OCCI-IOT: an API to deploy and operate an IoT
infrastructure

Augusto Ciuffoletti Member, IEEE,

Abstract—The infrastructure that supports the IoT is a critical
component and major ICT industries are ready to propose their
solutions. This paper is an attempt to define an approach based
on the principles of openness and expandability.

Our proposal encompasses both the application level interface
of the IoT infrastructure, which allows interaction with external
applications, and the interface offered by the single components
of the infrastructure, which allows interaction and coordination
between the components. In both cases we adopt a REST approach
using HTTP for communication.

Our purpose is to contribute to the production of a standard
for IoT infrastructures and components, to foster an open
competition in a fast growing market.

Index Terms—Internet of Things, occCl, REST, WebSocket,
Edge Computing.

I. INTRODUCTION

With the advent of the Internet of Things (IoT), a number
of devices that operate mainly without human intervention
gain access to networking technologies and infrastructures.
Such devices produce data that, broadly speaking, are used
to improve the quality of life, from agriculture to traffic lights
control.

This opportunity extends the Internet in a new direction,
since such new devices do not have the features traditionally
associated with Internet end-users. Namely, they are not as-
sociated with a human user, they generate data at a steady
rate, they produce and consume asynchronous signals, they
are grouped and organized to contribute to a task.

The independence from a human user induces the prolif-
eration of networked Things — Gartner envisions billions of
such devices in 2020 [14] — the control of which is a design
challenge. In fact, such devices need to be connected to data
repositories, their signals must be managed, and appropriate
controls must be distributed.

This paper addresses a framework to define and control an
IoT infrastructure with three fundamental targets in mind:

o simplicity, meaning that we minimize the number and
complexity of the types of basic devices that compose
the infrastructure

« openness, meaning that the tools used to deploy the
infrastructure are standard or promote standardization

« scalability, meaning that the infrastructure grows linearly
with the number of endpoints

The three targets are not each other in contrast, and are
often found together in projects that share a similar conceptual

Augusto Ciuffoletti is with the University of Pisa - Dept. of Computer
Science

approach. In this sense, we take advantage of a framework
proposed by the NIST [19] that addresses the definition of
terms and concepts that apply to IoT infrastructures. We
analyze their proposal, and adhere to basic concepts and
terminology.

Since the final purpose of IoT is not far from that of
distributed systems monitoring, we take advantage of results in
this latter field, and we also point out some issues shared with
software defined networks, that introduce dynamic configura-
tion features that are mandatory for an IoT infrastructure.

The proof-of-concept prototype described in the paper fol-
lows the same principles: it is easily reproducible and focused
on the relevant issues.

II. A FRAMEWORK FOR IOT INFRASTRUCTURES

The presence of a complex, dynamic infrastructure is not a
property of IoT systems only.

Consider the analogies with the monitoring of distributed
computing systems, for instance a datacentre with thousands of
cloud servers, grouped in racks and rooms: a pervasive mon-
itoring infrastructure is needed to collect data ranging form
disk errors to room temperature. Like in an IoT infrastructure,
sensing devices pervade the system, and are at the edge of the
monitoring infrastructure.

Nagios [10] is a monitoring system addressing this task. One
of its distinguishing feature is the partitioning of the system
into smaller subsystems, managed by specialized devices that
control monitoring applications installed on cloud servers. The
need to co-exist with legacy installations introduces a design
issue that limits Nagios scalability: we recently proposed
[2] the occCI-Monitoring framework, that adheres to Nagios
principles without inheriting its constraints.

The front end API of the OCCI-Monitoring service offers the
tools to define the architecture of the monitoring infrastructure.
It is designed according with an open standard — the Open
Cloud Computing Interface (0ccI) of the Open Grid Forum
(OGF) [13] — that contains the basic tools to describe a
complex infrastructure framed into a REST interface [6]. So
that OCCI-Monitoring specifies both how to describe the in-
frastructure (schemas), and how to upload such information to
the deployment engine (REST). The OCCI-Monitoring schema
introduces two sub-types of the core OCCI types: one is for
the objects that represent measurement tools that monitor the
operation of a cloud resource (for instance, the number of
connections on a web server), the other sub-type is for the
objects that process the data obtained from the former (for
instance, a load balancer)

name | short description

RQ1 Object coordination

RQ2 Object virtualization

RQ3 Dynamic object join/leave

RQ4 | Dynamic object state change

RQ5 Coordination of external objects and services
RQ6 Object description

RQ7 Scalability

RQ8 Security

TABLE I
REQUIREMENTS ACCORDING WITH [18]

