
THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 1

Self-Synchronization in Duty-cycled Internet of
Things (IoT) Applications

Poonam Yadav Member, IEEE, Julie A. McCann Member, IEEE, Tiago Pereira

Abstract—In recent years, the networks of low-power devices
have gained popularity. Typically these devices are wireless
and interact to form large networks such as the Machine to
Machine (M2M) networks, Internet of Things (IoT), Wearable
Computing, and Wireless Sensor Networks. The collaboration
among these devices is a key to achieving the full potential of
these networks. A major problem in this field is to guarantee
robust communication between elements while keeping the whole
network energy efficient. In this paper, we introduce an extended
and improved emergent broadcast slot (EBS) scheme, which
facilitates collaboration for robust communication and is energy
efficient. In the EBS, nodes communication unit remains in
sleeping mode and are awake just to communicate. The EBS
scheme is fully decentralized, that is, nodes coordinate their
wake-up window in partially overlapped manner within each
duty-cycle to avoid message collisions. We show the theoretical
convergence behavior of the scheme, which is confirmed through
real test-bed experimentation.

Index Terms—Internet of Things, Machine to Machine (M2M)
Networks, Media Access Control (MAC), Radio Interference, Bio-
inspired Algorithm, Firefly-based Self-synchronization, Broad-
cast messaging

I. INTRODUCTION

N etworks of low-power wireless embedded systems play
an important role in the successful adaptation of the

heterogeneous components in Internet of Things and have
gained wide attention because of their applications ranging
from smart cars and cities to precision agriculture. The end-
nodes (embedded devices) of these networks are resource
constrained. For example, M2M or Sensor nodes make use
of low-power radios such as Bluetooth [1] and Zigbee [2]
for wireless communication. These low-power radios have a
limited communication range, up to 100 meters, and data
rate of a few hundred kilo-bits per second. Both design
and maintenance of these networks are challenging [3], [4]
because of two major constraints: battery-power-usage and
lossy communication. Recent work has proposed a number of
solutions for designing energy efficient and robust networks.
One can consider a multi-hop networking to overcome the
radio’s low communication range, where a source node’s
data is delivered to the destination node through intermediate
nodes. Moreover, duty-cycling can be used to optimize battery-
power-usage and lengthen the network’s lifetime [5], [6]. In
duty-cycle networks, a node goes into a regular sleep mode to
conserve the battery power. Combining both duty-cycled nodes

P. Yadav is with Computer Laboratory, University of Cambridge and J. A.
McCann is with the Department of Computing, Imperial College London and
T. Pereira is with the Institute of Mathematics and Computer Science, Univer-
sity of Sao Paulo, Brazil, e-mail: (poonam.yadav07@alumni.imperial.ac.uk).

and Multi-hop (DCM) networking, one can obtain an energy
efficient data delivery in a large size network. The challenge
is that DCM networks bring its additional overheads mainly in
two ways. First, an efficient time-synchronization scheme must
be put in place to coordinate communication slot for the duty-
cycled nodes. Secondly, DCM character reduces a node’s over-
all network throughput which is sum of node’s self-generated
messages, forwarded messages and control messages. This
occurs because a node has to forward messages to its neighbors
along with its self-generated messages in only a short wake-
up period. Moreover, the DCM character introduces further
challenges due to the presence of unreliable wireless links
and limited bandwidth. Hence, efficient route management
mechanisms are central to DCM networks. Route management
and DCM techniques aim to maximize network lifetime but at
a cost. Route management mechanisms make use of control
messages, which constitute extra traffic. Further, the node’s
duty cycling saves energy but also incurs management over-
heads to ensure nodes synchronize sleep-awake schedules. A
number of centralized time synchronization algorithms have
been proposed to achieve time coordination for low-power
wireless networks [7]–[9]. They are unsuitable for DCM net-
works because of issues pertaining to maintenance overheads,
synchronization delays, and single points of failure [10]. The
potential application scenarios of DCM networks are repre-
sented by the industrial IoT applications such as moving robots
in a warehouse [5], [11]–[13] or autonomous unmanned arial
vehicles (drones) [14] coordinate among themselves to achieve
a common task. The wireless communication nodes on robots
work in duty-cycled and multi-hop networking mode to save
energy consumption. In this scenario, the Emergent Broadcast
Slot (EBS) scheme [15] is suitable for achieving energy-
efficiency as the scheme allows communication modules to
stay in a full duty cycle to achieve synchronization among
other nodes. Once such synchronization is attained, nodes go
to sleep mode and wake-up only for a short time to transmit
and receive information. During the wake-up time, nodes also
update their clocks, which keeps the synchronization stable
and communication robust. If the quality of synchronization
is compromised, the nodes then return the full duty cycle to
recover synchronization. This flexibility, with no overheads,
saves energy and leads to a robust scheme able to cope with
dynamic changes.

In this paper, we present an extended version of Emergent
Broadcast Slot (EBS) scheme [15] that provides an energy
efficient and robust communication. In our scheme the devices
stay in sleep mode and wake up in a synchronous manner
for communication. This synchronization is spontaneous

ar
X

iv
:1

70
7.

09
31

5v
1

 [
cs

.D
C

]
 2

8
Ju

l 2
01

7

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 2

and requires minimal overheads. Our synchronization
protocol is biologically inspired by the firefly model and
combines recent developments in the biologically inspired
synchronization algorithms. Our extensive experimental and
theoretical analysis reveals that the EBS has following two
characteristics:

– Quick Convergence and Robustness: EBS converges
exponentially fast in a fixed network structure. Moreover,
in a mobile and ad-hoc network where nodes leave or
join or move within the network, the scheme is robust
and readapt at no significant performance cost.

– Energy and Transmission Efficiency: While keeping
nodes awake only 5% of their duty cycle the scheme
provides 95% effective message transmission. This saves
energy and avoids message collision.

The paper is organized as follows: In Section II, we present
related work on decentralized time synchronization schemes
and firefly-based synchronization approaches. In Section III,
we present an overview of EBS. In Section IV, we present
the EBS synchronization state dynamics. EBS configuration
parameters and their effects are analyzed in Section V. We
present two implementations of EBS in Section VI and discuss
their suitability and convergence in the presence of random
delays. We briefly discuss our test-bed experimental setup in
Section VII, and the resulting comparative performance results
are presented in Section VII. We then conclude the summary
along with future work in Section VIII.

II. RELATED WORK: SYNCHRONIZATION SCHEMES

In general, low-power nodes consist of relatively inexpen-
sive hardware components, e.g. clocks that typically drift.
Therefore, network-wide synchronization is required, thereby
increasing message overheads as well as temporal and spatial
instability in the network [16], [17]. Using a single central
device to enforcing synchronization by dictating the time is
not ideal as it imposes extra messages overload [8], [18].
Moreover, time delay for the synchronization message keeps
incrementing with every hop. An additional challenge is the
presence of lossy wireless links means that the synchronization
packets may be dropped and would have to be sent multiple
times.

