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Abstract—Smart grids take advantage of information and com-
munication technologies to achieve energy efficiency, automation
and reliability. These systems allow two-way communications and
power flow between the grid and consumers. However, these bidi-
rectional communications introduce several security and privacy
threats to consumers. One of the open challenges in this context is
user privacy when smart meters are used to capture fine-grained
energy usage information. Although considerable research has
been carried out in this direction, most of the existing solutions
invariably introduce computational complexity and overhead,
which makes them infeasible for resource constrained smart
meters. In this paper, we propose a privacy-friendly and efficient
data aggregation scheme (EDAS) for dynamic pricing based
billing and demand-response management in smart grids. To the
best of our knowledge, this is the first paper to address privacy in
the context of billing under dynamic electricity pricing. Security
and performance analyses show that the proposed scheme offers
better privacy protection for electric meter reading aggregation
and computational efficiency, as compared to existing schemes.

Index Terms—Privacy, data aggregation, smart grids

I. INTRODUCTION

Smart-grids represent the next generation of power grids
which use extensive monitoring and measurements to manage
the operation of the grid, and achieve greater efficiency and
cost reduction. The combined volatility of both power supply
(e.g. with renewables) and power demand creates a growing
problem that needs to be resolved by smart grids. To enable
the envisioned energy management in smart grids, information
on current power consumption and the availability of power
needs to be exchanged between power consumers and power
suppliers. Hence, smart grids need a framework of intercon-
nected smart monitoring and measurement devices. Besides,
with the recent development in smart grids, many endeavours
have started to introduce the Internet of Things (IoT) as an
enabling technology for smart grids since each device in the
grid can be considered as a connected object [1]. In this regard,
devices in the smart grid such as smart meters act as IoT
devices that autonomously report their data to the grid infras-
tructure by using information and communication technology
(ICT). However, this interconnection of grid technology with
information and communication technologies leads to various
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security challenges in a power grid [2]. A key challenge and
major obstacle in the widespread deployment of smart grids is
privacy, which is a primary concern from the customer’s point
of view.

In general, for pricing and feedback purposes, a smart grid
relies heavily on the usage of a smart metering infrastructure.
For instance, smart meter data is useful for load forecasting,
demand-response management, and dynamic pricing. How-
ever, the recording and transmission of power consumption
profiles may cause serious privacy issues. For example, fine-
grained power consumption data of a smart meter can be ex-
ploited for revealing a consumer’s private information related
to their daily routines or the appliances in the house. This
can lead to personalized advertisements or be used extract
information on when a house is empty. In [2], it is shown
that complex usage patterns can be extracted from the high-
resolution consumption information using simple off-the-shelf
statistical tools, and the extracted information can be used to
profile and monitor users for various purposes. Thus, energy
usage data must be protected for privacy in a smart grid.
Furthermore, the computational resources at the consumer’s
side are usually very limited. Solutions for preserving user
privacy should thus be computationally inexpensive.

A. Related Work

In order to address the privacy issues, several privacy-
preserving data aggregation protocols have been proposed in
recent years. Lu et al. designed a privacy-preserving data
aggregation protocol [3] by using the Paillier homomorphic
crypto-system [4], which results in a high computation over-
head on the entities like smart meters. Liang et al. proposed
a usage-based dynamic pricing scheme for smart grids [5] by
using the fully homomorphic technique devised by Naehring
et al. [6]. As fully homomorphic techniques are difficult to im-
plement with current computing resources, this scheme is im-
practical. Chia-Mu et al. [7] introduced a ring signature based
scheme to protect usage profiles. However, its computational
cost increases with the size of the ring. In [8], a mesh-network-
based privacy-preserving data aggregation scheme has been
proposed using elliptic curve cryptography (ECC). However,
this scheme requires higher setup and computation cost. Zhang
et al. have proposed a self-certified signature scheme [9]
and Sui et al. have designed an incentive-based anonymous
authentication scheme [10]. These are constructed with the
assumption of an anonymity network, where the sources of
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usage reports are anonymous. Therefore, it is hard to identify
any smart meter or communication failure. Li et al. introduced
a different technique for data aggregation in smart grids in
a hop-by-hop way [11], [12]. But it is still unclear how to
construct the aggregation tree, and how to ensure aggregation
in case of failure. Besides, the public key signatures used
in these schemes result in higher computational cost. Apart
from the schemes above, there are few more data aggregation
protocols that have been introduced in recent years [13], [14],
[15], [16]. In [13] a discrete logarithm problem (DLP)-based
data aggregation scheme is introduced, in which the authors
allows a substation to access private data using a shared key.
Hence, this scheme cannot ensure strong privacy. In [14],
Kursawe et al. suggested a set of masking-based schemes for
privacy in smart grids. In their schemes, the authors utilized
the concept of Decisional Diffie-Hellman (DDH) group and
Bilinear mapping for checking the correctness of the shared
masking value, which are computationally expensive and ill-
suited for resource constrained smart meters. Knirsch et al.
have also proposed a masking-based approach for data aggre-
gation [15]. Their scheme utilizes the concept of homomorphic
hashing for checking the correctness of the shared secrets.
However, this construction has a couple of issues. First, it
is complicated to implement and computationally expensive
to execute. Second, it cannot ensure security of the hashed
data, and an attacker can compute the original message block
by taking the logarithm of the hash for that block. In [16]
a Paillier homomorphic encryption based data aggregation
protocol is proposed. However, in the proposed scheme, the
usage reports transmitted by each smart meter SM i reveals it’s
identity IDSMi , which is fixed for all transactions. Therefore,
an adversary can easily understand that the usage data is from
the same consumer’s end and can easily link the IDSMi

