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Abstract— We propose a new energy harvesting strategy that
uses a dedicated energy source (ES) to optimally replenish energy
for radio frequency (RF) energy harvesting powered Internet of
Things. Specifically, we develop a two-step dual tunnel energy
requesting (DTER) strategy that minimizes the energy consump-
tion on both the energy harvesting device and the ES. Besides
the causality and capacity constraints that are investigated in the
existing approaches, DTER also takes into account the overhead
issue and the nonlinear charge characteristics of an energy
storage component to make the proposed strategy practical.
Both offline and online scenarios are considered in the second
step of DTER. To solve the nonlinear optimization problem of
the offline scenario, we convert the design of offline optimal
energy requesting problem into a classic shortest path problem
and thus a global optimal solution can be obtained through
dynamic programming (DP) algorithms. The online suboptimal
transmission strategy is developed as well. Simulation study
verifies that the online strategy can achieve almost the same
energy efficiency as the global optimal solution in the long term.

Index Terms—Energy harvesting for Internet of Things, Radio
frequency (RF) energy harvest, Schedule optimal energy request.

I. INTRODUCTION

With the worldwide progress toward Internet of Things
(IoT), the number of sensors deployed and connected to the
Internet is growing at a rapid pace [1]. Energy harvesting (EH)
has been considered as a favorable supplement to drive the
numerous sensors in the emerging IoT. Due to several key ad-
vantages like the pollution free, long lifetime, and energy self-
sustainability, the EH-IoT systems are competitive in a wide
spectrum of applications (e.g., healthcare, surveillance, and
emergency response to natural and man-made disasters) [2].
With the EH technique, an energy harvesting device (EHD)
is capable of receiving energy from nature or man-made
sources, such as solar, wind or radio frequency (RF) signals,
for communications [3]. Along with the remarkable progress
on ultra-low power semiconductors, RF-based EH technique
has drawn considerable attention in recent years [4], [5].

The existing RF-based EH systems can be classified into
two categories: without a dedicated energy source (ES) and
with a dedicated ES. In the first category, EHDs harvest energy
passively from ambient RF signal, which are radiated from a
TV tower, an access point (AP), or a base station [6], [7]. The
performance of a system in this category could be improved by
optimizing the data rate and transmission power of EHDs. The
activities of ESs, however, are uncontrollable due to a lack of
interaction between EHDs and ESs. In the second category, a
dedicated ES is installed to power the entire EH network [8]–
[11]. In this category, EHDs are allowed to request energy
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from the associated ES on demand. The replenishment of
energy storage components, which is also referred to as battery
charging, thus can be scheduled by the ES based on the energy
consumption of each EHD.

Current research on RF-based EH communications mainly
focuses on power management, to maximize the utilization of
the harvested energy from RF ambient signal [12]–[14]. The
investigation on EH communications with a dedicated ES, by
contrast, is still in its initial stage. Actually, the EH systems
with a dedicated ES like passive RF identification (RFID) have
already been penetrating our daily lives [15], [16]. A number
of advanced power supply methods, such as multi-hop energy
packet transmission and sharp beamforming energy transfer,
are also investigated or tested through theoretical analysis and
experiments [9], [10], [17], [18]. How to manage the power
at EHDs and schedule the energy transfer at ESs to minimize
the overall energy consumption, however, is currently missing
and is the focus of this paper.

Intuitively, an RF-based EH system could achieve a satis-
factory performance in terms of transmission rate, packet loss
and reliability by allowing an EHD to request the energy freely
from a dedicated ES. The energy efficiency with such a greedy
strategy, however, will be reduced considerably. Specifically,
due to the overhead on requesting energy and the nonlinear
charging feature of batteries, the energy consumption of an ES
system varies dramatically when different energy harvesting
strategies are applied. As will be revealed in this paper, if an
inappropriate strategy is employed, a large amount of energy
is wasted either on sending superfluous request messages
or on an inefficient charging process. How to minimize the
overall energy consumption while guaranteeing efficient data
transmission for wireless communications remains a challenge.

In this paper, we propose a two-step dual tunnel energy re-
questing (DTER) strategy to minimize the energy consumption
at both the EHD and the ES on timely data transmission. The
proposed strategy is operated in two steps: the first step derives
the profile of optimal transmission rate in a feasible data tunnel
at an EHD under a data storage constraint; the second step
designs an offline global optimal strategy for energy harvesting
in a feasible energy tunnel based on the first step subject to
the constraint of limited battery capacity. By using DTER,
an EHD is able to harvest energy from a dedicated ES timely
and efficiently with the minimum energy consumption on both
EHD and ES.

To make the proposed strategy more practical, we also
develop an online suboptimal strategy for the second step of
DTER. In the online strategy, the EHD just needs to monitor
the residual energy in its battery and requests a certain amount
of energy once the residual energy drops to a predefined
threshold. Theoretical analysis verifies that in the suboptimal
strategy, if the charging rate of an energy storage component
is much higher than the EHD’s transmission power, both
the energy requested by an EHD and that left at the energy
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storage are constants, which makes the online strategy easy to
implement in a real system. According to simulation results,
the energy efficient of the online transmission strategy is close
to the global optimal solution.

The remainder of the paper is organized as follows. We
introduce the related work in Section II and the system model
in Section III. Section IV discusses the first step of DTER to
obtain the optimal transmission rate of an EHD. Two important
concepts used in the second step of DTER are described in
Section V. We study how to design an offline global optimal
energy requesting strategy to minimize the overall energy
consumption in Section VI. An online suboptimal strategy is
presented Section VII. Section VIII presents simulation results.
Conclusions are drawn in Section IX. For the convenience of
reading the manuscript, we list the definitions of all symbols
used in Appendix B.

II. RELATED WORK

As a promising technique to build the emerging green and
self-sustainable IoT, the EH technique has been extensively
investigated. Many policies are proposed for EH without a
dedicated ES to manage the harvested energy efficiently after
considering the intermittency and the randomness of energy
arrivals [12]–[14].

Reference [12] introduces an optimal power control policy
that minimizes the completion time of transmitting a certain
amount of data under an energy storage constraint. In [13],
both the constraints of energy and data storage capacities are
taken into account to maximize the short-term throughput of
an EHD. The optimal transmission power is shown to be the
tightest string that lies in a feasible energy tunnel. The authors
in [14] propose an optimal operation strategy that provides
service differentiation among different traffic patterns, subject
to the constraints of data storage capacity and packet loss
ratio. The activity of an EHD is modeled as a constrained
Markov decision process and the optimal decision on whether
to harvest energy or to send data is figured out.

