large
class of algorithms including event classification, anomaly
detection and event prediction. Our architecture is simpler and
more focused than the lambda architecture, and it maps well
to a microservices approach where minimal coordination is
needed between the various services. Using our approach batch
analytics is used independently on the historical data to learn
the behaviour of IoT devices, while incoming events are pro-
cessed on a record-by-record basis and compared to previous
behaviour. Newly ingested data will eventually become part of
the historical dataset, but unlike the lambda architecture, new
events do not need to immediately be analyzed on a par with
historical data. Our approach is practical, scalable and has low
cost to develop, deploy and maintain.

III. A SIMPLIFIED ARCHITECTURE FOR IOT
APPLICATIONS

We propose the Hut Architecture, which meets the require-
ments of scalable historical data analytics as well as efficient
real-time processing for IoT applications. IoT applications
typically require responding to events in real time based on
knowledge of past events. For example, using knowledge of
past traffic behaviour for certain locations in certain times
to trigger alerts on unexpected patterns such as congestion.
Historical knowledge is essential in order to understand what
behaviour is expected and what is an anomaly. Historical
data must be analyzed ahead of time in order to allow real
time responses to new situations. Despite its simplicity, our
architecture can scale to deal with large amounts of historical
data and can detect complex events in near real-time using
automated methods.

A. The Hut Architecture
Our architecture gives a high level view of the various

components in a solution and orchestrates how they fit together
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Fig. 2. Proposed solution Architecture

to solve a problem. Figure 1 presents its data flow diagram,
which forms the shape of a hut. The purple arrows denote the
batch data flows which form the base of the hut, while the
green arrows denote the real time flows and form the roof of
the hut. We first describe the real time flows.

Data acquisition denotes the process of collecting data from
IoT devices and publishing it to a message broker. An event
processing framework consumes events and possibly takes
some action (actuation) affecting the same or other IoT devices
or other entities such as a software application. Real time flows
can be stand alone, in cases where real time data can be acted
upon without benefitting from historical data, although usually
historical data can provide further insight in order to make
intelligent decisions on real-time data. For example, in order
to recognize anomalies, a system first needs to learn normal
behavior from historical data [15].

The batch flows fulfil this purpose. Data is ingested from
the message broker into a data storage framework for persis-
tent storage. Data can then be retrieved and analyzed using
long running batch computations, for example, by applying
machine learning algorithms. The result of such analysis
can influence the behavior of the real time event processing
framework. The batch flows can work independently of the real
time flows to provide long term insight or to train predictive
models using historical datasets [16].

B. A Hut Architecture Instance

For each node in Figure 1, one can choose among various
alternatives for its concrete implementation. We refer to a
certain choice of such components as a hut architecture
instance. We now present a specific hut architecture instance,
and later apply it to multiple real life use cases in following
sections. We utlize existing proven open source components,
as well as extending them where needed. A diagram of this
instance is shown in Figure 2.

The role of each component and how it fits into overall
architecture is described below. Where relevant we explain
why we chose the relevant component.
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1) Data Acquisition - Node Red: We use Node Red [17] to
acquire data from heterogeneous devices or other information
sources such as RESTful web services or MQTT data feeds.
XML and JSON are two most commonly used formats which
are used extensively for transmitting IoT data, although there
is no limitation regarding the choice of format. Data feeds may
contain redundant data which can be pre-processed or filtered.
Node-Red provides these functionalities together with a fast
prototyping capacity to develop wrappers for heterogeneous
data sources. Node Red can then publish the data to the
message broker. We chose this component because of its ease
of use and flexibility.

2) Message Broker - Kafka: Message brokers typically
provide a mechanism for publishing messages to certain topics
and allowing subscription to those topics. In our context, the
messages typically denote the state of an IoT device at a
certain time. Apache Kafka [18] is an open source message
broker originally developed by LinkedIn, designed to allow
a single cluster to serve as the central messaging backbone
for a large organization. Kafka emphasizes high throughput
messaging, scalability, and durability. Although Kafka is less
mature than other systems such as Rabbit MQ, it supports
an order of magnitude higher throughput messaging [18].
Moreover, Kafka supports both batch consumers that may
be offline, and online consumers that require low latency.
Importantly Kafka can handle large backlogs of messages
to handle periodic ingestion from systems such as Secor,
and allows consumers to re-read messages if necessary. This
scenario is important for our architecture. We chose Kafka for
both these reasons.