The above schema adheres to the conceptual framework
proposed by NIST for IoT in [19], a summary of the principles
emerging from the preceding literature on the topic (e.g. [9]).
Five conceptual entities are defined — called primitives —
that contribute to define an IoT system:

e a Sensor is the source of measurements and data from

the environment; sensors are on the edge of the system.

e an Aggregator is the intermediate device that processes

data coming from sensors: such processing usually re-
duces the amount of data forwarded by the aggregator
and improves scalability

o a Communication Channel is the building block for the

fabric that connects sensors and aggregators

« an eUrtility is the device that provides computing capabil-

ities or conveys data to the system without being a sensor
or an aggregator

e a Decision trigger represents an action performed by the

system together with the criteria used to decide when to
perform such action

Both the occCI-Monitoring schema and the NIST IoT model
postulate the presence of a multi-layer architecture where
the bottom layer is populated with semnsors that perform
measurements. The rest of the infrastructure is a hierarchy
of aggregators that process and propagate data. In this paper
we merge the two approaches: define an OCCI schema that
complies with the NIST model for IoT.

Besides abstract principles and terminology, functional re-
quirements are also relevant for the implementation. In paper
[18] we find a precise statement that we use as a guideline.
The authors introduce eight fundamental requirements for an
IoT infrastructure, that are condensed in table I. In their
terminology, the object refers to a generic entity, either a
sensor or an aggregator.

III. THE ARCHITECTURAL MODEL

We want to model a complex distributed system composed
of IoT devices. The system interacts with the real world on one
side (the back-end), and provides a representation of the real-
world on the other (the front-end). The purpose is monitoring
and control of the real world, according with a closed-loop
pattern. Therefore the IoT infrastructure supports bi-directional
communication (upstream and downstream), although the con-
tents transferred in the two directions are quite different: a
continuous stream of measurements in the upstream direction,
sporadic commands downstream.

According with NIST terminology, we introduce Sensors as
the agents bordering the back-end of the system. They perform

Fig. 1. A multi-layer IoT system, with 5 aggregators (ovals), 12 real objects
(boxes), and 16(+2) sensors (arrows)

measurements, receive controls and act accordingly. In the
simplest case, such controls are directed to the measurement
function, for instance to switch off a power-consuming mea-
surement, but they can be extended to an associated device,
e.g. to control a traffic light. In the NIST model, the Sensors
are the targets of actions triggered by Decision Triggers.

In our model, we qualify the Sensors with the following
features:

o they are many, and they produce an amount of in-
formation that cannot be managed without aggregation
techniques

« they are dynamic, in number and function: new sensors
may dynamically enter the system, and may later change
their operation

« they can be configured by an external agent, in particular
by other agents in the IoT infrastructure

o they can operate on the environment both autonomously
and responding to external controls

A Sensor is physically close to the real world entity that it
measures and acts upon: for instance, a light sensor associated
with a road needs to see it. Entities like a road or a traffic light
— together with their properties — are included in our schema
as real-world entities.

The Sensor delivers measurements to and receives com-
mands from another entity that is responsible of data process-
ing and forwarding; following NIST terminology, we call this
component Aggregator. An Aggregator is associated with one
or more Sensors.

We qualify an Aggregator with the following features:

« it implements Decision triggers that process upstream

data to produce downstream controls

e it processes and forwards the upstream data flow

e it processes and forwards the downstream controls

Aggregators can form a chain, and this is fundamental for
scalability. To cope with a growing numbers of Real World
Objects the output from sensors cannot be used directly, but
has to be processed using big data techniques. A layer of
aggregators may turn multiple streams of data into sporadic
notifications (see figure 1), according with edge computing
principles [16].

Although a hierarchy of aggregators introduces communi-
cation delays that grow with the number of layers, it may
equally reduce the response time, since intermediate aggrega-
tors may detect relevant events and produce an early response.
Overall, we consider that layering responds to the mandatory
requirement of scalability, stated as RQ7 in table 1.

Aggregators that are located deep into the IoT infrastructure
may be implemented as virtualized cloud components —
towards an architecture based on micro-services — to enhance
the flexibility of the system: this meets RQ1 in table I.

We now translate this informal insight into a formal schema,
starting from its notation. This result enables the description
and control of the components of an IoT infrastructure (RQ6
and RQ1 in table I) using a REST interface.

IV. AN OCCI SCHEMA FOR IOT INFRASTRUCTURES

The occI specification is based on a core schema, and
supports an extensions mechanism.

The core 0CCI schema describes two kinds of core entities:
the resource and the link. A link is associated with two
resources: the source and the farget resource. Each entity has
an URI associated with it, and the user is provided with a
REST-ful interface to interact with the entities on behalf of
the management system. A given entity has defined attributes,
whose values characterize a specific instance.

Another category is used to define the action, that stands
for ability to perform an activity, often supported by the
abstraction of an internal state of the entity.