Both distributed coordination and local synchronization
are used to increase stability and facilitate broadcast mes-
sage transfer [19]–[21]. Examples of such schemes include
gradient-based [22] and bio-inspired algorithms [23]. Typically
bio-inspired algorithms have higher overheads than gradient-
based algorithms [24]–[26]. However, Gradient-based schemes
can be ridged and unable to cope with the dynamism such as
node failures [27]. On the other hand, the emergent nature of
firefly-based synchronization can cope with failure. Addition-
ally, when a failure happens in another part of the network
firefly-based synchronization does not affect the local cluster.

A. Background on Firefly Based Synchronization

The pulse-coupled oscillators (PCO) model is used to cap-
ture the synchronization behavior observed in fireflies flashing
in unison [28]. In this model, each firefly is described as
a periodic oscillator running at its natural frequency – the
frequency defines the number of times the firefly flashes in a
unit time. And, the period defines the time interval between
two consecutive flashes.

The state of a periodic oscillator can be described by its
phase φ(t) evolving over time t from 0 to 1. The firefly fires
or flashes when its phase φ(t) = 1 and after that resets again
to φ(t) = 0. To achieve synchronization, the oscillators in the
system have to interact by sending and receiving pulse signals.
When a PCO’s phase φ(t) = 1, it emits the pulse signal (fire
event) to interact with the neighbour PCOs. Upon reception of
the pulse signal, each neighbour PCO advances its phase φ(t)
to a new phase φ(t+) by taking a phase jump ∆φ(t), which
indicates the next time it will fire and is calculated by using a
phase advancement function, see Figure 1 for an illustration.
The different firefly based synchronization algorithms make
use of different phase advancement functions designed in such
a way that if all the oscillators follow a given function, they
all will synchronize eventually.

t

φ
φ(t+)

0

1

Fig. 1: Phase Dynamics of a Pulse-Coupled Oscillator (PCO).
We illustrate its behavior by showing the relationship between
its phase versus time. The PCO phase increases linear with
time, however, when the neighbor node fires (illustrated by
the dashed line) its phase is updated to a new phase value
φ(t+). When the phase reaches 1 it is reset to 0.

B. Related Work Based on Firefly Based Synchronization

Because in the PCO synchronization is an emergent prop-
erty, this model has attracted much attention and has been
adapted to wireless systems. For instance, variations of the
model to include synchronization frustration [29] and in-
hibitory pulse coupling [30] have been introduced. An adaptive
Ermentrout Model based synchronization scheme is proposed
in which frequency of the flashing is adjusted instead of phase
when a node receives a flash from another node [31]. Other rel-
evant work includes the Reach-back Firefly Algorithm (RFA)
that accounts for communication latencies by allowing nodes
to use neighbours’ firing information from the past to adjust
the future firing phase [23]. However, due to propagation
and processing delays in the notification of the firing-event,

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 3

nodes keep firing which leads to chasing conditions. To avoid
this, Degesys et al. [32] introduced the concept of refractory
periods. The refractory periods are time periods that start just
after node fires, and during this time, the firing node ignores
fire messages from other nodes to avoid the aforementioned
chasing behavior. If the network size and connectivity are
moderate the refractory period has negligible influence on the
probability of the synchronization [33] [34].

Another extension of the previous protocols is the extended
Reachback Firefly Algorithm (e-RFA) for wireless sensor
networks [35]. The synchronization algorithm uses both the
Refractory Period and the Reachback concepts and rate cal-
ibration scheme for longer re-synchronization intervals. The
algorithm is evaluated using simulations and test-bed in a
mesh network topology. However, algorithm performance is
presented for random multi-hop network and as well as in the
presence of non-deterministic propagation delays. Implement-
ing the RFA in conjunction with a Late Sensitivity Window, in
which nodes do not advance their phase, not only improve the
percentage of synchronized nodes, but also reduces the time
to synchronize and the number of broadcast messages [36].

To reduce the number of broadcast messages and the
time to synchronize an Meshed Emergent Firefly Synchro-
nization (MEMFIS) has been proposed [10]. This scheme
relies on the detection of a synchronization indicator
(text/symbol) common to all nodes. This indicator is embedded
into each packet with payload data. As MEMFIS embeds
synchronization indicator in every payload message, it does
not require separate synchronization messages but only uses
payload messages as synchronization messages, which is an
advantage. But embedding the synchronization indicator in
every payload message also becomes a limitation when the
number of network payload messages are significantly high
because synchronization information consumes a significant
portion of network bandwidth, lowering throughput.

Pagliari et al. [37] implemented a scheme where an ad-
ditional radio stack that is used for only synchronization
messages, whereas regular CSMA radio stack for the data
load. This scheme achieves fast synchronization as compared
to the CSMA based schemes. However, this scheme is complex
as it implements a separation of a duty-cycle into two parts
for each radio stack at hardware level, which introduces more
synchronization messages collisions.

Yadav et al. [38], [39] presented a receiver initiated medium
access control protocol, which uses bio-inspired scheme (the
initial version of EBS scheme [15]) for route discovery mes-
sages. The paper demonstrated the extended scope of the
EBS scheme in the networking stack of the wireless sensor
networks and low-power wireless networks.

In summary, bio-inspired and decentralized synchronization
schemes have shown great promise. However, to be used in
real-world situations, they have to be able to work with duty-
cycled systems. All current approaches ignore the fact that re-
synchronization is required after a sleep period, and they also
ignore the effects of asymmetric wireless links in dense net-
works; i.e., they are intolerant to the missing synchronization
messages. Further, none of the aforementioned related schemes
takes energy efficiency into account for DCM networks.

Initialization
State

Synchronization
State

Steady Duty-
cycled State

S > S Th

S < S ThSet Parameters

Phase Emergence

Broadcast
Communication

Fig. 2: A node is awake during the Initialization and Synch-
ronization states, and in the Duty-cycled state, it wakes-up
during its SETW.

Our previous contribution [38] presented an initial version
of the EBS scheme showing the behavior of the scheme using
the selective values of the configuration parameters. However,
it was unclear why some variable settings led to unstable
behavior [38]. In this paper we evaluate the EBS scheme
using extensive simulations and theory, thereby deriving the
relationship among different parameters and validating the
EBS performance on a real testbed.

III. EMERGENT BROADCAST SLOT (EBS) SCHEME

In a typical duty-cycled multi-hop network, each node
exchanges broadcast messages with its one hop neighborhood
nodes (i.e., the nodes in its direct communication range)
periodically [40]–[42]. To minimize energy consumption, each
node should remain awake for a small wake-up window within
every periodic time interval T . Our EBS scheme provides an
algorithm to achieve this small duty cycle condition.

In the EBS Scheme, each node in the network will be in
one of three states: the initialization state, synchronization
state, and the steady duty-cycled state. Roughly speaking,
in the initialization state the nodes are initialized and then
transition to a synchronization where they will synchronize
their wake-up windows; once this is achieved the nodes can
go to sleep mode and only awake during the window to
exchange messages. This last state is the steady duty-cycle.
One important aspect of the scheme is that if the nodes feel
that synchronization is compromised either by node failure
or by broken connection, then they transition back to the
synchronization state. In Figure 2 we present a schematic
representation of the stages.