Although harvesting ambient RF energy solely from sur-
rounding environments to power EHDs is attractive, recent
research studies have demonstrated that the transmission rate,
reliability, transmission range, and deployment of such devices
are extremely limited by the thin energy in the atmosphere [6],
[7], [19]. To meet communication requirements (e.g., reliabil-
ity, delay, and throughput), powering EHDs with a dedicated
ES is promoted as an alternative.

Several experiments are conducted in [9] and [10] showing
that multi-hop RF energy transfer can save energy on ES
and reduce the time consumption on energy harvests as well.
Reference [17] proposes a system for power transfer on an
autonomous radio frequency. It is capable of rotating the base
of ES to track the position of EHDs and transferring power
to a particular device. In [18], the authors advocate the use of
massive multiple-input and multiple-output (MIMO) to enable
a sharp beamforming for efficient wireless energy transfer. The
authors in [20] propose a CSMA/CA based medium access
control protocol to schedule both the energy transmission and
data communication in shared medium; the problem of ES
deployment is also explored in this work.

From the above introduction we realize that the feasibility,
hardware design and applications of an EH system with
a dedicated ES have been comprehensively studied in the
literature; how to efficiently manage the power at both the
ES and the EHD, however, is still an open issue. As will be

shown in the paper, inappropriate energy requests at the EHD
may significantly increase the energy consumption at the ES.
Therefore, the objective of this paper is to design an optimal
energy requesting strategy that the EHD could harvest energy
from the ES with the minimum energy consumption.

III. SYSTEM MODEL

We consider an RF-based EH system with a dedicated ES,
from which an EHD requests and harvests energy through RF
energy packets. Assume the energy harvests and data transmis-
sions use separate antennas and frequency bands, i.e., an EHD
can request energy and transmit data simultaneously. Fig. 1
illustrates the energy request problem. Three curves, labeled
by L1, L2, and L3, represent the cumulative transmitted energy
by the ES, the accumulation of harvested energy and energy
consumption at the EHD, respectively. The harvested energy
is considered as discrete energy packets with different sizes
[12]–[14]. Therefore the profile of harvested energy at the
EHD (i.e., L2) is modeled as a staircase curve. As shown
in Fig. 1, the EHD initiates the ith energy request at instance
tri and harvests Eri energy in the next T esi seconds. Here, T esi
is the duration of the energy packet, which is also the charge
time for the ith energy request. Assume the ES consumes Eesi
energy on transmitting the ith energy packet. Due to the energy
loss on propagation and charging, the harvested energy Eri is
always smaller than the transmitted energy Eesi .
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Fig. 1. System model of energy request.

As for data transmissions, we consider both offline and
online scenarios, where offline/online assumes that the arriving
time (tdn ) and the size (Dn) of future data are known/unknown
exactly by the EHD. The offline scenario is studied first
and the online strategy will be discussed in Section VII. Let
Deh
m be the maximum capacity of data storage and Db

t be
the residual data at instance t. The transmission rate of the
EHD at time t is represented by reh(t), which is related to
the transmission power, peh(t), through a power-rate function
reh(t) = g

(
peh(t)

)
1. An illustration of the cumulative energy

consumption on data transmission,
∫ tx
0
peh(t) dt, labeled by

L3, is shown in Fig. 1.
Let T be the deadline that the EHD sends out all data.

Denote the residual energy at time tx∈ [0, T ] by Ebtx , where

Ebtx =

trk<tx∑

k=1

Erk −
∫ tx

0

peh(t) dt. (1)

1A typical power-rate function in an additive white Gaussian noise (AWGN)
channel is reh(t) = log[1 + h(t)peh(t)], where h(t) is the instantaneous
channel response for the link between an EHD and its communicating party.



3

According to the charging characteristic of batteries, the
amount of energy to be transmitted by an ES depends not
only on the amount of energy to replenish but also on the
residual energy at the EHD. The relation between Eesi , Eri
and Ebtri can be represented by Eesi =z(Eri , E

b
tri

), where z(·)
is called the charging function and the details will be further
elaborated in Section V.

The overall objective of this study is to optimize the energy
consumption of the ES under the constraints of data and energy
storage capacities at the EHD. This optimization problem,
denoted by P1, is formulated as follows:

P 1 : arg min
tri ,E

r
i

tri<T∑

i=1

(Eesi + er) ,

s.t.

C1:
∫ tx

0

peho (t)dt ≤
tri<tx∑

i=1

Eri , tx ∈ [0, T ],

C2: Ebtx ≤ Eehm , tx ∈ [0, T ],

C3: T esi ≤ tri+1− tri ,

(2)

where peho (t) is the optimal transmission power that allows
an EHD to send all data timely and with minimum energy
consumption. Correspondingly, the integration of peho (t) rep-
resents the least amount of energy required at the EHD; Eehm
represents the battery capacity of an EHD and er is a constant
overhead at the ES to compensate the EHD for the energy
spent on transmitting request messages.

In P1, the constraint C1 is that at any time the total energy
harvested at the EHD should be no less than the accumulation
of the minimum energy it consumed; otherwise the arriving
data may overflow the storage. The constraint C2 indicates that
the difference between the harvested energy and the expended
energy cannot exceed the battery capacity of an EHD, which is
referred to as the energy capacity constraint. The constraint C3
is a charging constraint that limits the time interval between
two consecutive energy requests. Specifically, as demonstrated
in Fig. 1, the ith energy charging takes T esi seconds, the EHD
thus cannot initiate a new energy request until the current
battery replenishment ends.

After a further study, we interpret problem P1 as follows:
when and how much energy should an EHD request or
harvest from the ES, so that the energy consumption at the
source is minimized with the three constraints above? To
solve problem P1, we propose a two-step energy requesting
strategy, DTER, which links the data transmission profile at
the EHD and the scheduling of energy transmission at the ES.
Specifically, it is critical to build an analytical relationship
between the harvested energy and the energy consumption for
data transmissions at the EHD. Therefore, the first step of
DTER is to calculate the optimal transmission rate at the EHD
in order to minimize its cumulative energy consumption for
data transmissions. The profile of optimal transmission rate at
the EHD obtained from the first step determines the bounds
of an energy tunnel. The second step is to design an optimal
energy requesting strategy inside the energy tunnel so that the
energy consumption at the ES is minimized as well.