To customize a given entity instance, OCCI introduces the
mixin. The association of one of them with an entity instance
adds new attributes and actions, that complement those al-
ready present in the entity instance. From a commercial point
of view the mixins have the important role of differentiating
the offer of distinct providers: entity types are the common
denominator that allows basic portability, while mixins are
provider-specific.

Given its simplicity, the OCCI interface can be adapted to
a number of distinct environments: the description of IaaS
cloud resources — historically the first application of OCCI —,
Service Level Agreement, PaaS resources, Cloud Monitoring
infrastructures and more.

The procedure to apply the core model to a specific purpose
consists of writing a document that defines new sub-types of
the core entities with appropriate features. In OCCI terminol-
ogy such document is an extension of the core schema.

A. An OCCI extension for loT

According to the informal model explained in section III, a
sensor monitors a real world object on behalf of an aggregator.
In occI terms, both the aggregator and the real world entity
are OCCI resources, and the sensor is an OCCI link. The
definition allows aggregator hierarchies of unlimited depth,
since the aggregator is a subtype of the core resource type,
and a sensor is a link between resources, as in figure 1.

The class diagram is in figure 2: we do not introduce
specific attributes for the new OCCI entities, but we expect
that appropriate mixins are defined by the provider to allow
to tailor an entity to user’s needs (for instance, to measure
the temperature in a greenhouse as in table II). The user
obtains the description of the available mixins in response
to a GET sent to the OCCI server: the available mixins are
therefore discoverable. By associating a sensor instance with

Entity
+id: URI

—

Resource source links| Link
+summary: String[0..1] 1 *|+target: URI

/\

Realworld Object|
t {
1

|Aggregator|
I |
L 1

Fig. 2. The UML class diagram of the 10T extension (core model light-gray)

selected mixins the user implements a sensor with the required
functionality.

For instance, in table IV we see a sensor rendering embed-
ded inside an aggregator: the link attribute is an array with
the ntc sensor as the unique element. The sensor has an NTC
mixin associated, and inherits from it two attributes: period
and OUTlevel, an entity port.

The NIST document postulates the existence of communi-
cation channels: in our schema they are represented by entity
ports, like OUTlevel in the latter example. A port is a
string attribute whose value is the identifier of a bi-directional
communication channel: ports with matching identifiers share
the same channel.

The capability of a sensor to communicate with the next
upper layer is represented with a null mixin that connects one
port of the low level aggregator with a port in the upper layer
aggregator.

V. ORCHESTRATING AN IOT INFRASTRUCTURE

The 0CCI-10T introduced above represents an IoT according
with REST principles: namely, each entity has a representation
that is reachable with an URI that contains links to other URIS,
the representation can be managed using REST operations, and
the types of entities too are discoverable and manageable using
the same paradigm. By definition this meets RQ4 of table I.
The schema defines an interface, the specifications of which
are an input for the design of a management application, e.g.
a graphical dashboard.

Now we want to step on the other side of the interface,
and see the architecture of the engine that deploys the IoT
infrastructure using its definition. Since its interface is REST,
the use of the same paradigm for the implementation of
the engine is consequential. Although the REST paradigm is
independent from the communication protocol, in practice it is
strongly related to, and motivated by, the HTTP protocol and
the web infrastructure.

The web infrastructure that we use to support an IoT has the
well known advantages of an established technology. For one,
the use of HTTPS (when the involved devices are sufficiently
powerful) solves a lot of security issues [17], and meets RQS8
in I. However HTTP is unsuitable for data streaming, especially
following the REST paradigm, since all interactions are strictly
request-response between a client and a server.

Several techniques have been introduced to overcome these
limits: Java RMI, SOAP, AJAX, although different in concept,

all go in that direction. The problem with these techniques is
that they alter the strict REST behavior to change operation and
control. Instead, the WebSocket technology is considered as
REST-compliant and implements a bidirectional, unrestricted
communication (in TCP Socket style, as suggested by the
name) within an HTTP session. The switch to the WebSocket
protocol is implemented with an HTTP upgrade request. See
[5] and [7] for further details.

A WebSocket is an asynchronous, bidirectional channel
suitable for sensor-to-aggregator communication, where the
sensor produces an upstream flow of raw measurements for the
aggregator, and control messages are delivered downstream. It
is sufficiently lightweight to be implemented by IoT devices,
as we will demonstrate in the experimental section.