3) Ingestion - Secor: Secor is an open source tool [19]
developed by Pinterest which allows uploading Apache Kafka
messages to Amazon S3. Multiple messages are stored in a
single object according to a time or size based policy. We
enhanced Secor by enabling OpenStack Swift targets, so that
data can be uploaded by Secor to Swift, and contributed this
to the Secor community. In addition we enhanced Secor by
enabling data to be stored in the Apache Parquet format,
which is supported by Spark SQL, thereby preparing the
data for analytics. Moreover, we enhanced Secor to generate
Swift objects with metadata. We chose Secor because it is
an open source connector between Kafka and object storage
(OpenStack Swift).

4) Data Storage Framework - OpenStack Swift: OpenStack
[20] is an open source cloud computing software framework
originally based on Rackspace Cloud Files [21]. OpenStack
is comprised of several components, and its object storage
component is called Swift [22]. OpenStack Swift supports
CReate, Update and Delete (CRUD) operations on objects
using a REST API, and supports scalable and low cost
deployment using clusters of commodity machines. For this
reason Swift is suitable for long term storage of massive
amounts of IoT data. We chose OpenStack Swift because it is
an open source object storage framework.

5) The Parquet Data Format: Apache Parquet [23] is an
open source file format designed for the Hadoop ecosystem
that provides columnar storage, a well known data organization
technique which optimizes analytical workloads. Using this

technique, data for each column of a table is physically stored
together, instead of the classical technique where data is
physically organized by rows. Columnar storage has two main
advantages for IoT workloads. Firstly, organizing the data by
column allows for better compression. For IoT workloads,
many columns will typically contain IoT device readings
which fluctuate slowly over time, for example temperature
readings. For this kind of data some kind of delta encoding
scheme could significantly save space. Note that each column
can be compressed independently using a different encoding
scheme tailored to that column type. Secondly, organizing
the data according to columns means that if certain columns
are not requested by a query then they do not need to be
retrieved from storage or sent across the network. This is
unlike the classical case where data is organized by rows and
all columns are accessed together. This can significantly reduce
the amount of I/O as well as the amount of network bandwidth
required. We chose Parquet for these reasons - it is considered
as one of the highest performing storage formats in the Hadoop
ecosystem [24].

6) Metadata Indexing and Search using Elastic Search:
OpenStack Swift allows annotating objects with metadata
although there is no native mechanism to search for objects
according to their metadata. This is essential in a scenario
where we store massive amounts of IoT data and need to
analyze specific cross sections of the data. We built a metadata
search prototype similar to that of IBM SoftLayer [25] but
extended with range searches and data type support to meet
the needs of IoT use cases. Our prototype uses Elastic Search
[26], based on Lucene[27]. We found it to be effective for our
needs, although other Lucene based search engines, such as
Solr [28], are available.

7) Batch Analytics Framework - Spark: Apache Spark is
a general purpose analytics engine that can process large
amounts of data from various data sources and has gained
significant traction. It performs especially well for multi-pass
applications which include many machine learning algorithms
[9]. Spark maintains an abstraction called Resilient Distributed
Datasets (RDDs) which can be stored in memory without
requiring replication and are still fault tolerant. Spark can an-
alyze data from any storage system implementing the Hadoop
FileSystem API, such as HDFS, Amazon S3 and OpenStack
Swift, which, together with performance benefits and SQL
support (see next section), is the reason for our choice.

8) Data Retrieval - Spark SQL: RDDs which contain semi-
structured data and have a schema are called DataFrames and
can be queried according to an SQL interface. This applies to
data in Hadoop compatible file systems as well as external data
sources which implement a certain API, such as Cassandra and
MongoDB. We implemented this API for OpenStack Swift
with Parquet and Elastic Search, to allow taking advantage of
metadata search for SQL queries.