A. Terms and Definitions

Since each node is periodic (a clock) we can describe its
state in terms of a phase variable φ ∈ [0, 1]. Recall that the
node broadcast its message when φ equals 1. We define

φ′(t) = 1− φ(t)

as the remaining phase left, after which a node is scheduled
to broadcast its next control message. See Figure 3 for an
illustration of the phase dynamics.

The EBS scheme makes use of the following:

Synchronization Error Tolerance Window (SETW) Given
a time window T and a synchronization error tolerance
ε > 0, we define SETW = [−εT, εT], see Figure 3

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 4

SETW

φB(t) = 1

SETW

φA(tB) φA(t+B)

Fig. 3: Phase dynamics in the synchronization state when the
node is awake for the whole period. This figure shows the
phases φ and φ′ of the node A when it receives a broadcast
message from B at time tB .

for an illustration in terms of the phases. During the
duty-cycle phase the nodes will only awake during their
SETW.

Synchronicity (S) Let Ni be the set of one-hop neighbors of
the node si. Moreover, let Hi be the one-hop neighbors
that the node si can hear in its SETW. We define the
synchronicity Si of node si as:

Si =
|Hi|
|Ni|

× 100

where |A| denotes the number of elements of the set A.

Synchronization Threshold (STh) A node’s STh provides
the minimum percentage of nodes from its neighborhood
that it must hear while it is awake; i.e. during its SETW.
Therefore, STh will control the synchronization level we
wish to enforce.

B. Initialization State
In the initialization state, all nodes are awake for the whole

period, i.e., 100% duty cycled. In this state the nodes start the
random timer and initialize parameters such as the broadcast
time interval T . Next, the nodes calculate their neighborhood
size. This state lasts only a few cycles and then transitions to
the synchronization state.

C. Synchronization State
Each node coordinate its SETW with its neighbors’ using a

PCO model. The node remains awake until their slots converge
and then they sleep only to awake during the SETW. A node
declares itself synchronized1 if its Synchronicity, S is above
or equals to STh. Once a node declares itself as synchronized,
it transitions to the steady duty-cycled state.

To achieve the required S we use a PCO model with a
particular phase advancement function

φ(t+) =

{
1− g(φ(t)) if ε < φ(t) < (1− ε)

φ(t) Otherwise, (1)

with ε ≤ (0.5), and φ(t+) denotes the new phase value and
φ(t) is the previous phase value. g is the phase advancement
function given by:

g(φ(t)) = σ(1− φ(t)) with σ ∈ (0, 1).

1For scalability the synchronization decision is local to every node.

Suppose, node A receives a broadcast message from node
B at time tB as shown in Figure 3. Then node A checks
the time it has passed since its previous broadcast message
in the current period, represented by φA(tB)T . According to
the Equation (1), if (ε < φA(tB) < (1 − ε)), it shortens its
remaining phase φ′A(tB) to g(φA(tB)).

In ideal conditions, to achieve synchronization fast, the
node transmits its broadcast message immediately by setting
φA(t+B) = 1 and g(φA(tB)) = 0. After transmission it
resets the next broadcast message transmission time to T and
φA(tB = 0). However, recall that all nodes within the one-
hop neighborhood can listen to the same broadcast message
and if they were to broadcast their messages on receipt of this
broadcast message simultaneously, then there will be many
messages in the local area; leading to packet collisions2. To
avoid such collisions, nodes delay their broadcast message
transmission by (φ′(t+)) which is equal to g(φ(t)) without
disturbing the synchronization.

The appropriate values of ε and σ depend on a number
of factors such as the number of nodes in a node’s 1-hop
and 2-hop neighborhoods, the value of T , as well as message
propagation delays (discussed further in Section V). The
details of how synchronization is achieved in this state are
discussed in the next Section IV.

D. Steady Duty-cycled State

Once synchronized, the nodes switch to the duty-cycle phase
and wake-up only during their respective SETW to exchange
messages. In the duty-cycle state, all nodes also constantly
update their S values. The nodes whose S values fall below the
STh, switch back to the Synchronization State to recalculate
the STh for a single T period by returning to 100% duty-
cycling and then switching to the Synchronization State. The
various reasons for a drop in a node’s S value can be due to
clock drift, change in network density, etc. The two common
cases are:

New node joins the network: It is the new node’s re-
sponsibility to synchronize itself with the already synchronized
network. First, it follows two first states gathering information
regarding the number of neighbors it can hear, and then
synchronizes its SETW with its neighbors. To this end, the
node calculates S and it switches to the Steady Duty-cycled
State if its S ≥ STh. If the new joining node is mobile and
already in the Steady Duty-cycled State, then it switches to the
Synchronization State only if S ≤ STh. The neighbor nodes,
who are now synchronized with this node, find their neighbors
count within SETW is incremented by 1. Until synchronicity
S of the neighbor nodes satisfy the condition 100 ≥ S ≥ STh,
they continue without any change, but if S > 100, then nodes
update their neighbors count and STh.

A node leaves the network: When a synchronized node
leaves the network, it decreases the value of S of its neigh-
boring nodes as well as total number of neighbors. If this

2Original CSMA back-off mechanism introduces delays greater than the
SETW which disturbs synchronization that as a result increases message
losses. Therefore, in our implementation we keep CSMA back-off and re-
transmissions to the minimum value to keep synchronization less affected,
which as a result makes CSMA more effective.

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 5

change drops their value in such way that S < STh, then
nodes update their number of neighbors and S by switching
back to Synchronization State otherwise they continue without
any change, however, new neighbor count will be updated only
when nodes go to the Synchronization State.

This method of switching back has the advantage that,
unlike gradient based schemes [22], one node’s disturbance
does not perturb the whole network; therefore, EBS scheme
is both agile and tolerant of change. The EBS requires the
node to wake-up only once within the period T rather than
multiple times. Recall that multiple wake-up periods within a
T , can cause higher-energy consumption in terms of radio state
transitions as the transceiver is required to power up, transmit
and receive messages for each period. All current distributed
or centralized slot-based time synchronization schemes used
in multi-hop networks expect to have multiple wake-up peri-
ods [43], [44].

IV. EBS SYNCHRONIZATION STATE DYNAMICS

We model the EBS System as a complex dynamical network
represented by a graph G(D,L), that is composed of n nodes
represented by the set D = (s1, s2, . . . , sn) where L is a set of
all transmission links between nodes in D. The dynamics of
each node si in the network is characterized by the phase
φi. Moreover, the one-hop neighbourhood of a node si is
represented by the set Ni.

We start by examining the EBS dynamics in the absence
of transmission delays. EBS is required to achieve synchro-
nization to a given precision to avoid the message collisions
that would be present3. Our goal is to study the ability of
the EBS to quickly synchronize so that the number of nodes
in 100% duty-cycle states are minimized. To this end, we
make use of two metrics: the average phase difference and
the average phase advancement. The average phase difference
is given by:

∆φ =
1

n

∑
si∈D

1

|Ni|
∑
sj∈Ni

|φi − φj |. (2)

Here, Ni represents the neighbours of node si and the total
number of neighbours is |Ni|.
The average phase advancement at time t in time-period T is
calculated as follows:

∆+ =
1

n

∑
si∈D

|φi(t+)− φi(t)|. (3)

The ∆+ provides the average phase displacement a node
must perform. So, decreasing ∆+ leads to a better performance
of the scheme and while achieving the required precision.