The introduction of a new sensor proceeds as follows:

« physically connect the new sensor to the network

« record a new real world object (RWO) in the system with
a POST to the relevant IoT engine component

o associate the new sensor device to an aggregator with
another POST (as an incoming link)

o the aggregator sends a POST to the sensor, in order to
configure its activity

« the aggregator turns the HTTP session with the sensor into
a WebSocket

« the sensor starts feeding the aggregator with data

An aggregator-to-aggregator sensor follows the same pro-
cess: specifically, when a new low-layer aggregator is intro-
duced in the architecture, or a sensor is handed-off from one
aggregator to another.

The adoption of the WebSocket technology makes the
deployment flexible, as in RQ3 in table I. Using POST verbs
the user agent configures new entities, that the engine deploys
and connects with dynamic WebSockets.

VI. A PROTOTYPE: TEMPERATURE MONITORING

The purpose of this section is twofold. On one side, we
want to demonstrate that the formal schema is sufficiently
expressive to describe and guide the deployment of a simple
use case. On the other, we want to compare the performance
of a REST-based deployment with the deployment found in
[18], in a way that is easily reproducible.

For the task we need a prototype that focuses on the critical
aspects of our proposal:

« the deployment is guided by OCCI-1OT data structures

« data transport inside the infrastructure uses WebSockets
We deliberately simplify other aspects — notably, networking
— to avoid the introduction of spurious variables.

The problem we want to solve with our prototype is a typical

smart agriculture use case stated as follows:
We want deploy a IoT that gathers ambient statistics, that
controls air conditioning and watering inside greenhouses.
The system is distributed across a number of possibly distant
plants.

The IoT system is organized on three layers. The Real Word
Objects layer contains the greenhouses and it is linked to the
upper layer by sensors that send raw data to the devices on
the intermediate layer. This is populated with aggregators that

convert raw data into temperature and apply a filter to obtain
a robust sample. The output is passed to a ThingSpeak server
— an external service, meeting RQS5 for [18] — that gathers
and displays the data from all aggregators, and may compute
alarms and schedule events. It is an aggregator in the OCCI-
10T schema.

To represent the above system we need six mixin types:

o three sensor mixins, ntc to describe the temperature
meter, null to connect the intermediate aggregator to a
centralized server, dummy that is not attached to a real
measurement device and is used to stress the aggregator;

o two aggregator mixins, NTC2Degrees for the intermedi-
ate aggregator, ThingSpeak for the ThingSpeak server;

o a real world object mixin for the greenhouse.

We concentrate on two of them: the temperature meter, and
the intermediate aggregator.

The temperature meter mixin is represented in table II.
The term attribute reveals the use of a NTC thermistor
— a cheap temperature sensor — as the input device. The
mixin type definition is part of the sensor scheme defined
by the provider (see the scheme attribute), it depends from
a sensormixins subtype defined in a OCCI extension for IoT
(depends attribute), and it can be associated only with a
sensor link (applies attribute) defined in the same IoT
document. The mixin attributes are prefixed with the provider
domain: com.example.

e period configures the time interval between successive

measurements in milliseconds

e level_out indicates the id of the output channel
associated with the OUTlevel port: the value comes
from the output of a A/D converter connected to the NTC
device

e uri is the URI of the remote measurement device hosting
a WebSocket server.

{”term” : "NTC”

”scheme”:” http :// example.com/sensor#”,
”depends”:”http ://schemas.ogf.org/occi/iot#sensormixins”,
“applies”:”http ://schemas.ogf.org/occi/iot#sensor”,

Tattributes”:{

“com.example .NTC. period”:{ “type”:”number” },
“com.example .NTC. level_out”:{ “type”:”string” },
”com.example NTC. uri”:{ “type”:”string” }

}
“title ”:”NTC”,
“location”:”/sensor /NTC”}

TABLE I
THE json RENDERING OF THE TEMPERATURE SENSOR

The aggregator mixin that computes the temperature and
collapses successive values is represented in table III. The
r aw data received from the input channel ntc-in and
converted into degrees using a logarithmic interpolation of
the characteristic function of the NTC. Data in the history are
combined using an exponentially weighted moving average
and, at regular intervals of period seconds, the current value
is forwarded across the degrees_out channel.

Using the above mixins it is possible to define an in-
frastructure with an arbitrary number of sensors: the system
smoothly scale since, when the number of aggregators in the

{’term”:”NTCtoDegrees” ,

”scheme”:”http ://example.com/aggregator#”,
”depends”:”http ://schemas.ogf.org/occi/iot#
aggregatormixins”,

“applies”:”http ://schemas.ogf.org/occi/iot#aggregator”,
Tattributes”:{
”com.example .
“com.example .
“com.example .
com.example.