9) Machine Learning - Spark ML: Spark MLlib [29] is
Sparks library for machine learning. Its goal is to make
practical machine learning scalable and easy to use. Spark
MLlib consists of common machine learning algorithms and
utilities, including classification, regression, clustering, collab-
orative filtering, dimensionality reduction, as well as lower-
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level optimization primitives and higher-level pipeline APIs.
10) Event Processing Framework - CEP: A Complex Event

Processing (CEP) Engine is a software component capable
of asynchronously detecting independent incoming events of
different types and generating a Complex Event by correlating
these events together. In this sense, Complex Events can
be defined as the output generated after processing many
small, independent incoming input data streams, which can
be understood as a given collection of parameters at a certain
temporal point. A CEP Engine is commonly provided with
a series of plugins or additional sub-components in order to
improve data acquisition from external sources, and also some
kind of rule system to implement the business logic which
creates the output of the system.

Our architecture is modular, so a particular component in
this instance could be replaced by another. For example, Spark
Streaming or Apache Storm could be used for the event
processing framework instead of CEP software, and Hadoop
map reduce could be used instead of Spark. Our focus here
is on the architecture itself, and in order to demonstrate the
architecture we made an intelligent choice of open source
components as an architecture instance.

IV. USE CASES

The hut architecture, as well as our instance, is generic and
can be applied to a range of IoT use cases. In this section we
demonstrate its application to real-world problems and show
how it can provide optimized, automated and context-aware
solutions for large scale IoT applications. We demonstrate
it in practice by applying it to the following two scenarios,
Madrid Transportation and Taiwan Energy Management. We
describe the first use case in detail and later describe how the
same architecture and data flow can be applied to the second
case. Despite the fact that these use cases are from different
domains, they share the same architecture and data flow. Each
use case has specific requirements which dictate different
configurations and extensions which are also described in this
section.

A. Use case 1: Madrid Transportation

Madrid Council has deployed roughly 3000 traffic sensors
in fixed locations around the city of Madrid on the M30
ring road, as shown in Figure 3(a), measuring various traffic
parameters such as traffic intensity and speed. Traffic intensity
represents the average number of vehicles passing through a
certain point per unit time whereas traffic speed represents the
average speed of vehicles per unit time. Aggregated data is
published as an IoT service using a RESTful API and data is
refreshed every 5 minutes 1.

Madrid Council has control rooms where traffic admin-
istrators analyze sensor output and look for congestion or
other traffic patterns requiring intervention as shown in Figure
3(b). Much of the work is manual and requires training and
expertise regarding expected traffic behaviour in various parts
of the city. Our objective is to automate this process and

1http://informo.munimadrid.es/informo/tmadrid/pm.xml

therefore provide a more responsive system at lower cost. Our
approach is to collect traffic data for different locations and
time periods and use this to model expected traffic behaviour
using thresholds. We then monitor traffic in real time and
assess the current behaviour compared to thresholds which
capture what is expected for that location and time of day.
Our system can alert traffic managers when an action may
need to be taken, such as modifying traffic light behaviour,
alerting drivers by displaying traffic information on highway
panels, calling emergency vehicles and rerouting buses to
avoid road blocks. In future our system could trigger these
actions automatically.

We now describe our hut instance as applied to the Madrid
Transportation use case.

1) Data Acquisition: We used the Node-RED tool to peri-
odically retrieve data from the Madrid Council web service
and publish it to a dedicated Kafka topic, containing data
from all of Madrid’s traffic sensors. The published data has
the following schema, where intensity denotes traffic intensity,
velocity denotes traffic speed, ts denotes the timestamp in
epoch format and tf denotes the time of day.