IV. OPTIMAL TRANSMISSION RATE

In this section, we present the first step of DTER. The
objective is to calculate the profile of the optimal transmission
rate at the EHD so that its cumulative energy consumption for
data transmission is minimized.

A. Feasible Data Tunnel

Assuming the initial energy at the EHD is infinite, we focus
on calculating the optimal transmission rate while considering
the data capacity constraint. The energy constraint will be
integrated into the second step, as presented in Section VI. We
formulate the first step of DTER as an optimization problem,
as follows.

P2: arg min
reh(t)

∫ T

0

f
(
reh(t)

)
dt,

s.t.

C1:
∫ tx

0

reh(t) dt ≤
tdn<tx∑

n=1

Dn, tx ∈ [0, T ],

C2:
∫ tx

0

reh(t) dt ≥
tdn<tx∑

n=1

Dn −Deh
m , tx ∈ [0, T ].

(3)

where f(·) is the inverse function of g(·), i.e., f(·) = g−1(·),
which is non-negative, increasing, continuously differentiable,
and strictly convex.

t
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reh(t) dt

0
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k=1

Dk � Deh
m

1
A

0
@

tdk
<txX

k=1

Dk

1
A

Constraint of data arrival causality

Constraint of data storage capacity

D1

Fig. 2. An example of feasible data tunnel.

Here the problem P2 is to minimize the energy consumption
of the EHD on transmitting all data, subject to two constraints.
Constraint C1 reflects the causality of data transmission, i.e.,
the EHD cannot send data that has not arrived yet. Constraint
C2 guarantees that the data arrival does not overflow the
data storage. These two constraints construct a feasible data
tunnel, as illustrated in Fig. 2. The profile of cumulative data
transmitted at the EHD is a continuous line (e.g., curve D1 in
Fig. 2) that stays within the feasible data tunnel to satisfy the
data causality and storage capacity constrains.

B. Lemmas of Optimal Transmission Rate

Here, let tp be a time point that the sum of data stored in
the EHD and all data arriving in the future are equivalent to
the maximum capacity of the data storage, i.e.,

Db
tp +

∑

i

Di = Deh
m , ∀i∈Z+, tdi ∈(tp, T ]. (4)

Now, we present five lemmas to explore the inherent features
of the optimal transmission rate, rtho , in (3).

Lemma 1. The transmission rate is constant during an interval
between the arrivals of two successive data packets.
Lemma 2. The transmission rate changes only when the data
storage is either full or completely depleted.
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Lemma 3. The transmission rate decreases monotonically if
the data storage is not completely depleted, i.e., ∀ ti, tj ∈
[0, T ], ti < tj : reho (ti) ≥ reho (tj), if ∀ t ∈ [ti, tj ] : D

b
t 6= 0.

Lemma 4. The transmission rate increases monotonically
if the data storage is not completely filled, i.e., ∀ ti, tj ∈
[0, T ], ti < tj : reho (ti) ≤ reho (tj), if ∀ t ∈ [ti, tj ] : D

b
t 6= Deh

m .
Lemma 5. The transmission rate approaches zero after tp.
Lemma 1 to Lemma 4 can be proved by the contradiction
method; similar proofs can be found in [12] and [13]. The
proof of Lemma 5 can be found in Appendix A. From
Lemma 1 to Lemma 4, the following Corollary is deduced.

Corollary 2. At instants of data arrival, the transmission rate
decreases if the data storage is completely filled or increases if
the storage is empty, i.e., ∀ t ∈ [0, T ] : reho (t−)>reho (t+) =⇒
Db
t = Deh

m and reho (t−)<reho (t+) =⇒Db
t = 0.

Essentially, the objective of the optimization problem in
(3) is to seek the best curve in a feasible data tunnel to
minimize a specified cost, which is similar to the optimization
problem solved in [13]. Consequently, even though the two
optimization problems have entirely different objective func-
tions and constraints, their results are naturally related from the
graphical point of view. This can be observed by comparing
the above Corollary 2 with Corollary 1 introduced in [13]. To
solve P2, either the water-filling algorithm presented in [21]
or the throughput maximizing method proposed in [13] is a
feasible approach. Eventually, it is verified that the profile of
the optimal transmission rate, reho , is the tightest and piecewise
segments that lie in the feasible data tunnel.

V. ENERGY TUNNEL AND CHARGING FUNCTION

Before presenting the second step of DTER, we introduce
two concepts first, namely, feasible energy tunnel and charging
function. These two concepts are critical to the design of the
second step of DTER (presented in the Section VI) to obtain
the optimal strategy for energy harvesting.

A. Feasible Energy Tunnel
The constraints C1 and C2 in problem P1 define the upper

bound and lower bound for the accumulation of harvested
energy, respectively. The bounded tunnel is termed the feasible
energy tunnel. As illustrated in Fig. 3, the lower bound is the
least required power (

∫ tx
0
peho (t)), which can be calculated from

the optimal transmission rate (i.e., reho (t)) derived from the
first step of DTER. The upper bound is obtained by shifting
the lower bound up by Eehm , indicating the battery capacity
constraint. Referring to Section IV-B, the upper bound and
lower bound of feasible energy tunnel will be piecewise linear.

The objective in the second step of DTER is to minimize
the overall energy consumption of ES, which is achieved by
scheduling the stair-stepping profile of harvested energy inside
the feasible energy tunnel, as demonstrated in Fig. 3. Finding
the optimal requesting strategy is not trivial. Specifically, the
EHD needs to pay a constant cost on each request message
transmission, and consequently generates significant energy
overhead if it requests too frequently (e.g., curve S1 in Fig.3).
In contrast, curve S2 in Fig.3 asks too much energy each time
resulting in low efficiency on energy transfer as the energy cost
at the ES increases nonlinearly with the growth of energy to
be charged [22]. Therefore, neither strategy S1 nor S2 is a
good option for efficient energy request.

t

E

Least required energy

Constraint of energy 
storage capacity

✓Z tx

0

peh
o (t) dx

◆

✓Z tx

0

peh
o (t) dt + Eeh

m

◆
(Possible harvested 

energy)

S2

S1

C2

C1

Fig. 3. The feasible energy tunnel.

B. Charging Function

In RF-based EH systems, an EHD is generally equipped
with a super capacitor to store the harvested energy [7], [9].
Therefore, we use the capacitor as an example to provide
insight into the charging function, which determines the ef-
ficiency of energy replenishment.