NTCtoDegrees. ntc_in”:{ type”:”string”},
NTCtoDegrees. degrees_out”:{”type”:”string”},
NTCtoDegrees . 7 :”number” },

gain”:{"type”:
NTCtoDegrees . period”:{”type”: " number”}

}

”title”:”NTCtoDegrees”,
“location”:”/aggregator /NTC”}

bogl: sensor Bogus: RWO
TS: aggregator temp: aggregator .
+ThingSpeak +NTCtoDegrees Room: RWO
sl: sensor ntc: sensor

+NTC

Fig. 3. Graphical representation of the system deployed in the prototype.
Syntax: < id >:< type > [+ < mixin >]*

TABLE III
THE json RENDERING OF THE AGGREGATOR MIXIN

intermediate layer exceeds the capacity of the ThingSpeak
aggregator, it is possible to introduce a further layer of
intermediate aggregators.

A. Implementation of a proof-of-concept prototype

The devices that implement the prototype — the eUtilities,
according with NIST terminology — are an Arduino Duemi-
lanove for the measurement device and a Raspberry PI for the
aggregator. They are two low cost COTS devices that encourage
the reproduction of our experiments. The Arduino wears an
Ethernet shield.

We used a switched Ethernet network because of its minimal
interference on the kind of measurements we want to perform.
Wireless devices are also commonly adopted, but they would
barely introduce uncertainty into experimental, without tech-
nical added value.

The Arduino implements a WebSocket server that delivers
the measurements of the temperature at a fixed rate. Since
timing is critical for our experiments we use low level in-
terrupts to trigger data production. The temperature sensor
is a voltage divider made of one fixed resistor and an NTC
(negative temperature coefficient) resistor.

The aggregator device is hosted by a Raspberry Pi 3, a
credit card-sized single-board computer based on a powerful
ARM (quad core at 1.2 GHz), powered by a Linux Operating
System. It is connected to the public Internet across a NAT
router in order to reach the public ThingSpeak server.

The implementation is available through two distinct
GitHub software repositories. The code for the Raspberry
(orchestrator and aggregator) are at [3], while the Arduino
sketch and electronic layout is at [4].

According to CAIDA the dashboard ThingSpeak server is
hosted in the AWS autonomous system: IP location services
reveal that it is in the United States. A REST API allows the
user to upload numerical data; these can be displayed and used
to trigger a number of actions.

Finally, in our intranet a PC is equipped with a daemon that,
upon request, spawns dummy measurement devices that send
data to the aggregator.

The prototype is a pipe composed of a sensor link (ntc),
an aggregator (temp), another sensor link (s1), and another
aggregator (TS). In figure 3 for each component we indicate
the instance identifier, its OCCI-IOT type, and the associated
mixins: the syntax is outlined in the caption. Each component

“kind”:”http ://schemas.ogf.org/occi/iot#aggregator”,
mixins”: [

“http ://example.com/aggregator#NTCtoDegrees”],
“attributes”: {

“com.example.sensor. NTCtoDegrees”: {

“ntc_in”: “channell”,
“degrees_out”: “channel2”,
“gain”: 16,

“period”: 30 } },

7id”: "temp”,

”links”: [

{ "kind”:”"http ://schemas.ogf.org/occi/iot#sensor”,
“mixins” :[”http ://example.com/sensor#NTC”],
“attributes”:{

7id” 7 nte”,
“target”: {
”location”:”/room/MyRoom” ,
“kind”:”http ://schemas.ogf.org/occi/iot#rwo” },
”source”: {
“location”:”/aggregator/templ”,
”kind”:”http ://schemas.ogf.org/occi/iot#aggregator”
}
”com.example.sensor .NTC”: {
”OUTlevel”: ”channell”,
“period”:1,
Turi”: "ws://192.168.113.1777}
P}
TABLE IV
OCCI-jSOn RENDERING OF THE femp AGGREGATOR WITH THE OUTGOING
ntc SENSOR

has a OCCI-10T representation in JSON. The representation of
the temp aggregator is shown in table IV. According to OCCI
it embeds the outgoing ntc sensor link.

Such data structure is received by a deployment engine
component that in our setup is a Sinatra/Ruby web server on
the Raspberry. The server should receive the JSON in table IV
as the payload of a PUT from the infrastructure orchestrator;
in our setup the descriptor is preloaded as a Ruby hash (see
table V). The web server spawns a new thread to implement
the temp aggregator.

The new aggregator thread dynamically loads the library
containing the requested mixin (NTCtoDegrees) and spawns
another thread that implements the mixin functionalities, con-
figured according to the content of the description. The mixin
thread receives raw values from the input Queue, converts the
values into degrees and periodically delivers a new value to
the output channel. Many such threads, possibly of different
kind, can run concurrently within the same host and each of
them originates mixin threads.

To enforce a precise frequency in the feed, input and output
operations are decoupled: to this end the aggregator spawns a
thread that has access to the last computed result. Such thread
periodically reads that value and sends it to the output channel.