{"namespace": "cosmos",
"type": "record",
"name": "TrafficFlowMadridPM",
"fields": [

{"name": "code", "type":"string"},
{"name": "occupation", "type":"int"},
{"name": "load", "type":"int"},
{"name": "service_level", "type":"int"},
{"name": "velocity", "type":["null","int"]},
{"name": "intensity", "type":["null","int"]},
{"name": "error", "type":"string"},
{"name": "subarea", "type":["null","int"]},
{"name": "ts", "type":"long"},
{"name": "tf", "type":"string"}

]
}

2) Data Ingestion: We configured Secor to consume data
from this Kafka topic and upload it as objects to a dedicated
container in OpenStack Swift once every hour. We partitioned
the data according to date which enables systems like Spark
SQL to be queried using date as a column name. Using
our enhancements to Secor we converted the data to Parquet
format, and also generated metadata for each resulting object
with minimum and maximum values for specified schema
columns, as shown above. This metadata is stored in Swift
as well as being sent to Elastic Search for indexing.

3) Data Retrieval: We defined our collection of data and
metadata as a Spark SQL external data source, and imple-
mented an associated driver. Given an SQL query over this
dataset, our driver identifies selections on indexed columns,
and searches Elastic Search for the names of Swift objects
whose min/max values overlap the requested query ranges.
For the Madrid Traffic use case, we needed to analyze traffic
for different periods of the day separately, resulting in the
following query for morning traffic.

SELECT code, intensity, velocity
FROM madridtraffic
WHERE tf >= ’08:00:00’ AND tf <= ’12:00:00’
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(a) Sensors location on M30 ring road (b) M30 Control Room

Fig. 3. Madrid Transportation Scenario

To evaluate this query, our driver searches for objects whose
min/max timestamps overlap this time period, and evaluates
the query on these objects only. Objects which do not qualify
do not need to be read from disk or sent across the network
from Swift to Spark. For one example query we tested on
the Madrid Traffic data we collected, we found our method to
reduce the number of Swift requests by a factor of over 20.

4) Event Processing: We used CEP as an event processing
component to consume events in real-time from the Message
Broker and detect complex events like bad traffic. The core of
CEP is a rule-based engine which requires rules for extracting
complex patterns. These rules are typically based on various
threshold values. An example rule analysing traffic speed and
intensity to detect bad traffic events is shown in algorithm 1,
which checks whether current speed and intensity cross thresh-
olds for 3 consecutive time points. The manual calibration of
threshold values in such rules require traffic administrators to
have deep prior knowledge about the city traffic. In addition,
rules set using a CEP system are typically static and there is
no means to update them automatically.

Algorithm 1 Example Rule for CEP
1: for (speed, intensity) ∈ TupleWindow(3) do
2: if (speed(t) < speedthr and intensity(t) <

intensitythr AND
3: speed(t + 1) < speedthr and intensity(t + 1) <

intensitythr AND
4: speed(t + 2) < speedthr and intensity(t + 2) <

intensitythr) then
5: Generate complex event Bad Traffic
6: end if
7: end for

In contrast, we adopted a context-aware approach using
machine learning to generate optimized thresholds automat-
ically based on historical sensor data and taking different
contexts including time-of-day and day-of-week into account.
New rules are generated dynamically whenever our algorithm
detects a change in the context. The idea of using machine

learning to generate optimized thresholds for CEP rules was
proposed in our initial work [30] where we demonstrated a
context-aware solution for monitoring traffic automatically.
In this paper, we improve our initial approach, extend our
experimental evaluation and integrate it with the more general
hut architecture and hut instance, optimized for large scale IoT
applications.

5) Machine Learning: In order to classify traffic events
as ‘good’ or ‘bad’ we built a model for each sensor lo-
cation and time period (morning, afternoon, evening and
night) using k-means clustering, an unsupervised algorithm
(not requiring labeled training data) implemented in Spark
MLlib and optimized for large data sets. The data points are
separated into k different groups, in our case k = 2 and the
groups represent good versus bad traffic. The resulting cluster
boundary generates thresholds for real time event processing,
since crossing these thresholds signifies moving from good to
bad traffic (or vice versa).

Experimentation results of our approach on Madrid traffic
data are shown in Figure 4 for a particular location on a
weekday. Different sub-figures indicate different time contexts
(morning, afternoon, evening and night). Blue clusters repre-
sent high average speed and intensity indicating good traffic
state, whereas red clusters represent low average speed and
intensity indicating bad traffic state (note the varying scales of
the X-axes in the various graphs). Midpoints between cluster
centers represents the boundary separating both states and
we use this boundary to define threshold values for detecting
complex events.