To charge an EHD wirelessly, assume the ES transmits
energy packets with a constant power, which is represented
as pes. The transmission time of the energy packet i is T esi .
According to the relationship between the voltage increase and
energy replenishment presented as (4) in [8], the energy cost
on an ES for the ith charging is calculated below:

Eesi = pesT esi

= pesRC ln





(
2Eehm

) 1
2−
(

2Ebtri

) 1
2

(2Eehm )
1
2−
[
2
(
Ebtri

+Eri

)] 1
2




, (5)

where R and C are the resistance and capacitance of the charg-
ing circuit, respectively. Eehm = 1

2CV
2
m. Vm is the maximum

voltage a capacitor could approach, which is determined by
the EH circuit and the receiving power of energy packets at
an EHD [23]. The above equation verifies that the energy
consumption at ES is not only affected by the amount of
energy the EHD claimed, Eri , but also by the residual energy
in the capacitor, Ebtri .

Consequently, we introduce a useful property of Eesi to
support the design of an optimal energy requesting strategy.

Property 2. Eesi is an increasing function of Eri and a strictly
convex function of Ebtri . With regard to Eri , the Eesi function
is strictly concave if Eri +Ebtri

∈ [0, 14E
eh
m ), and strictly convex

if Eri + Ebtri
∈ [ 14E

eh
m , Eehm ].

The verification of Property 2 is straightforward. We can prove
it by inspecting the first order and the second order partial
derivatives of Eesi in (5) with respect to Eri and Ebtri .

Property 2 and (5) indicate that with fixed lengths of energy
packets, the energy harvested by an EHD does not decrease
monotonically with the increase of Ebtri . In other words, to
improve the efficiency of energy harvest, the EHD needs to
keep a certain amount of energy in its capacitor.

VI. ENERGY REQUESTING STRATEGY

The second step of DTER focuses on how to design the opti-
mal strategy for energy requesting. For that, we first investigate
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the piecewise optimal strategies without the overhead energy,
which provides an upper bound of the data transmission rate
that a capacitor-based EHD can achieve. Then we propose
a heuristic approach that converts the scheduling of energy
requests into a shortest path problem, in which a dynamic
programming (DP) algorithm is applied to achieve the global
optimal solution.

A. Piecewise Optimal Strategy with Negligible Overhead

This section considers a simplified scenario where the over-
head energy, er, is assumed negligible. We aim to minimize
the energy consumption at the ES in each piece of the feasible
energy tunnel separately. Since the slope for the same piece is
fixed, Ebtri and Eri will remain unchanged and their subscripts
can be dropped.

According to Property 2, in the case that the constant
overhead, er, is negligible, an EHD harvests energy most
efficiently when it requests a small amount of energy if and
only if a quarter of maximum energy remains in the capacitor.
Correspondingly, the following corollary is deduced.

Corollary 3. For an optimal energy requesting strategy with
negligible er, the EHD requests a tiny amount of energy from
ES each time, when the residual energy is 1

4E
eh
m , i.e, Er→0

and Eb = 1
4E

eh
m , if er → 0.

Corollary 3 forms the foundation to obtain the upper bound
of a transmission rate for a capacitor-based EHD, which will
be derived as follows. From Corollary 3, the EHD cannot con-
sume more energy during an energy request interval than the
amount harvested in the last round, which is Er. Combining
this charging constraint with the constraint of the least energy
requirement at the EHD, we have

Er

T es peh
≥ 1, (6)

where

T es = RC ln





(
2Eehm

) 1
2 −

(
2Eb

) 1
2

(2Eehm )
1
2 − [2 (Eb + Er)]

1
2



 , (7)

which is calculated from (5).
According to Corollary 3, substituting Eb = 1

4E
eh
m and

Er → 0 into T es of (6), the left side of the inequalities is a
limit of the form 0/0. Utilizing the continuously differentiable
feature of T es with respect to Er and applying the L’Hôpital’s
rule on the left side of (6), we derive

lim
Er→0

Er

T es peh
= lim
Er→0

1

(T es)′ peh
=

Eehm
2RC peh

, (8)

where (T es)′ is the first order derivation of T es with respect
to Er. Substituting (8) into (6), we obtain

pehm (t) ≤ Eehm
2RC

=
V 2
m

4R
. (9)

In (9), pehm (t) is the highest power that a capacitor-based EHD
could harvest from a dedicated ES. It reveals the upper bound
of the energy consumption in a given time period regardless
of the requesting strategy. Substituting (9) into the power-rate
function, g(·), it yields an upper bound of the data transmission
rate that a capacitor-based EHD can achieve.

B. Global Optimal Strategy
Due to the discrete feature of the harvested energy and the

nonlinear relationship between the energy transmitted from an
ES and that replenished to an EHD, the design of a global
optimal strategy is a grand challenge. To tackle this challenge,
we leverage the Graph theory to convert the optimal energy
requesting design into a shortest path problem.

x

y
Destination

V6,4

Target area

Optimal path

Vertice

0 1 2 3 4 5 6 7 8

1
2

3
4

5
6

7

V2,2

V2,4

Source
9 10

Fig. 4. The converted shortest path problem in a feasible energy tunnel.

As depicted in Fig. 4, assume the slope of each energy
tunnel is smaller than the maximum transmission power in (9)
that an EHD can afford, and then the area of the energy tunnel
is divided into multiple grids uniformly. The intersections of
the grids are referred to as “vertices” connected with horizontal
and vertical “edges”. The amount of grids depends on the
requirement of the solution accuracy and will be evaluated
from simulations. Denote a vertex with the coordinates (j, k)
by Vj,k, and the directed edge from Vj,k to Vm,n is represented
by e(j,k)→(m,n), where ∀j, k,m, n ∈ Z+. A vertical edge
e(j,k)→(j,n) indicates an energy replenish by Eri = yn − yk,
which generates an associate charging cost on an ES. We call
this cost the weight of the edge, the calculation of which is
specified by (5). A horizontal edge means no charging and has
a weight of 0. Therefore, the weight of e(j,k)→(m,n) is

w(j,k)→(m,n) =

{
0, j 6= m and k = n,

Eesi , k 6= n and j = m.
(10)

A node is placed at the source with coordinates (0, 0) and
then moves towards the destination at the right end of the
energy tunnel’s lower boundary. It is not allowed to move
backwards or downwards according to the features of EH
process. Due to the charging constraint introduced in C3 of
P1, the length of a lateral movement cannot be shorter than
the charge time of the last energy replenishment, i.e., T esi .