The aggregator spawns another thread for the sensor. The
functional parameters of the Arduino measurement device are

>NTCtoDegrees’ => {

ntc_in: channel[”channell”],
degrees_out: channel[”channel2”],
gain: 16,

period: 30

}

TABLE V
THE RENDERING OF THE NTC2Degrees SENSOR MIXIN AS A RUBY HASH

found in the 1inks attribute of the JSON description of the
aggregator (see table IV), and translated into a Ruby hash
(see table V). To configure the measurement device with its
functional parameters, the sensor thread opens a WebSocket
to the remote measurement device, the server being hosted on
the Arduino. Next the measurement device starts feeding the
sensor with data, that is forwarded to the aggregator across
channell.

To stress the aggregator and obtain results comparable
with those in [18], we introduce a dummy sensor. Here the
measurement device is a thread implemented on a PC that
behaves like the Arduino measurement device: a WebSocket
server sends one piece of data every second. In one of our
experiments we activate 19 dummy sensors, so to have 20
sensors connected to the aggregator, as in paper [18].

B. Experimental results

Just using the prototype we found an answer to the follow-
ing questions:

a) is it feasible to have a web server with WebSocket capa-
bilities on a measurement device?

b) what is its timing accuracy?

c) what is its reliability?

d) is it feasible to have a multi-threaded software organization
on intermediate devices?

e) what is the impact of a single aggregator, how many of
them are allowed?

f) what is the impact of virtualization?

g) how is the performance compared with [18]?

Regarding question a), we showed that it is possible to
implement a web server with WebSocket capabilities on an
Arduino, despite its limited capabilities. We used an open
source library that implements the WebSocket server with
some limitations: according with the authors, memory restric-
tions prevent the implementation HTTPS WebSockets, and we
have noticed problems with TCP recovery after packet loss, as
discussed below.

To evaluate the timing performance and have a quantitative
answer to question b) we measured the timing for each of the
communication links.

For the link between the NTC measurement device (Ar-
duino) and the aggregator (Raspberry) we measured the round-
trip time (RTT) and the difference between send and receive
timestamps (here we call it apparent one way delay). In
a sample of 13657 RTTs (nearly four hours of continuous
operation), 13457 of them (98.5%) are between 6 and 8 msecs,
and the remaining 200 are in a long tail that reaches the 16
msecs (see figure 4). The delay introduced by the measurement

RTT (mean=6.74, adev=0.63) mmmm '
0.9+

0.8

Frequency
o o o
> 0 @

o o <
N W

o
o

o

2 4 6 8 10 12 14 16 18
RTT (msecs)

B

Fig. 4. WebSocket round-trip time measured from the sensor (resolution=1
msecs)

0.6 ' ' 2
Preparation time m—

Frequency
° ° °
w IS o

o
N

0.1r

Time (msecs)

Fig. 5. Preparation for sending a WebSocket frame: includes the preparation
of the digest in the header

device to prepare and send the packet has been also measured,
and it is significantly lower (< 3msecs) than the round-trip
time, that includes Ethernet delay: even more so, we guess, in
slower networks, like wireless ones.

When we display the apparent one way delay (in figure 6),
we observe a significant clock drift (p = 13 * 10~°), which
might be effectively compensated exploiting this communi-
cation pattern. This result quantifies the performance of the
WebSocket based communication between the two devices,
but anticipates problems with a shared time reference.

The link between our aggregator and the public ThingSpeak
server in the US can’t be evaluated with a RTT: in figure 7
we see the apparent one way delay on that link. The graph
shows that clocks are compensated, but the drift is nonetheless
evident. Given that at time 450 they are synchronized, we
argue a delay around 0.1 secs. The jitter (with a resolution
limited to that of the ThingSpeak timestamp) in figure 8 is

Clock drift (13.43 ppm)

6000 8000 10000 12000 1400
Time

[2000 4000

Fig. 6. Clock drift between aggregator and sensor

Delay (drift = 6.25 ppm) -

Frequency

0.4r

0.2r

5000 10000 15000 20000 25000 30000 3500
time (secs)

0 L
-5000 0

Fig. 7. Apparent delay between the aggregator and the ThingSpeak server

"Interarrival time (Mean Abs Dev = 0.41) mmmm

Frequency

0,
50 55 60 65 70
time (secs)

Fig. 8. lJitter of events on the ThingSpeak server (resolution 1 sec)

also representative of the precision of the whole pipe.