6) When to Recompute the Thresholds?: Statistical proper-
ties of the underlying data may change over time resulting in
inaccurate threshold values. Therefore, we assess the cluster
quality for different contexts as new data arrives, and once it
significantly deteriorates, we retrain the k-means models and
generate new threshold values. The Silhouette index s(i) [31]
is used to assess cluster quality by quantitatively measuring
the data fitness on existing clusters and is defined as

s(i) =
b(i)− a(i)

max(a(i), b(i))
(1)
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(a) Morning Traffic Hours (b) Afternoon Traffic Hours

(c) Evening Traffic Hours (d) Night Traffic Hours

Fig. 4. Clustering results on Madrid traffic data for location 1

where a(i) is the mean intra cluster distance, and b(i) is the
mean nearest-cluster distance i.e. distance with the nearest
cluster center which the data is not part of. s(i) ranges from
−1 to 1 where 1 indicates the highest score and −1 the lowest
for cluster quality. Table I shows the instance of threshold
values for both speed and intensity for location 1 (Figure
4) where values of silhouette index (s(i) >= 0.5) indicate
good cluster quality. As new data arrives, the silhouette index
is calculated incrementally using the cluster centroids and if
s(i) < 0.5, it acquires the latest data and repeats all steps.

TABLE I
THRESHOLD VALUES UPDATE (WEEKDAYS)

Traffic Period Time Range Threshold Values Silhouette index
Morning 8 am to 12 pm 130 veh/h, 43 km/h 0.51

Afternoon 12 pm to 4 pm 175 veh/h, 51km/h 0.57
Evening 4 pm to 8 pm 145 veh/h, 49km/h 0.55

Night 8pm to 12 am 96veh/h, 48 km/h 0.50

7) Evaluation: In order to evaluate our proposed solution,
we followed the approach outlined in [32]. We defined an ideal
set of threshold values for the rule mentioned in algorithm 1
for four different locations with the help of traffic administra-
tors from Madrid city council, and refer to this as Rule R. As

we have different threshold values for different contexts, we
need ideal threshold values for each context to provide fair
analysis of results. Rules learned by the automatic generation
of threshold values using our proposed clustering algorithm
are represented as R∗.

We measure the performance of our system quantitatively
by generating an evaluation history of traffic events and use
both R and R∗ to detect bad traffic events. This enables us
to measure the precision of our algorithm which is the ratio
of the number of correct events to the total number of events
detected; and the recall, which is the ratio of the number of
events detected by R∗ to the total number of events that should
have been detected based on ideal Rule R. Mathematically,
they are represented as:

Precision =
TP

TP+FP
, Recall =

TP

TP+FN
(2)

where TP is true positive, FP is false positive and FN is
false negative. Results are shown below in table II. In general,
we got high values of recall for all four locations which
indicates high rule sensitivity (detecting 90% of events from
the traffic data stream). The average value of precision lies at
around 80% indicating a small proportion of false alarms.
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TABLE II
CEP RULES EVALUATION FOR MADRID SCENARIO

Locations TP FP FN Precision Recall
1 97 17 8 0.85 0.92
2 68 14 7 0.82 0.91
3 71 12 11 0.85 0.86
4 112 29 9 0.79 0.93

8) Discussion: The main focus of our work is on a generic
architecture for IoT data analytics which allows plugging in
various algorithms. We presented one particular choice where
unsupervised machine learning (k-means clustering) was used
for event classification. Our modular approach enables explo-
ration of other unsupervised or supervised methods for the
same problem. In addition, our architecture can be used for
additional applications; for example, one can train regression
models with Spark MLlib using Madrid Council’s historical
dataset and provide traffic predictions [33].