So far the second step of DTER has been converted into
the classic shortest path problem in a directed and weighted
graph. Designing the optimal strategy for energy requesting is
equivalent to finding the shortest path from the source to the
destination such that the sum-weight of its constituent edges
is minimized under the charging constraint. Consequently, the
DP-based approach like Dijkstra’s algorithm can be applied
to schedule the optimal energy request scheme. The time
complexity of such approach is O(n log n), where n is the
number of grids in the energy tunnel. More details of DP
algorithms could be found in [24].

VII. ONLINE SUBOPTIMAL STRATEGY

The global optimal strategy for the second step of DTER
presented in Section VI-B provides a lower bound of the
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energy consumption that an EH system can achieve. It is
an offline strategy since the future transmission power of
an EHD is assumed known as a priori knowledge, which is
impractical for some applications. In this section, we propose
an online suboptimal strategy, which does not require any
future information of EH system and just needs to know the
current energy level in the capacitor of an EHD.

Here, we start from a common scenario where the overhead
energy for each energy request is not negligible with the
goal of minimizing the total energy consumption at the ES
in each piece of energy tunnel separately. Denote the number
of requests that an EHD initiates in the kth piece of tunnel
by αk. Assume the kth piece of feasible energy tunnel starts
from tpk−1

and ends at tpk . Let pehk and lk represent the slope
(e.g., optimal transmission power of an EHD) and duration of
the tunnel piece k, where lk = tpk − tpk−1

, we obtain that

αk =
lk p

eh
k

Eri
, ∀i ∈ Z+: tri ∈

(
tpk−1

, tpk
]
. (11)

As in the scenario with negligible overhead that discussed in
Section VI-A, for a certain piece of feasible energy tunnel, the
subscripts of Ebtri and Eri can be removed. In other words, the
optimal Ebtri and Eri are constants in a single energy tunnel.
Based on (5), the optimization problem P1 is rewritten as

P 3 : arg min
Er, Eb

αk


pesRC ln





(
2Eehm

) 1
2−
(
2Eb

) 1
2

(2Eehm )
1
2−[2(Eb+Er)]

1
2



+ er


 ,

s.t. C1: Eehm ≥ Eb + Er,

C2: Eb ≥ 0, Er ≥ 0 and αk ∈ Z+,

C3: Er ≥ T es pehk .
(12)

In problem P3, C1 and C2 correspond to the constraints
of data capacity and least energy requirement, respectively.
The constraint C3 represents the charging constraint, which is
equivalent to C3 of P1.

The objective function in P3 has a global minimum since
its Hessian matrix is positive definite with respect to Eb and
Er. To calculate the optimal Eb and Er, we set the first order
partial derivatives of the objective function to zero and obtain





Eb =

(
Eehm − Er

)2

4Eehm
,

(lnX)− X2 − 1

2X
+

er

RC pes
= 0,

(13)

where
Er =

(X − 1)

(X + 1)
Eehm . (14)

The second equation of (13) is nonlinear and the explicit
solution may not be available. Newton’s iterative method is
utilized to reach a numerical result, which will be substituted
into (14) to calculate Er, and the result is denoted by Erx. Note
that Erx is calculated solely based on the objective function of
P3 without considering the constraints. Next, we calculate an
Ery merely based on the constraints. By combining Erx and
Ery , the optimal Er and Eb will eventually be achieved.

Combining (5) and the first equation of (13), the constraint

C3 of P3 can be rewritten as

pehk RC ln

(
Eehm + Er

Eehm − Er
)
− Er ≤ 0. (15)

Let z(Er) be the left part of (15) and its first order derivative
with respect to Er is

z′(Er) =
Eehm

(
2pehk RC − Eehm

)
+ (Er)2

[(Eehm )2 − (Er)2]
. (16)

It can be observed that z(Er) is a strictly convex function of
Er that z(0) = 0 and z(Eehm ) → ∞. In addition, according
to (9), we have that −Eehm < 2pehi RC − Eehm < 0, i.e.,
z′(Er) changes from negative to positive with the increase of
Eehm since Er ≤Eehm . Therefore, z′(Er) is a non-monotonic
strictly convex function, and there exists one and only one
Ery ∈ (0, Eehm ) that makes z(Ery) = 0. The value of Ery can
be calculated via Newton’s iteration. According to (11), the
optimal αk, which is denoted by α̂k is

α̂k =
lk p

eh
k

min{Erx, Ery}
. (17)

Finally, the optimal Er, which is denoted by Êr is Êr =
min{Erx, Ery}, while the optimal Eb, represented by Êb, is
calculated from the first equation of (13).

Note that if the current transmission power of an EHD is
much smaller than the instant charging rate of capacitor, i.e.,
pehk � pci , ∀i∈Z+: tri ∈

(
tpk−1

, tpk
]
, the charging constraint

can be satisfied inherently and hence Êr=Erx. In this case, Êr

and Êb are affected neither by the length nor by the slope of
the tunnel, since the second equation in (13) does not contain
the parameters lk and pehk . This indicates that the piecewise
optimal energy request discussed in this section essentially
becomes an online strategy. Specifically, the EHD only needs
to monitor the residual energy and requests Êr energy from
ES when the energy left in the capacitor drops to Êb.

t

E

0

Eeh
m

E0

Profile of harvested energy

Height

Êb

Êr
Baseline

Êb

Fig. 5. Schematic diagram of the suboptimal online strategy, where the
staircase is the profile of cumulative energy harvested by an EHD.

To facilitate understanding, Fig. 5 illustrates several impor-
tant attributes of the online energy requesting strategy. As we
have discussed in this section, the profile of cumulative energy
received by an EHD is a staircase in the figure that has two
key features: (a) the amount of energy harvested by an EHD
(i.e., Êr) is a constant value from all requests; and (b) the
residual energy is also a constant (i.e., Êb), at the instance of
each energy request.

VIII. PERFORMANCE ASSESSMENT

In this section, we conduct simulations to evaluate the
performance of DTER. The simulation settings will be in-
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troduced first, and then the performance comparisons among
different energy requesting strategies are presented. Afterward,
we study how different parameters affect the grid density of
DTER to achieve the desired accuracy. Lastly, the energy
efficiency of the online strategy developed for the second step
of DTER is assessed carefully.

