Abstract:
Locomotion activity recognition (LAR) is important for a number of applications, such as indoor localization, fitness tracking, and aged care. Existing methods usually us...View moreMetadata
Abstract:
Locomotion activity recognition (LAR) is important for a number of applications, such as indoor localization, fitness tracking, and aged care. Existing methods usually use handcrafted features, which requires expert knowledge and is laborious, and the achieved result might still be suboptimal. To relieve the burden of designing and selecting features, we propose a deep learning method for LAR by using data from multiple sensors available on most smart devices. Experimental results show that the proposed method, which learns useful features automatically, outperforms conventional classifiers that require the hand-engineering of features. We also show that the combination of sensor data from four sensors (accelerometer, gyroscope, magnetometer, and barometer) achieves a higher accuracy than other combinations or individual sensors.
Published in: IEEE Internet of Things Journal ( Volume: 5, Issue: 3, June 2018)