B. Use case 2: Taiwan Electricity Metering

Smart energy kits are gaining popularity for monitoring
real time energy usage to raise awareness about users’ energy
consumption [34]. The Institute for Information Industry (III)
Taiwan have deployed smart energy kits consisting of smart
plugs and management gateways in over 200 residences.
These smart plugs have built-in energy meters which keep
track of real-time energy usage of connected appliances by
logging electrical data measurements. They are connected to
a management gateway via the ZigBee protocol, which is
connected to the internet via WiFi.

Our aim is to monitor energy consumption data in real time
and automatically detect anomalies which are then communi-
cated to the respective users. An anomaly can be defined as
unusual or abnormal behaviour. For example, a malfunctioning
electronic device or a fridge with its door left open can result
in excessive power dissipation which should be detected and
reported as soon as possible. Another type of anomaly is
appliance usage at unusual times such as a radiator during the
summer or an oven operated at 3am. Automatic monitoring of
devices to detect anomalies can contribute to energy savings
as well as enhanced safety.

III requests users to provide information on devices con-
nected to smart plugs such as appliance type as well as
expected behaviour such as expected wattage and current
ranges. However expected behaviour is not usually known by
users and is difficult for them to determine. Our approach of
collecting historical appliance data for various time periods
(summer versus winter, day versus night, weekday versus
weekend) provides a way to automatically generate reliable
information about expected behaviour. For each device and
time context (such as weekday mornings during summer), we
calculate the normal working range for current and power for
an appliance using statistical methods. A CEP rule is defined
based on this working range, and as soon as the readings are
outside this range a CEP rule will be triggered generating a
complex event representing an anomaly which can then be
used to notify the user as well.
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Fig. 5. Appliances threshold values for monitoring current

An example of threshold values for two appliances during
summer weekdays is shown in the Figure 5, calculated using
the historical data of the specific device. As can be seen,
both appliances have lower usage at night indicating smaller
threshold values for current whereas appliance 1 has higher
usage during mornings compared to appliance 2, which has
a peak during evening time. A rule can be defined which
compares the average current taken by an appliance over the
specific time period to compare it with the expected readings
for that time context.

In summary, the same data flow applies to this use case
as for the Madrid Transportation use case described earlier.
The main difference lies in how the historical data is analyzed
(event classification versus anomaly detection).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed and implemented an architec-
ture for extracting valuable historical insights and actionable
knowledge from IoT data streams. Our proposed architecture
supports both real-time and historical data analytics using its
hybrid data processing model. We implemented our proposed
architecture using open source components optimized for large
scale applications. The feasibility of the proposed architecture
was demonstrated with the help of real-world smart city use
cases for transportation and energy management, where our
proposed solution enables efficient analysis of streaming data
and provides intelligent and automatic responses by exploiting
large historical data.

We implemented a version of the Madrid Traffic use case on
the IBM Bluemix platform, together with collaborators from
the IBM Bluemix Architecture Center. Bluemix is IBM’s PaaS
offering, providing microservices for the main components
used in our hut architecture instance (Node-red, Apache Kafka,
Apache Spark and OpenStack Swift). Source code for this
implementation is available for experimentation and adaptation
to other IoT use cases [35]. This demonstrates the amenability
of our architecture to the microservices model, and provides
tools to the community for further research. In addition, our
work led to the development of a bridge connecting Message
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Hub (the Bluemix Kafka service) with the Bluemix Object
Storage service [36].

Our experiments using the hut architecture extend existing
solutions by providing simple but integrated batch and event
processing capabilities. Our implementation applies to both
transportation and energy management scenarios with only mi-
nor changes. Given the generality of the proposed architecture,
it can also be applied to many other IoT scenarios such as
monitoring goods in a supply chain or smart health care. A
major benefit of adopting such an architecture is the potential
cost reduction at both development and deployment time by
using a common framework for multiple IoT applications
and plugging in various alternative components to generate
variations as needed.

In future, we aim to evaluate our architecture on addi-
tional IoT applications where knowledge about complex events
can contribute to more innovative and automated solutions.
Furthermore, we intend to improve the process of automatic
generation of threshold values by considering other machine
learning algorithms. We also plan to make our system more
context-aware by ingesting and analyzing social media data.
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