A. Simulation Settings
In the simulations, the central frequency and the bandwidth

for data transmission are fd = 2.4 GHz and B = 50 kHz.
Assume the wireless channel is AWGN and the noise spectrum
density is N0 = −174 dBm; therefore, the noise power is
Nl=−127 dBm2. The distance from the EHD to its intended
receiver is d=30 ft, and the propagation loss of an RF signal
from EHD to the receiver is calculated through the free space
path loss (FSPL) model, where

FSPL (dB) = 20 log10(d) + 20 log10(fd)− 147.55. (18)

According to the capacity of AWGN channel and propagation
loss model, the power-rate function is

peh(dBm)=10 log10

(
2

reh

B −1
)

+ FSPL+Nl. (19)

We assume the arrival of data packet is a Poisson process
with a mean value λ. The size of each packet and the capacity
of data storage are S = 15 KB and Deh

m = 64 KB. The
maximum voltage, capacitance, and resistance of the EHD are
Vm = 2 V, C = 2 nF, and R = 1 kΩ, respectively; therefore,
the capacitor can store up to Eehm =4 nJ of energy. The default
overhead, er, of energy request is 0.4 nJ. The ES sends energy
packets at a constant power3 of pes = 10 W. The simulation
results presented in this paper are based on the average of 70
independent runs, unless otherwise stated.

For comparison purposes, the performance of the following
representative power management strategies are also tested.
– Constant strategy: In this strategy, the EHD transmits at

a constant rate, which is λS. When the residual energy is
not enough for a single packet transmission, the EHD will
request a replenishment and charge the capacitor to 75%
of the maximum capacity.

2Nl = N0 + 10 log10(B) = −127 dBm.
3pes is determined by the input power and the output voltage of the EHD as

introduced in [23]. The output voltage is 2 V if the receiving power is around
−10 dBm. Therefore, after considering the propagation loss, the required
transmission power of the ES is around 40 dBm, i.e., 10 W.

– On-demand dynamic strategy: To avoid the overflow of
arriving data when the traffic rate has a sudden increase,
the EHD adjusts its transmission rate adaptively based
on the status of data storage — the higher occupancy
of the storage, the higher transmission rate is applied.
The occupancies of data storage and the corresponding
transmission rates are Db = [1/16, 1/8, 1/4, 1/2, 3/4, 7/8, 15/16]
and reh=[1/8, 1/4, 1/2, 1, 2, 4, 8]×λS. With this strategy, the
EHD is scheduled to request adequate energy for the next
data transmission.

B. Performance Comparison
In the performance comparison, we set the traffic generation

rate as λ= 0.5 pkt/s, and then compare the DTER with two
alternative strategies in terms of transmission rate, packet loss
ratio caused by the data overflow on the EHD, and energy
consumption at the ES.

Fig. 6 demonstrates the transmission rate of the EHD under
three strategies. According to Corollary 2 in Section IV, low
transmission rate and small rate variation are helpful to reduce
the energy consumed on data transmission. The constant
strategy has the most stable transmission rate, thereby reducing
the energy consumption of the EHD considerably. However,
it has a significant data overflow problem since the arrivals
of data packets are random but the constant strategy cannot
adapt to the traffic dynamics. This can be observed in Fig. 6
where the accumulation of transmitted data with the constant
strategy is less than the other two strategies. According to
the measurement, due to the overflow of data storage, the
average packet loss ratio of the constant strategy reaches
12.2%. In order to send packets timely, the on-demand strategy
transmits at varying data rates depending on the occupancy
rate of data storage. This causes frequent and drastic changes
in the transmission rate at the EHD since there are large-scale
fluctuations in the instantaneous arriving rate of data packets.
On the contrary, the optimal transmission rate in DTER can
adapt to the dynamic traffic while minimizing the variations
in transmission rate without overflowing the data storage.

In Fig. 7, we compare the energy consumption amongst
different strategies. Note that the logarithmic scale is employed
for the y-axis due to the huge difference of absolute values. As
shown in the figure, DTER has the least energy consumption
among the three strategies, mainly for two reasons. First of
all, DTER has the optimal transmission strategy at the EHD
which guarantees the minimum energy consumption to send a
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given amount of data. Second, DTER implements the optimal
energy requesting strategy which further reduces the energy
consumption on ES. Although the results between the DTER
and the constant strategy appear to be close to each other
in the logarithmic scaled plot in Fig. 7, the actual energy
consumption of the constant strategy is much higher than that
of DTER, even at the cost of packet loss. More specifically,
as shown in the figure, the average energy consumed at ES
with the constant strategy is 0.33 mJ by the end of tests, 22%
higher than that with DTER, which is 0.27 mJ. In contrast,
the on-demand strategy mitigates the data overflow problem
of the constant strategy, but consumes highest energy, which is
5.19 mJ at the ES due to the strong fluctuations in transmission
rate and inefficient energy requests.

C. Analysis on Grid Density in DTER

In the simulations, Dijkstra’s DP algorithm is applied to find
the global optimal solution. When using such an approach in
DTER, the computing accuracy, i.e., how close is the obtained
result to the truly optimal solution, depends on the density
of grids, which is defined as the number of grids in the
unit area. The result converges to the global optimum energy
consumption with the increase of grid density; an excessively
high grid density, however, significantly increases the time
complexity of the DP algorithm, but gives little improvement
on the accuracy. Next, we study how different parameters
affect the required density of the gird in DTER to reach a
desired accuracy.

Obviously, in order to get a close result to the optimal
solution, the length of vertical edge has to be smaller than
the optimal Er and the length of horizontal edge should be
smaller than the time interval between neighboring energy
requests in the optimal energy requesting strategy. Therefore,
the parameters, e.g., λ and C, that affect Er and the frequency
of energy requests will also affect the required grid density.

As shown in Table. I, the increased λ results in a higher
transmission rate and steeper feasible energy tunnel, which in
turn increases the frequency of energy requests but does not
significantly affect Er. By contrast, a larger C will increase
the energy replenished in each round and reduce the energy
request frequency accordingly. Therefore, to achieve a certain
accuracy, the required density of grid in DTER is proportional
to λ but inversely proportional to C. This conclusion will be
verified by the following simulations.

TABLE I
FREQUENCY AND AMOUNT OF ENERGY REQUEST

C = 2 nF λ = 0.5 pkt /s

λ Êr ( 10−10 J ) Freq C ( nF ) Êr ( 10−10 J ) Freq
0.25 4.32 0.22 1 2.41 1.08
0.5 4.21 0.61 2 4.21 0.61
1 4.00 2.38 4 9.11 0.29

We define the improvement of accuracy as (Eesβi+1
−

Eesβi
)/Eesβi

, where β0 = 5.25×107 is the initial grid density
and βi = iβ0 represents the grid density in the ith iteration.
In Fig. 8, we set the threshold of convergence as 0.5% of the
accuracy improvement and show the cumulative distribution
function (CDF) of grid density with respect to the packet
generation rates, λ, capacitances, C, and the deadline of data
transmission, T .