The reliability of the measurement device, question c), is
an issue: after a variable number of correct operation rounds,
consisting of sending the data across the WebSocket and
receiving the acknowledgment, the measurement device stops
sending data. By packet inspection we found that the Arduino
breaks the TCP connection when a packet is lost, causing
the WebSocket to hang: there is no way to compensate such
problems, since the TCP/IP stack is flashed in the Ethernet
shield firmware, and on this respect we obtained different
results with different Ethernet shields.

Question d) is motivated by the limited processing power of
the the eUtility we adopted for the task, a Raspberry Pi 3. With
one aggregator running, we observed a footprint of 0.5 percent
of memory capacity, and of the 1.5 percent on computing
capacity. We conclude that the device might indeed support
tens of aggregators similar to the simple one implemented for
the prototype.

To precisely quantify the effects of the presence of several
sensors attached to the same aggregator, we performed an
experiment with 20 sensors, and measured the round-trip time:
we recall that each aggregator contributes with two threads,
one shared channel, and a WebSocket client connection. The
round-trip frequency distribution is shown in figure 9, and
can be compared with figure 4. With respect to the case of
a single sensor we observe an average round-trip time three
times larger, and an average deviation that is ten times larger.
The difference is evident, but there is no sign of collapse.

This is an answer to question e), and shows that the
communication infrastructure (WebSockets, and Queue-based
channels) has a limited footprint and scales well.

To evaluate question f) we ported the aggregator from the

RTT (mean=18.54, adev=7.33) mmmm "

frequency

50 100 150 200 250
RTT (msecs)

Fig. 9. Round-trip frequency distribution with twenty sensors

RIT (mean=66.11, adev=62.92) mmmm

o 50 100 150 200 250
RTT (msecs)

Fig. 10. Round-trip frequency distribution with twenty sensors and Docker-
ized aggregator

Raspberry inside a Docker hosted by a PC in our lab, and
performed the experiment with 20 sensors. The results are in
10, and show a clear degradation compared to the Raspberry
implementation (figure 9). We conclude that virtualization
adds flexibility but comes at a price.

VII. DISCUSSION AND RELATED WORKS

We share with [18] the functional requirements — in our
opinion a major contribution of that paper — that we summa-
rize in table I; along the paper we pointed out and discussed
how our approach meets them. Their Application Execution
Platform is based on Virtual Blocks that can be dynamically
instantiated and may be assimilated to our Aggregators. The
communication pattern addresses a Request/Done protocol,
that is probably responsible for the poor performance. In a
chain of 5 Virtual Blocks, with 20 requests per seconds, they
report service times of the order of at least 200 msecs/stage.
This result is comparable with our 18 msecs average round-
trip time in the NTC link with 19 dummy sensors, and it is
an answer for question g). In our opinion, the reasons for
the remarkable difference are found in the adoption of the
WebSocket protocol, and in the use of dedicated hardware for
the devices.

In addition, the authors do not address the problem of aggre-
gating data from many sources, which has an impact on system
scalability. On the contrary, they concentrate on smart objects
that access a public database. In our proposal, we indicate how
real-time requirements are met moving some computation fo
the edge, which motivates a hierarchical architecture.

Another advancement of our paper with respect to [18] is
in the specification of the OCCI-IOT schema to define the

infrastructure and to guide its deployment. The topic, tightly
bound to RQ6, is explicitly omitted in the referenced paper.

Finally, our paper offers quantitative results obtained with
open source code and a prototype implementation based on
low cost COTS devices. Such factors together allow us to claim
that our results are reproducible, which is mandatory for a
scientific result.

We share many of the architectural principles, REST-fulness
included, with [12]. The authors address a specific use case
with a sensor polling mechanism, that, as we demonstrate,
degrades the response time and hinders scalability. Our results
have a wider applicability, and evaluate response time and
scalability.

In [20] the authors introduce a three layers service oriented
architecture using the front-end/back-end paradigm. They in-
troduce different protocols for each layer: one for describing
sensor devices (DDLS), one for the intermediate layer (OSGi)
in a SOA. Our paper simplifies the scenario, introducing a
single protocol, and preserves expandability and scalability.

Fundamental aspects of our work are dealt with managing
complex systems. One that is presently receiving attention
is the software description of network infrastructures, associ-
ated with the availability of network virtualization techniques
(SDN/NFV) [11]. In that domain there is a strong concern
for security issues [1]. Some of the techniques used for SDN
systems (e.g. trusted configuration [8]) are applicable in our
scenario.

Finally, we observe that there are a number of IoT infras-
tructure management tools on the market: a recent survey is in
[15], with more than 60 IoT middle-wares, 14 of which follow
a Service Oriented approach. Our intent is not to introduce
a new tool of the same kind, but to contribute to aggregate
experience around shared concepts and eventually standards.