A. Synchronization Error-Tolerance

We wish to derive a stability condition for pairwise synchro-
nization [45], [46]. Consider a given node si and let sj belong
to Ni that one-hop neighbourhood of si. Next, we assume

3There is a trade off between the SETW size and the probability of network
collisions. A smaller SETW has energy saving advantages but leaves a smaller
time interval within which messages can be communicated thus increasing
collisions.

Fig. 4: Simulation Topology

1,000 1,020

Second Cycle

1 20
0

0.1

0.2

0.3

First Cycle

∆
φ

2,000 2,020

Third Cycle

σ = 0.01
σ = 0.005

(a)

0 500 1,000 1,500 2,000

0

2

4

·10−2

Time Steps (1000 Steps = 1 Cycle)

∆
+

σ = 0.005

0 500 1,000 1,500 2,000
0

0.1

0.2

0.3

Time Steps (1000 Steps = 1 Cycle)

∆
+

σ = 0.01

(b)

Fig. 5: Convergence behavior of EBS with the different values
of σ when δ = 0 and ε = 0.01. Fig (a) shows that the
average phase-difference converges to zero for different values
of σ after few cycles. Fig (b) shows that average phase
advancement converges to zero when σ = 0.005 and stays
to a constant value when σ = 0.01, hence represents non-
convergence. It is clear from the figures that EBS achieves
both required precision and stability when values of σ and ε
satisfy Equation (4).

that the two nodes are synchronized, that is, they fire within
the SETW . The synchronization condition imposes that when
the node si fires at time t the new value φj(t+) must be in
SETW . This translates to :

|φi(t)− φj(t+)| < ε,

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 6

using Equation (1) we obtain the fact that when si fires we
have φi(t) = 1,

|σ(1− φj)| < ε,

notice that |1−φ| ≤ 1− ε, hence the stability condition reads
as

σ <
ε

1− ε
. (4)

We analyzed the convergence behavior of EBS through
simulations using different network topologies. However, due
to space limit we present convergence behavior for a regular
network with four nearest neighbours as shown in Figure 4,
because it provides a good example of complex scenario where
each node has four connections with triangle cliques.

We first analyzed the behavior of EBS for different values
of ε and σ in the absence of delay. In Figure 5 (a), we found
that for different values of σ, EBS reaches the required average
phase difference (refer Equation (2)) in two cycles. To better
understand how well the duty cycle is being achieved we also
analyzed the average phase advancement (refer Equation (3))
of the nodes over time. If the value of this metric is greater
than 0, then the nodes phase-jump using the EBS phase
advancement function. In Figure 5 (b), we see that the average
phase advancement value ∆+ in every time period T reduces
to 0 after a few time steps when our stability criterion shown
in Equation (4) is met.

B. Convergence in Presence of Deterministic Delays

Let the phase δ represents a phase change during message
propagation between any two directly connected nodes. Notice
that δ represents a deterministic delay. In this case, to obtain
synchronization between the SETW’s we require:

|φi(t)− φj(t+)| < ε− 2δ. (5)

When all the delays are deterministic and satisfy the above
Equation (5), then the system converges within the given
precision bounds as shown in Figure 6. In Figure 6 (a) we
present the convergence behavior of EBS for various values
of δ when ε = 0.1 and σ = 0.01. We observe that, as the value
of δ increases, the average phase difference ∆φ also increases
and meets the boundary condition shown in Equation (5). The
Figures 6 (b) shows the value of average phase advancement
that converges to zero when δ = 0.0 and 0.01, which
represents EBS convergence whereas represents EBS non-
convergence behavior when the average phase advancement
value keeps fluctuating between 0 and 0.04 at δ = 0.1 and
0.05.

Our numerical experiments also suggest that ε > 2δ is
required to achieve stability. Moreover, if the stability criterion
is satisfied, higher values of σ leads an improvement of the
precision of synchronization. Hence, we study and derive the
relationship between σ, δ and ε in the next Section V.

V. EBS CONFIGURATION PARAMETERS

The performance of the EBS scheme depends on the
values of its three configuration parameters: ε, σ and STh.
These parameter values reflect the network density and the

0 200 400 600
0

0.1

0.2

0.3

0.4

Time Steps (1000 Steps = 1 Cycle)

∆
φ

δ = 0.1
δ = 0.05
δ = 0.01
δ = 0

(a)

0 500 1,000 1,500 2,000

0

2

4

·10−2

Time Steps (1000 Steps = 1 Cycle)

∆
+

δ = 0.1

0 500 1,000 1,500 2,000

0

2

4

·10−2

∆
+

δ = 0.05

0 500 1,000 1,500 2,000

0

2

4

·10−2

Time Steps (1000 Steps = 1 Cycle)

∆
+

δ = 0.01

0 500 1,000 1,500 2,000

0

2

4

·10−2

Time Steps (1000 Steps = 1 Cycle)

∆
+

δ = 0.0

(b)

Fig. 6: Convergence behavior of EBS with different
values of δ when σ = 0.01 when ε = 0.1. Fig (a) shows
that value of δ increases, the average phase difference
∆φ also increases and meets the boundary condition
shown in Equation (5). Fig (b) shows that average phase
advancement converges to zero when δ = 0.0 and 0.01
(represents EBS convergence) and stays to a fluctuating
value when δ = 0.1 and 0.05, hence represents EBS
non-convergence.

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 7

uniformity of the nodes in terms of degree of connectivity
in the network. For a given average degree connectivity per
node in the network, we analyze ε, σ, and STh, respectively.

Effects of ε – The ε parameter plays an important role
in the EBS scheme because it is directly proportional to the
duty-cycle, that is, the awake period of a node corresponding
to its SETW. In a DCM network, we wish to keep energy
consumption of a node to minimum by maintaining a small
value of ε and SETW.

However, regarding the convergence of the EBS scheme, the
size of the SETW plays an inverse role, that is, the larger the ε
and SETW, the quicker the EBS scheme converges. Therefore,
a trade-off is required to find the minimum size of SETW
that can guarantee fast convergence without the problem of
overshooting as shown in Figure 7.

The overshooting situation occurs when node A receives a
broadcast message from node B after a time-delay (νB→A),
see Figure 7. This overshooting situation leads to a chasing
condition, both nodes will keep on updating their phases.
To avoid this overshooting condition, we can limit the lower
bound of the εT to:

εT ≥ (νA→B) + g(φ(tB))T + (νB→A). (6)

If νA→B ≈ νB→A = ν, Equation (6) can be rewritten as:
ε ≥ g(φ(tB))T + 2ν)/T . Notice that in this construction ε ≤
0.5. Therefore, we obtain:

0.5 ≥ ε ≥ g(φ(tB)) +
2ν

T
. (7)

So, even if the nodes are synchronized g(φ(tB)) = 0 (when we
consider the immediate transmission of broadcast messages),
the lower value of ε is bounded by 2ν

T ≈ 2δ. The optimal value
of ε is chosen by considering the duty-cycle requirements and
density of the network.