From Fig. 8, it can be observed that in DTER, both λ and
C have a significant impact on the required density of grids to
achieve the default accuracy, but the impact of T is negligible.
Using CDF = 0.9 as an example, when C=2 nF but increase
λ from 0.25 to 1, the required grid density increases from
3.4×109 to 1.2×1011, as demonstrated in Fig. 8(a). When
λ = 0.5 but increase C from 1 nF to 4 nF, the required grid
density decreases from 6.5×1010 to 3.2×109, as shown in
Fig. 8(b). When C and λ are fixed but change T from 50 s to
100 s, the required grid density remains unchanged, which is
9.4×109, as shown in Fig. 8(c). Therefore, the observations
from Fig. 8 verify the previous conclusion, i.e., to achieve
a certain accuracy, the required density of grid in DTER is
proportional to λ but inversely proportional to C.

D. Performance of Online Strategy
Now, we evaluate the performance of suboptimal online

strategy that is proposed in Section VII for the second step of
DTER. The energy efficiency of the online strategy in a single
energy tunnel is assessed first, the results are then extended to
a multi-tunnel scenario.

Fig. 9 provides insight into how the EHD’s transmission
power, peh, affects the optimal energy, Êr, requested by the
EHD each time and the total energy consumed by the ES.
Since Êr is several orders of magnitude larger than the total
energy consumption of the ES, we use different scales to
display two curves in the same figure. In the simulation, the
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EHD is scheduled to harvest a total amount of 8 nJ of energy in
a single tunnel with different peh/pehm . Here, pehm is the highest
transmission power that an EH system can afford, which is
given by (9), to normalize peh.
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Fig. 9. The optimal request energy, Êr , and the total energy consumption at
ES with respect to the normalized transmission power, peh/pehm , of an EHD.

As illustrated in Fig. 9, if peh is not extremely close to
pehm , both Êr and the total energy consumption of the ES are
constant. However, once peh approaches pehm , i.e., peh/pehm→1,
Êr reduces from 1.24× 10−10 J to zero, while the overall
energy consumption of the ES rises from 8.39×10−5 J towards
infinity quickly. This phenomenon can be interpreted by the
analysis presented in Section VII that Êr is determined by
Erx and Ery , where Erx and Ery are obtained from the objective
function and the charging constraint, respectively. In particular,
we mark a turning point of Êr and total energy consumption
of the ES with respect to the normalize peh in the figure.
This turning point comes from a specific peh, denoted by
peh0 , that makes Erx =Ery . When peh ≤ peh0 , i.e., before the
turning point, the total energy consumption of an ES and Êr
in a single tunnel remain unchanged regardless of peh. This
is because in this situation, Êr =Erx, and Erx is independent
of peh according to (13) and (14). If peh0 < peh < pehm , Êr
is equivalent to Ery , which decreases monotonically with the
increase of normalized peh based on (15). In other words,
when peh>peh0 , i.e., after the turning point, the EHD requests
less energy each time but at a higher frequency to harvest
sufficient energy in a short period for the EHD running on a
high transmission power. However, due to the constant energy
paid for each request, the EHD increases the rate of energy
harvesting at the cost of large overhead energy at the ES.
When peh/pehm → 1, the charging constraint pushes the EHD
to request a tiny energy continuously, and the total energy
consumption of the ES goes to infinite.

Next, we study how the length of a feasible energy tunnel,
T , and the initial energy, E0, in a capacitor affect the energy
efficiency of the online strategy. Assume in a single tunnel,
the ES consumes a total amount of Eesol and Eesop joules of
energy with the online and the offline global optimal strategies,
respectively. Let ∆E be the difference between Eesol and Eesop
in percentage, that is

∆E =
Eesol − Eesop

Eesop
× 100%. (20)

In (20), the energy consumption at ES with the online strategy

is equal to that with the global optimal solution if ∆E = 0.
In this case, we claim that the energy efficiency of the online
strategy reaches 100%. By contrast, if ES consumes much
higher energy with the online strategy than with the global
optimal one, ∆E rises to infinity and the energy efficiency of
the online strategy drops to 0.

In Fig.10, we set E0 = Êb and increase T from 4 s to 20 s to
show how ∆E changes with the length of energy tunnel, where
Êb is obtained from (13). The solid blue curve depicts the
degradation of the online strategy’s energy efficiency, which
periodically reduces versus the length of energy tunnel. It is
worthy of pointing out that the performance degradation of
online strategy is caused by the inefficiency of its last energy
request. To be specific, if the number of requests (i.e., α)
calculated in (17) is not an integer, the online strategy will
request dαe times, where d·e is the ceiling function. In such
an case, the EHD usually harvests an excess of energy from the
last request, as the online solution is unaware of the accurate
amount of energy needed in the future. When an excessive
energy request occurs, the larger the dαe−α, the more wasted
energy requested by the online strategy. To demonstrate how
dαe−α affects the performance of the online strategy, we
select three cases when dαe−α=0, 0.4 and 0.8. The trend of
performance degradation in each case is plotted in Fig.10 with
a dot line, from which it can be observed that (a) for dαe−α=
0, the online strategy obtains an appropriate amount of energy
from its last request, thereby it achieves the same performance
as the global optimal solution; (b) in a same period, i.e., for
the same α, ∆E increases with the growth of dαe−α.
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Fig. 10. The degradation of the online strategy’s energy efficiency in a single
tunnel with respect to T .

Moreover, Fig. 10 illustrates that for the same dαe−α, ∆E
reduces as the increase of T . This is because (a) Eesop rises
linearly with T , and (b) the online and the offline optimal
strategies have almost the same energy efficiency before the
last energy request, which implies that the absolute difference
of energy efficiency, Eesol −Eesop, in (20) changes with dαe−α
rather than T . Considering the worst case where α slightly
exceeds an integer, i.e., dαe−α≈1, the online strategy requests
Êr joules of excessive energy, namely, Eesol − Eesop ≈ Êr and
Eesop ≈ (dαe − 1)×Êr. Eventually, according to (20), it can
be obtained that ∆E ≈ 1

dαe−1 ×100%. Therefore, with the
increase of α or T , ∆E decreases to a small value quickly,
even in the worst situation. This is verified in Fig. 10, where
the amplitude of oscillation of ∆E on the black curve drops
from 12.9% to 2.6% when T increases from 3.9 s to 19.4 s.
In a real application, the operation time of an EH system is
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usually long, hence the energy efficiency of the online strategy
can be very close to the offline global optimal solution.
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Fig. 11. The degradation of the online strategy’s energy efficiency in a single
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and pink) overlapped.