to an
actual user. Thus, the scheme presented in [16] cannot ensure
anonymity of a consumer. Mohammed et al. have proposed
a multi-hop based data aggregation scheme [17]. However,
in their scheme the usage report is transmitted without any
integrity protection. Besides, during data aggregation, a smart
meter is not authenticated. Consequently, a dishonest or fake
smart meter may falsify the data, which will cause an in-
accurate aggregated result. Apart from [3-17], recently two
more interesting data aggregation schemes have been pro-
posed [25-26]. However, these schemes are designed upon the
computationally inefficient operations (such as EC-ElGamal
cryptosystem and complex parabolic function). Hence, they
would be infeasible for the resource constrained smart meters.

B. Problem Statement and Motivation

The collection of fine-grained energy consumption data is
necessary for a number of smart-grid features and applications.
For example, implementing dynamic electricity pricing based
on time-of-day schedules, demand-side management through
financial incentives, and energy demand-response management
requires the collection of meter readings multiple times a
day. Also, consumers may wish to know their energy usage
information on a given day or period in order to adjust their
energy consumption. Therefore, the utility or its designated

data aggregator needs the ability to collect smart meter
readings at arbitrary intervals or periods. Although several
existing techniques have been proposed for privacy-preserving
data aggregation for billing or demand-response management
of energy in smart grids, most of the existing schemes are
based on computationally expensive operations such as Paillier
crypto system, lattice-based encryption, ElGamal encryption
etc. On the other hand, in the existing masking-based schemes,
for verifying the correctness of the masking secrets, they
also use the computationally expensive operations such as
DDH group and Bilinear mapping, or homomorphic hashing,
which are not suitable for the resource-limited smart meters.
For example, a smart meter from Atmel’s family with ARM
Cortex-M4 processor can provide a maximum CPU speed
of 720 MHz [20]. As such, this smart meter may not be
suitable to perform any computationally expensive operations.
Also, since smart grid systems are mostly operated in a
large scale, computationally expensive operations may impair
the efficiency of the system. Furthermore, existing billing
solutions in the literature consider a constant tariff price rate
throughout the day (even for the whole month), which is not
suitable for the dynamic electricity pricing-based billing model
used in many counties (such as Finland, Estonia, Norway,
etc.) [22]. For instance, in Portugal, tariff price rate varies
four times in a day based on peak (3 hours/day), half-peak
(14 hours/day), normal off-peak (3 hours/day) and super off-
peak (4 hours/day). For that, we need a dynamic pricing-based
billing model.

This paper seeks to address all these issues by proposing an
efficient data aggregation scheme (EDAS) for privacy-aware
secure billing systems and facilitating applications such as
balancing the power production and demand in smart grids.
Our proposed scheme is based on symmetric key cryptographic
primitives such as hash functions, which cause very limited
computational overhead and data aggregation time and hence
is suitable for the resource constrained devices in smart grids.
The key contributions of this paper can be summarized as:

• An efficient authentication and key establishment scheme
is developed for data aggregation for dynamic pricing-
based billing.

• A computationally efficient, lightweight data aggregation
scheme, EDAS, is proposed for dynamic pricing-based
billing systems that ensures the privacy of the consumer’s
identity as well as the usage data. To the best of our
knowledge, this is the first paper to address privacy in
the context of billing under dynamic electricity pricing.