For example, we let β be the maximum time a node needs
to receive and process a broadcast message. Assuming that
each neighbourhood node sends a single message in T . So,
the maximum time a node is required to be awake to receive
and process messages from its neighbourhood of size |N | is
β|N |; thus the size of SETW should be |SETW | = β|N |+4ν,
which yields 2εT ≥ β|N | + 4ν. So, the optimal value of ε
reads as:

εopt =
β|N |+ 4ν

2T
. (8)

Effects of phase advancement function – Our coupling
function is linear and σ defines the rate of convergence
in the initialization phase. Recall that a large value of σ
slows down the convergence of the EBS scheme. For faster
synchronization, we must choose smaller values of σ. Notice
that we do not use σ = 0, because this condition leads to
message collisions in the network4. The maximum value of the
coupling σ can be obtained by performing a similar analysis

4A node immediately transmits its broadcast message, and if all the nodes
in the local neighbourhood do the same, it leads to message collisions.

as in Equation (4). In the presence of transmission delays we
obtain:

σmax ≤
ε− 2ν

T

(1− ε)
. (9)

VI. EBS TEST-BED IMPLEMENTATION DETAILS

To observe real-world behaviors, we implemented the EBS
scheme on a test-bed. We used the UPMA [47] framework in
TinyOS 2.x for the CC2420 radio, compliant to IEEE 802.15.4
standards, with a data rate of 250 kbps. The UPMA framework
is built on the CSMA MAC, and we chose to couple the
EBS components to the MAC layer instead of the application
layer to avoid buffer delays caused by the intermediate stack
queues and buffers. We implemented two versions of the
EBS scheme to understand its behavior. The two implemen-
tations are: (a) EBS without Reach-back5 to enable stand-
alone synchronization support in the absence of upper-layer
broadcast messages, and (b) EBS with partial Reach-back in
which the broadcast messages are those generated from an
application or routing layer, and are piggybacked with a sync-
byte representing the EBS broadcast messages.

A

B
SETW

SETW

g(�A(tB))T

⌫
A
!

B

⌫ B
!

A

tA

tB

"T0

t

t

Fig. 7: Overshooting condition occurs when node B receives
broadcast message from node A at its time tA, which is out
of its SETW.

A. EBS without Reach-back

In the latter implementation of the EBS scheme, when
a node receives the broadcast-message from other nodes, it
advances its phase according to the EBS phase advancement
function Equation (1). The node broadcast the messages each
time when φ(t) = 1. This means, if there is a message pending
to be transmitted at φ(t) = 1, EBS piggybacks this message
with its sync-byte and transmits it as the EBS broadcast-
message. If there are no pending messages at the time, then
the EBS layer creates a new synchronization message and
broadcast it.

The advantage of this scheme is that nodes converge quickly
in the synchronization state by exchanging messages without

5Recall reach-back allows a node to keep a record of the phase advancement
of the current period and advances its phase immediately at the start of the
next time period instead of firing immediately at current period.

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 8

the need for reach-back. However, this scheme has a high
cost when overshooting occurs in synchronization state. The
overshooting occurs when ε < 2δ or ε < (νA→B +νB→A), as
previously derived in Section IV-B. Here, the nodes chase each
other’s broadcast messages without achieving stable synchro-
nization. As a result, the whole network becomes congested
with EBS broadcast messages, the network may never go
to synchronization state irrespective of STh. If overshooting
occurs temporarily in steady duty-cycled state, for lower STh,
the network flips back to the synchronization state.

B. EBS with Partial Reach-back

The EBS scheme is implemented at the MAC layer; the
EBS layer receives a broadcast message from the applica-
tion or routing layer and transmits it after piggy-backing
as EBS broadcast message. To establish coordinated SETWs
during the synchronization state, a node advances its phase
but transmits broadcast messages only when it has a new
schedule broadcast message. The advantage of this scheme
is that when overshooting occurs this scheme avoids the
network flooding with broadcast messages, unlike the above
implementation. However, this leads to nodes state flapping
between synchronization and the duty-cycled states, shown
experimentally in Figure 8. In Figure 8, T = 10 s and we

1 · 10−2 5 · 10−2 0.1
0
5

10
15
20
25
30
35

ε

St
at

e
Fl

ap
pi

ng

STh = 80 %

Fig. 8: Individual behavior of a node, which has average
connectivity 20 in Motelab Test-bed, where all nodes running
EBS with reach-back.

fixed ε = 0.01 that is smaller than the εopt ≈ 0.04 derived
from Equation (8), and a node flaps between synchronized
and non-synchronized modes. That is, when a node is in
its synchronization state, it switches to a duty-cycle state,
however, in the non-synchronized mode, it returns to the 100%
duty-cycled mode again. Further, when ε = 0.05, then the
flapping reduces significantly as predicted by our theory.

C. Neighbourhood Size

For each node to understand its degree of synchronicity,
the EBS implementation requires information regarding the
neighbourhood size to calculate a node’s STh. One approach is
to get the neighbourhood size at the start by keeping all nodes
awake for the initial few periods of T and identifying its neigh-
bours via overhearing. To make the EBS scheme more agile,
it is better to update neighbourhood size periodically during
the EBS duty-cycled state. Nevertheless, in the implementation
presented in this paper, EBS does not maintain its own neigh-
bourhood table but uses the neighbourhood size, calculated

from the number of broadcast messages overheard in a single
broadcast message interval T while it was in the initialization
state. Alternatively, link estimation mechanisms found in many
routing protocols require neighbourhood information so this
can be freely used to make a precise neighbourhood size
estimation.

VII. EXPERIMENTAL SETUP AND RESULTS

We perform our experiments on two different size test-beds:
Motelab (87 Telosb nodes) [48] and a smaller 10 nodes MicaZ
testbed [2]. We begin our experiments by fixing the value of
the broadcast time interval T and varying the synchronization
threshold STh, then we measure the duty-cycle of the network
after every second interval. We present the results of the
experiments executed on Motelab, with a broadcast interval
time T set at 10, 20, and 30 seconds (representing typical
routing control message intervals). Recall the SETW width
varies according to the Equation (8).

For each run (either varying T or STh), we measured
the duty-cycle of each node and their wake-up times,
as a percentage. In the resulting graphs, we present the
average duty-cycle and average throughput of the network by
varying the STh from 95 to 20. The average duty cycle is
calculated by keeping a internal timer for each node, which
keeps record of wake-up slots during the run time of the
experiment. We then use average duty cycle of each node to
calculate the network-wide average duty cycle. For broadcast
communication, we use the following Equation to calculate
the throughput percentage in one time period:

Throughput =
Sum of all broadcast messages received

network average degree× n
×100

The average network-wise degree of connectivity is calculated
by sum of all the messages received divided by total number
of nodes in the 100% duty-cycled mode. The EBS scheme
exchanges broadcast messages in SETW, for unicast messages,
it can easily be integrated with unicast message handling MAC
layer [38].
In the next Section, we present EBS performance results
showing both convergence parameter effects and performance
and compare with the nearest state-of-the-art slot management
protocol.