VIII. CONCLUSION

Complex IoT infrastructures are emerging, for the manage-
ment of which appropriate tools are required to abstract from
details and concentrate on system organization. We need to
identify the requirements of such infrastructures, in order to
define a formalism to describe them, and to implement the
applications that deploy a software description as a functional
infrastructure. It is also important that tools are open, ex-
pandable, and interoperable, to allow the widest outreach, that
facilitates a fast progress.

To this end we define an approach that, starting from the re-
quirements defined in [18], introduces a schema derived from
OGF 0CCI that decomposes the infrastructure into entities and
defines their semantics and interconnection. OCCI is simple,
open, and expandable, and our schema inherits such features.
It enforces a REST approach for the interaction with engine
components that are in charge of deploying the infrastructure.
So we introduce the last tile in the design: HTTP as the
communication protocol, which aims at interoperability.

All together, these concepts and tools make a scalable solu-
tion for managing complex IoT infrastructures. To demonstrate
that they fit together and that the solution is appropriate for
the task, we have implemented a proof-of-concept prototype

of an engine component that matches our proposal: the sources
and the hardware layout are available in a public repository
to allow verification and improvement. The engine is scalable
by design, since it is made of components that can be easily
replicated and connected.

The next step on the main stream is to improve the definition
of the interface, to make it practically adoptable, and define
the software structure of the engine to give the guidelines for
future products.

But we have also noticed how the basic building blocks are
fragile: the things that populate the back-end of our system
are equipped with firmware that is a bottleneck for security
(no secure WebSockets), reliability (broken connections), and
performance (drifting clocks). It is therefore advisable to
define down-graded standards for IoT , and give the developers
the guidelines to design smarter things.

REFERENCES

[1] Min Chen, Yongfeng Qian, Shiwen Mao, Wan Tang, and Ximin Yang.
Software-defined mobile networks security. Mobile Networks and
Applications, 21(5):729-743, 2016.

[2] Augusto Ciuffoletti. Application level interface for a Cloud Monitoring
service. Computer Standards & Interfaces, 46, May 2016.

[3] Augusto Ciuffoletti. Occidiot - occi-compliant orchestrator for iot
systems. https://github.com/mastrogeppetto/OCCI4IOT, 2016.

[4] Augusto Ciuffoletti. A websocket based temperature sensor.
https://github.com/mastrogeppetto/arduino_NTCwebsocket, 2016.

[5] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455 (Proposed
Standard), December 2011.

[6] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
web architecture. ACM Trans. Internet Technol., 2(2):115-150, 2002.

[7]1 Ian Hickson. The websocket api. Technical report, W3C, 2011.

[8] L. Jacquin, A. L. Shaw, and C. Dalton. Towards trusted software-defined
networks using a hardware-based integrity measurement architecture. In
Proceedings of the 2015 1st IEEE Conference on Network Softwarization
(NetSoft), pages 1-6, April 2015.

[9] Yaser Jararweh, Mahmoud Al-Ayyoub, Ala’ Darabseh, Elhadj Benkhe-

lifa, Mladen Vouk, and Andy Rindos. Sdiot: a software defined based

internet of things framework. Journal of Ambient Intelligence and

Humanized Computing, 6(4):453-461, Aug 2015.

David Josephsen. Building a Monitoring Infrastructure with Nagios.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2007.

Y. Li and M. Chen. Software-defined network function virtualization:

A survey. IEEE Access, 3:2542-2553, 2015.

L. Mainetti, V. Mighali, and L. Patrono. A software architecture enabling

the web of things. IEEE Internet of Things Journal, 2(6):445-454, Dec

2015.

OGE. Open Cloud Computing Interface - Core. Open Grid Forum, June

2011. Available from www.ogf.org. A revised version dated 2013 is

available in the project repository.

Daryl C. et al. Plummer. Top strategic predictions for 2016 and beyond:

The future is a digital thing. Technical report, Gartner, 2015.

M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke. Middle-

ware for internet of things: A survey. IEEE Internet of Things Journal,

3(1):70-95, Feb 2016.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and

challenges. IEEE Internet of Things Journal, 3(5):637-646, Oct 2016.

[17] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers. Twenty security

considerations for cloud-supported internet of things. IEEE Internet of

Things Journal, 3(3):269-284, June 2016.

M. Stecca, C. Moiso, M. Fornasa, P. Baglietto, and M. Maresca. A

platform for smart object virtualization and composition. IEEE Internet

of Things Journal, 2(6):604—613, Dec 2015.

[19] Jeffrey Voas. Networks of “Things”. Special Publication 800-183,

National Institute of Standards and Technology, July 2016.

Y. Xu and A. Helal. Scalable cloud-sensor architecture for the Internet

of Things. IEEE Internet of Things Journal, 3(3):285-298, June 2016.

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(18]

[20]