In Fig. 11, we vary both the number of energy requests,
α, and the initial energy, E0, to study how the two factors
jointly impact the performance of the online strategy. Next, we
summarize our observations into the following three situations.

(a) 0 ≤ E0 ≤ Êb: By comparing the red, green and blue
curves in Fig. 11, we can obtain that the performance
degeneration of the online strategy is zero when α is
an integer, i.e., dαe−α = 0. This indicates that if the
initial energy of an EHD is smaller than Êb, the online
and the optimal strategies perform the same procedure
for their first energy request: they both send a request
at the beginning of a feasible energy tunnel to charge
the capacitor to Êb+ Êr. With such a procedure, Eesop,
i.e., the denominator of (20), increases with the decrease
of E0; however, since Eesol − Eesop, i.e., the numerator of
(20), is independent of E0. Therefore, ∆E is inversely
proportional to E0. In Fig. 11, it is proved by comparing
the blue, red and green curves at the same α, where ∆E
grows with the increase of E0.

(b) Êb < E0 < Êb + Êr: In this case, the online method
sends no energy request until the residual energy in a
capacitor drops to Êb. For the global optimal strategy,
the EHD has two potential actions: (a) sending the initial
request when residual energy drops to Êb, which is the
same as the online strategy, or (b) sending the initial
request at the beginning of the tunnel to rise the energy
of the capacitor to Êb+ Êr. We testify that the offline
and online strategies take the same action for the initial
request through simulations, which implies that during the
first (E0 − Êb)/peh seconds, ∆E in (20) is zero. At the
instant of initial energy request, the residual energy of
both online and global optimal strategies starts from Êb,
and the trend of ∆E with respect to α is the same as
Fig. 10. Therefore, when Êb ≤ E0 ≤ Êb + Êr, ∆E is
independent of E0 as revealed in Fig. 11, where the black
curve overlaps the blue one.

(c) Êb+Êr ≤ E0 ≤ Eehm : Both the offline global optimal and
online strategies in this situation use the initial energy
first, and then initiate the first request when the residual
energy reduces to Êb. Therefore, the profile of ∆E with

respect to α is the same as the case (b), which causes the
pink curve in Fig. 11 to overlapping the black one.

To summarize, ∆E changes periodically with α, and the
highest degradation in a period decreases with the increase of
dαe. Moreover, when E0 ≤ Êb, ∆E is inversely proportional
to E0; when Êb < E0 ≤ Eehm , ∆E is independent of E0.

In Fig. 12, we compare the online and the offline optimal
solution in multi-tunnel tests. In each test, the feasible energy
tunnel consists of three pieces. The length and the slope (e.g.,
transmission power of an EHD) of each piece are random,
which follow a Gaussian distribution. Moreover, the standard
variation of the slope and that of the length is set equivalent
to their mean value. The average transmission power, p̄eh, of
an EHD ranges from 0.1 nW to 0.4 nW and the overall length,
T , of the multi-tunnel varies between 5 s and 35 s.
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Fig. 12. Comparison of energy efficiencies between the global optimal and
online strategies in multiple tunnels with different T̄ and p̄eh.

Similar to the single tunnel scenario, ∆E in the multiple
tunnels oscillates with dαe − α, but the highest amplitude
reduces with the length of energy tunnel in the long term.
This is verified in Fig. 12, which demonstrates the monotonic
decrease of the average ∆E with T . Recall that the main
reason causing the difference of energy efficiency between the
online and global optimal strategies is the potential superfluous
energy harvested occurred in the last energy request. With the
increase of tunnel length, the ratio of wasted energy to the total
harvested energy reduces, which results in less performance
degradation. For the similar reason, we can also observe the
difference of energy efficiency decreases with the growth of
p̄eh. With a larger p̄eh, the amount of energy to replenish is
more with a fixed length of energy tunnel and percentage of
the wasted energy in turn is reduced. Therefore, we can expect
comparable performance of the online strategy with the global
optimal solution in the long term.

IX. CONCLUSIONS

In this paper, we have presented an optimal energy request-
ing strategy, termed dual tunnel energy requesting (DTER), for
RF energy harvesting IoT. The key feature of DTER is that
both the nonlinear charging feature and the overhead issue are
taken into account to minimize the overall energy consump-
tion. We have investigated both offline and online scenarios
for DTER and evaluated them through theoretical analysis
and simulation study. Simulation results have demonstrated
that the online strategy achieves comparable energy efficiency
with the offline optimal solution in a long term. This paper
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provides a lower bound of the overall energy consumption at
both energy harvesting device and energy source. The research
of this paper is expected to shed light on the future research
of energy harvesting communications.

APPENDIX

A. Proof of Lemma 5
Proof. After tp, denote the overall energy consumption of an
EHD with a transmission rate r as E(r). Let reh1 and reh2 be
two transmission rates that reh1 is larger than zero and reh2
approaches zero, i.e., reh1 > 0 and reh2 → 0. According to (4),
we have that
E(reh1 )−E(reh2 )

=
f(reh1 )Deh

m

reh1
− lim
reh2 →0

f(reh2 )Deh
m

reh2

= lim
reh2 →0

[
f(reh1 )− reh1 f ′(reh2 )

]
Deh
m

reh1

= lim
reh2 →0

[
f(reh1 )−f(reh2 )−(reh1 −reh2 )f ′(reh2 )

]
Deh
m

reh1
> 0,

(21)
where f ′(·) represents the differentiation of f(·). The ex-
pression of E(reh2 ) involves 0/0. Since f(·) is continuously
differentiable, the L’Hôpital’s rule is applied to get the second
equation of (21). Additionally, the derivation of the last
inequality is based on the property of a strictly convex function
that f(x)−f(y)>f ′(y)(x−y). From (21), it can be obtained
that ∀ reh1 > 0, reh2 → 0 : E(reh2 ) < E(reh1 ). Accordingly, the
optimal transmission rate approaches zero after tp.

B. Notations
We list the definitions of all symbols used below.
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