A. Calculation of Deterministic Propagation Delay

From Equation (8), it is clear that the value of εopt is
proportional to propagation and processing delays β. The value
of β is non-deterministic in real environments, however the
minimum value (C0 ≤ β) as a constant parameter that is
required in EBS scheme to calculate size of SETW to ensure
convergence in the synchronization state. To get approximate
value of C0, we first performed our initial experiments to
observe the behavior of the EBS with a prefixed ε varying
from 0.01 to 0.1. We found that nodes flapping with a low
value of ε are more prominent compared to large values of ε,
shown in Figure 8.

We ran initial experiments to derive the value of C0, we
found it to be C0 ≥ 50 ms for the network to converge when

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 9

the average connectivity of this network was 2−3 nodes. How-
ever, in a non-uniform network, where some nodes have high
degree of connectivity, the EBS calculates the adaptive value
Ci of node i that is necessary for achieving synchronization
using constant value C0 and the node’s neighbourhood density
and other factors that can be further explored. However,
for the experiments in this paper, we choose to implement
EBS (without reach-back implementation) with adaptive Ci

given as follows:

Ci = (C0 × |Ni| × STh/100) ms

= (50× |Ni| × STh/100) ms
(10)

Note that the initial experiments shown in Figure 8, are
performed taking into account σmax ≤ ε

(1−ε) and by assuming
2ν/T = 0 in Equation (9).

B. Effects of Synchronization Threshold STh
We study the effect of the Synchronization Threshold on

the nodes’ convergence in the synchronization state. For these
experiments, we set T = 30 s and vary the synchronization
threshold STh from 20 to 95, the results are shown in Figure 9.

Figure 9 (a) shows the Motelab [48] topology on which we
ran our experiments. Figure 9 (b) is composed of two figures,
showing the comparative duty-cycle (%) and throughputs (%)
achieved.

The figures present an average duty-cycle and throughput
with C = C0 = 50 ms for all nodes, node A’s average duty
cycle and throughput with C = C0 = 50 ms, and average
duty-cycle and throughput with adaptive C which is calculated
by each node using Equation (10) of all nodes in the given
topology. Due to high degree of connectivity, Node A goes
out of synchronization for high value of STh ≥ 80 when
C = C0 = 50 ms, which results in decreased throughput as
shown in Figure 9 (b). To avoid these situations, adaptive C is
proposed. We found that adaptive C follows a regular pattern
regarding both duty-cycle and throughput results. Furthermore,
adaptive C improves the throughput significantly by 40% at
the small cost to the duty-cycle (2− 3%).

We can also see that the duty-cycle of the node is nearly
100% when STh = 95 as compared to other lower values of
STh. This clearly shows that to achieve synchronicity with a
high threshold the node must remain awake slightly longer as
compared to the low threshold in the synchronization state.
In addition, note that, in this set of experiments, we perform
neighbourhood size calculations only in the first T period and
we observe that due to lossy wireless links, this value might
not be the actual neighbourhood size. For this reason, we
selected the average number of neighbours by keeping nodes
awake 100% for the first 5T in the following experiments.

C. Effects of the Broadcast Message Interval, T

Figure 10 presents the effects of T on the duty-cycle (%)
and throughput (%). We use the three values of T = 10 s, 20 s,
30 s, and varied STh from 20 to 95. We found that the duty-
cycle increases nearly 0.1% with every 10 increase in STh
till STh = 60 for all values of T . However, for STh > 60, its
incremental effect on the duty-cycle is slightly higher (1−3%)

A
A	 A	

(a)

20 30 40 50 60 70 80 90
0

2

4

6

8

10

D
ut

y-
C

yc
le

(%
)

Mean, C = C0 = 50 ms
Node A, C = C0 = 50 ms
Mean, C > 50 ms

20 30 40 50 60 70 80 90
40

50

60

70

80

90

100

STh

T
hr

ou
gh

pu
t

(%
)

(b)

Fig. 9: (a) The Motelab test-bed topology where nodes are
shown as small circles with radio coverage shown by large
circles; (b) we study the behavior of individual node A
(radio coverage of node A shown by the shaded circle) in
the given topology, where all nodes run EBS with different
synchronization thresholds (STh); we also analyze the average
duty-cycle and average throughput percentages of all nodes
when C = C0 = 50 ms and when C is adaptive according to
Equation (10).

for low values of T , as compared to high values of T . On
the other hand, throughput is not much affected by T ; higher
values of T perform better for low STh and the lower values
of T perform better for high STh. However, there is a gradual
increase in throughput from 20−30% to 80−90% when STh
varies from 20 to 95, respectively.

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 10

D. Comparative Performance

We compare our result with Refractory Periods [32] because
it is the closest of the bio-inspired synchronization approaches
to ours. To make it suitable for duty-cycling, we use the
TRef = T/2, as suggested in paper [10] for achieving quick
loose synchronicity, we call this the Modified Refractory
Period (MRF).

0 20 40 60 80 100
0

5

10

D
ut

y-
C

yc
le

(%
)

T = 10 s
T = 20 s
T = 30 s

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

STh

T
hr

ou
gh

pu
t

(%
)

Fig. 10: EBS duty-cycle and throughput with adaptive C.

From Figure 10, it is clear that for our current network
topology, setting STh = 80 achieves more than 85% through-
put while keeping duty-cycle below 5%, which means saving
nearly 80% energy by avoiding idle listening. We show that
EBS achieves almost similar throughput, but with a large
improvement in duty-cycling as shown in Figure 11. To
compare our results with MRF, we choose STh = 80.

In Figure 11, we use adaptive C that is calculated by putting
C0 = 50 ms in Equation (10), however, if we use value of
adaptive C calculated when C0 = 100 ms, we can achieve
the same or higher throughput compared to MRF. Therefore,
in this experiment we present the throughput achieved at
the minimum duty-cycle for adaptive C (calculated using C0

= 50 ms), which EBS can achieve while accommodating
propagation and processing delays that are caused by the lower
layers (e.g., the CSMA MAC layer).

VIII. SUMMARY

In this paper, we presented EBS, a fully decentralized
scheme for wireless embedded and IoT systems that ensures
network-wide message broadcast in duty-cycled networks
without requiring costly global synchronization. We have
identified the challenges of providing such a mechanism,
formalized the constraints therein and produced algorithms
that are lightweight and robust to changing network topologies

5 10 15 20 25 30
0

20

40

60

80

100

D
ut

y-
C

yc
le

(%
) EBS

MRF

5 10 15 20 25 30
5

25

45

65

85

T (seconds)

T
hr

ou
gh

pu
t

(%
)

Fig. 11: Comparative duty-cycle and throughput of EBS (with
adaptive C and STh = 80) and MRF.

and failures. EBS has been designed to provide support for
broadcast messaging that uses local synchronization within a
duty-cycled network. Further, EBS has been fully implemented
on a test-bed to show the affects of convergence parameters
and comparative performance with the nearest state-of-the-art
protocol (MRF). Here, we have showed that EBS achieves
more than 80% throughput while keeping the duty-cycle down
to less than 5% (for broadcast message intervals, T > 10 s).
Therefore, the results confirmed that EBS can match the
throughput of comparative schemes that are continuously
awake (100% duty-cycle) but with a considerable reduction
in the network-wide energy consumption.

ACKNOWLEDGMENT

This work was supported by UK-India Education and Re-
search Initiative (UKIERI) award and United Kingdom NERC
research grant (NE/I00694X/1). Tiago Periera was partially
supported by FAPESP CeMEAI grant 2013/07375-0, Russian
Science Foundation grant 14-41-00044 at the Lobayevsky
University of Nizhny Novgorod and by the European Research
Council - AdG grant number 339523 RGDD.

REFERENCES

[1] Btnode: Datasheet. [Accessed on 17th August 2008]. [Online].
Available: http://www.btnode.ethz.ch/pub/uploads/Main/

[2] Micaz: Datasheet. [Accessed on 17th August 2008]. [Online]. Available:
http://www.xbow.com/Products/Product

[3] Sunspot: Datasheet. [Accessed on 17th August 2008].
[Online]. Available: http://www.sunspotworld.com/docs/Green/
SunSPOT-TheoryOfOperation.pdf

[4] P. Zhang, H. Yao, and Y. Liu, “virtual network embedding based on
computing, network and storage resource constraints,” IEEE Internet of
Things Journal, vol. PP, no. 99, pp. 1–1, 2017.

[5] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler,
and T. Engel, “On optimal scheduling in duty-cycled industrial iot
applications using ieee802.15.4e tsch,” IEEE Sensors Journal, vol. 13,
no. 10, pp. 3655 – 3666, Oct. 2013, doi:10.1109/JSEN.2013.2266417.

[6] A. Athreya and P. Tague, “Network self-organization in the internet of
things,” in the Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON), June 2013, pp.
25–33.

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 11

[7] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in the Second International Conference on
Embedded Networked Sensor Systems (SenSys’04). ACM, 2004, pp.
39–49.

[8] P. Yadav, N. Yadav, and S. Varma, “Cluster based hierarchical wireless
sensor networks (chwsn) and time synchronization in chwsn,” in 2007
International Symposium on Communications and Information Tech-
nologies, Oct 2007, pp. 1149–1154.

[9] L. Xu, R. Collier, and G. M. P. OHare, “A survey of clustering techniques
in wsns and consideration of the challenges of applying such to 5g iot
scenarios,” IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1,
2017.

[10] A. Tyrrell, G. Auer, and C. Bettstetter, “Emergent slot synchronization
in wireless networks.” Transactions on Mobile Computing. IEEE., vol. 9,
no. 5, pp. 719–732, 2010.

[11] D. G. Reina, S. L. Toral, F. Barrero, N. Bessis, and E. Asimakopoulou,
“The role of ad hoc networks in the internet of things: A case scenario
for smart environments,” Internet of Things and Inter-cooperative Com-
putational Technologies for Collective Intelligence, vol. 460, pp. 89 –
113, Jan. 2013.

[12] Ocado: Online grocery warehouse robots. [Accessed on 23rd Feb
2016]. [Online]. Available: http://www.v3.co.uk/v3-uk/feature/2447945/
ocado-builds-an-iot-robot-army-to-do-your-shopping

[13] J. Wan, S. Tang, Q. Hua, D. Li, C. Liu, and J. Lloret, “Context-aware
cloud robotics for material handling in cognitive industrial internet of
things,” IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2017.

[14] E. Yanmaz, M. Quaritsch, S. Yahyanejad, B. Rinner, H. Hellwagner, and
C. Bettstetter, “Communication and coordination for drone networks,”
Ad Hoc Networks, Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, vol. 184, pp.
79–91, Dec. 2016.

[15] P. Yadav and J. A. McCann, “Ebs: Decentralised slot synchronisation
for broadcast messaging for low-power wireless embedded systems,” in
the 5th International Conference on Communication System Software
and Middleware (COMSWARE’11). ACM, July 2011, pp. 9:1–9:6.

[16] K.-Y. Cheng, K.-S. Lui, Y.-C. Wu, and V. Tam, “A distributed multi-
hop time synchronization protocol for wireless sensor networks using
pairwise broadcast synchronization,” Transactions on Wireless Commu-
nications. IEEE., vol. 8, no. 4, pp. 1764–1772, April 2009.

[17] B. Geller, “Advanced synchronization techniques for the internet of
things,” in International Symposium on Signal, Image, Video and Com-
munications (ISIVC’16), Nov 2016, pp. 180–184.

[18] W. Su and I. Akyildiz, “Time-diffusion synchronization protocol for
wireless sensor networks,” Transactions of Networking. IEEE/ACM.,
vol. 13, no. 2, pp. 384–397, April 2005.

[19] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat, “Loose
synchronization for large-scale networked systems,” in Proceedings
of the Annual Technical Conference on USENIX’06, ser. ATEC’06.
Berkeley, CA, USA: USENIX Association, 2006, pp. 28–28. [Online].
Available: http://dl.acm.org/citation.cfm?id=1267359.1267387

[20] R. Zhang and J. T. Kwok, “Asynchronous distributed admm for
consensus optimization,” in Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume
32, ser. ICML’14. JMLR.org, 2014, pp. II–1701–II–1709. [Online].
Available: http://dl.acm.org/citation.cfm?id=3044805.3045082

[21] H. Yan, Y. Zhang, Z. Pang, and L. D. Xu, “Superframe planning and
access latency of slotted mac for industrial wsn in iot environment,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1242–
1251, May 2014.

[22] P. Sommer and R. Wattenhofer, “Gradient clock synchronization in wire-
less sensor networks.” in the International Conference on Information
Processing in Sensor Networks (IPSN’09). ACM, 2009, pp. 37–48.

[23] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal, “Firefly-
inspired sensor network synchronicity with realistic radio effects.” in the
3rd international conference on Embedded networked sensor systems.
ACM, 2005, pp. 142–153.

[24] I. Bojic, T. Lipic, and M. Kusek, “Scalability issues of firefly-based
self-synchronization in collective adaptive systems,” in IEEE Eighth
International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, Sept 2014, pp. 68–73.

[25] I. Bojic and K. Nymoen, “Survey on synchronization mechanisms in
machine-to-machine systems,” Eng. Appl. Artif. Intell., vol. 45, no. C,
pp. 361–375, Oct. 2015. [Online]. Available: http://dx.doi.org/10.1016/
j.engappai.2015.07.007

[26] M. Petrocchi, A. Spognardi, and P. Santi, “Bioinspired security
analysis of wireless protocols,” Mob. Netw. Appl., vol. 21, no. 1,

pp. 139–148, Feb. 2016. [Online]. Available: http://dx.doi.org/10.1007/
s11036-016-0702-z

[27] A. Tyrrell, G. Auer, C. Bettstetter, and R. Naripella, “How does a faulty
node disturb decentralized slot synchronization over wireless networks?”
in the International Conference on Communications (ICC’10). IEEE,
2010, pp. 1–5.

[28] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled
biological oscillators,” Journal of Applied Mathematics. SIAM., vol. 50,
no. 6, pp. 1645–1662, 1990.

[29] P. Closas, E. Calvo, J. Fernandez-Rubio, and A. Pages-Zamora, “Cou-
pling noise effect in self-synchronizing wireless sensor networks,”
in the Eighth Workshop on Signal Processing Advances in Wireless
Communications (SPAWC’07). IEEE, 2007, pp. 1–5.

[30] J. Klinglmayr, C. Bettstetter, and M. Timme, “Globally stable synch-
ronization by inhibitory pulse coupling,” in the Second International
Symposium on Applied Sciences in Biomedical and Communication
Technologies. ACM, 2009, pp. 1–4.

[31] O. Babaoglu, T. Binci, M. Jelasity, and A. Montresor, “Firefly-inspired
heartbeat synchronization in overlay networks,” in the First International
Conference on Self-Adaptive and Self-Organizing (SASO’07). ACM,
July 2007, pp. 77–86.

[32] J. Degesys, P. Basu, and J. Redi, “Synchronization of strongly pulse-
coupled oscillators with refractory periods and random medium access,”
in the Symposium on Applied computing (SAC’08). ACM, 2008, pp.
1976–1980.

[33] Y. Wang, F. Nunez, and F. Doyle, “Statistical analysis of the pulse-
coupled synchronization strategy for wireless sensor networks,” Trans-
actions on Signal Processing. IEEE., vol. 61, no. 21, pp. 5193–5204,
2013.

[34] W. Masood, J. Klinglmayr, and C. Bettstetter, “Experimental evaluation
of pulse-coupled oscillator synchronization in ieee 802.15.4 networks,”
in the Fourth International Symposium on Development and Analysis
of Intelligent Vehicular Networks and Applications., ser. DIVANet’14.
New York, NY, USA: ACM, 2014, pp. 145–151. [Online]. Available:
http://doi.acm.org/10.1145/2656346.2656360

[35] R. Leidenfrost and W. Elmenreich, “Firefly clock synchronization
in an 802.15.4 wireless network,” Journal of Embedded Systems.
EURASIP., vol. 2009, pp. 7:1–7:17, Jan 2009. [Online]. Available:
http://dx.doi.org/10.1155/2009/186406

[36] L. Cui and H. Wang, “Reachback firefly synchronicity with late sensi-
tivity window in wireless sensor networks,” in the Ninth International
Conference on Hybrid Intelligent Systems (HIS’09). IEEE Computer
Society, 2009, pp. 451–456.

[37] R. Pagliari and A. Scaglione, “Scalable network synchronization with
pulse-coupled oscillators,” Transactions on Mobile Computing. IEEE.,
vol. 10, no. 3, pp. 392–405, 2011.

[38] P. Yadav and J. A. McCann, “Ya-mac: Handling unified unicast and
broadcast traffic in multi-hop wireless sensor networks,” in the In-
ternational Conference on Distributed Computing in Sensor Systems
(DCOSS’11)., no. 9. IEEE, 2011, pp. 1–9.

[39] M. C. Guenther, P. Yadav, J. T. Bradley, and J. A. McCann, “Model
based optimization of ebs-mac,” in Sigmetrics Performance. ACM,
2012.

[40] P. Yadav and J. A. McCann, “Qos based event delivery for disaster
monitoring applications,” in the Fifth IEEE Conference on Wireless
Communication and Sensor Networks (WCSN). IEEE, Dec 2009, pp.
2–9.

[41] E. Gelenbe, E. Ngai, and P. Yadav, “Routing of high priority packets
in wireless sensor networks,” in SPIE Defense, Security, and Sensing
(SPIE DSS’09). SPIE, April 2009, pp. 1–6.

[42] P. Yadav and J. A. McCann, “Qos and congestion control for pervasive
event driven applications,” in ACM International Conference on Perva-
sive Services (ICPS). ACM, July 2010, pp. 1–6.

[43] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol
for wireless sensor networks,” in the 23rd Annual International Confer-
ence on Computer Communications (INFOCOM’02)., vol. 3. IEEE,
2002, pp. 1567–1576.

[44] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle mac with
scheduled channel polling,” in the 4th International Conference on
Embedded Networked Sensor Systems (SenSys’06). ACM, 2006, pp.
321–334.

[45] T. Pereira, J. Eldering, M. Rasmussen, and A. Veneziani, “Towards a
general theory for coupling functions allowing persistent synchronisa-
tion,” Nonlinearity, vol. 27, no. 3, pp. 501–525, Feb. 2014.

[46] T. Pereira, D. Eroglu, G. B. Bagci, U. Tirnakli, and H. J. Jensen,
“Connectivity-driven coherence in complex networks,” Physical Reviews
Letters, vol. 110, no. 23, p. 5, June 2013.

THE PAPER IS PRE-PRINT VERSION OF IEEE INTERNET OF THINGS JOURNAL, JULY 2017 12

[47] K. Klues, G. Hackmann, O. Chipara, and C. Lu, “A component-
based architecture for power-efficient media access control in wireless
sensor networks,” in the Fifth International Conference on Embedded
Networked Sensor Systems (SenSys’07). ACM, 2007, pp. 59–72.

[48] Motelab: Sensor network testbed. [Accessed on 17th August 2008].
[Online]. Available: http://www.btnode.ethz.ch/pub/uploads/Main/

Poonam Yadav is a research and teaching associate
at the Computer Laboratory, University of Cam-
bridge. She received the PhD degree in Comput-
ing from Imperial College London, in 2011 and
M.Tech from IIIT, Allahabad, India, in 2007. She
is a recipient of UK-India Education and Research
Initiative (UKIERI) PhD Award and has worked on
various NERC, TSB, EU, EPSRC, IBM and Mi-
crosoft funded research projects and author of over
30 papers in Distributed Systems, Social Computing,
Sensor Systems and IoT. She is currently the Chair

of ACM-W UK professional Chapter and a member of ACM, IEEE and BCS.

Julie A. McCann is a professor in computer sys-
tems with Imperial College. Her research centers
on highly decentralized and self-organizing scalable
algorithms for spatial computing systems, e.g., wire-
less sensing networks. She leads both the Adaptive
Embedded Systems Engineering Research Group
and the Intel Collaborative Research Institute for
Sustainable Cities and is currently working with
NEC and others on substantive smart city projects.
She has received significant funding from bodies
such as the United Kingdom’s EPSRC, TSB, and

NERC as well as various international funds, and is an elected peer for the
EPSRC. She has actively served on, and chaired, many conference committees
and is currently associative editor of the ACM Transactions on Autonomous
and Adaptive Systems. She is a fellow of the BCS.

Tiago Pereira is a professor of Mathematics at
Institute of Mathematics and Computer Science,
University of Sao Paulo, Brazil and author of over 40
papers on complex networks and dynamical systems.
He is a principal investigator in the Center for Indus-
trial Mathematics funded by FAPESP in partnership
with leading companies. The main thrust of his re-
search is the collective dynamics of complex systems
concerning both theory and data-driven approaches.
He obtained his PhD from Potsdam University in
Germany, and held postdoctoral positions in Berlin,

Sao Paulo and was a Leverhulme and Marie Curie Fellow at Imperial College
London.