• A novel data aggregation scheme for a group of con-
sumers (e.g. from a region/locality) is proposed that does
not compromise the privacy of any individual customer.

• The proposed scheme provides a higher degree of effi-
ciency. Specifically, the proposed scheme does not need
to perform any asymmetric cryptographic operations.

The rest of the paper is organized as follows. In Section II,
we present the underlying smart grid model, adversary model,
and security goals that are relevant to this paper. Section
III presents the proposed EDAS scheme and its security is
analyzed in Section IV. A discussion on the performance of
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TABLE I
NOTATIONS AND CRYPTOGRAPHIC FUNCTIONS

Symbol Definition
SP Service provider

HAN Home area network
HG Home gateway
SM Smart meter
TPA Third-party aggregator
SIDi Shadow identity of the HGi

TIDi Temporary Identity of the HGi

ki Secret key of the HGi

Kas Shared secret key between TPA and SP
khi Shared integrity key between HGi and TPA

ENCk[x] Plaintext x encrypted using key k
Mij Meter reading of the smart meter SMi at time interval Tj

the proposed scheme is presented in Section V and Section VI
concludes the paper. The symbols and cryptographic functions
used in this paper are defined in Table I.

II. SYSTEM AND ADVERSARY MODEL, AND SECURITY
GOALS

In this section, we first describe the network architecture of
the proposed privacy-preserving data aggregation mechanism
and present the underlying adversary model. Subsequently, we
define the security goals of our proposed scheme.

A. System Model

Figure 1 shows our system model for the smart metering
infrastructure which is used to develop the proposed scheme.
Our system model consists of five major entities: a service
provider (SP), a third-party aggregator (TPA) employed by the
service provider, a set of smart meters (SMs), a set of home
gateways (HGs), and numerous home area networks (HANs).
In our system model, the SP is responsible for procuring elec-
tricity from the producers, supplying electricity to consumers,
and sending billing notification to each HAN. The TPA is
responsible for accumulating the power consumption data of
each HAN. At the end of each day or any specific period, the
TPA sends the aggregated data to the SP for billing purposes.
In this way, the TPA assists the SP to implement dynamic
pricing-based billing and also reduces the overhead of the SP.
Next, each HAN is composed of a SM, a HG, and a set of
home appliances (HAs). Each SM is connected with its HG
through a trusted link. A HG periodically collects reading from
the SM and sends it to the TPA. The communication between a
SM and its HG is through WiFi. Each HG communicates with
the TPA through a Long-Term-Evolution-Advanced (LTE-A)
network. Note that while the network model is provided for
completeness, the proposed EDAS scheme does not rely on
any specific underlying networking technology.

B. Adversary Model

In our system model, the SP handles the billing process.
Therefore, the SP has to know relevant information about
the consumer such as the consumer’s name and the mailing
address etc. Hence, in our adversary model we consider the
SP as a trusted organization (e.g. owned by the government,

Fig. 1. System model for smart metering infrastructure.

such as Singapore Power in Singapore and National Grid in
United Kingdom). On the other hand, the TPA is owned by
a private company whose main responsibility is to assist the
SP. Therefore, in our system model we consider the TPA as
a honest-but-curious entity, who may want to know the con-
sumption data of each HAN and subsequently may try to sell
the usage information to another company, e.g. for marketing
materials for home appliances. Various elements inside the
communication network may also act as adversaries and be
interested in private details of the power consumption of each
HAN. A compromised network and its various elements (like
router or switch) can alter or fabricate the meters’ consumption
data. Hence, any communication through the network may not
be secure. Usually, the TPA and the communication network
(like LTE-A) are owned and operated by two different orga-
nizations, and therefore we assume that they do not collude
with each other. Also, any HG may act as an adversary and be
interested to know the consumption data of another HG from a
different HAN. An outside attacker may try to impersonate as
a legitimate entity that can be a HG, or the TPA, to send data
under its name. For instance, a dishonest or fake HG could
falsify the data for causing inaccurate aggregation result. In
addition, the outside attacker may eavesdrop on the network
transmission media for obtaining the power consumption data
and also may try to alter or retransmit them.

C. Security Goals

• Authentication: Before aggregating any data, the TPA
needs to authenticate each HG in order to prevent in-
accurate aggregation results. On the other hand, before
obtaining the aggregated data from the TPA through the
insecure public communication channel, the SP needs to
authenticate the TPA.

• Usage Data Confidentiality: The secrecy of the end-to-
end communication is vital and the electricity consump-
tion data should be kept secret from any third party for
protecting the privacy of the customer. In this regard, if
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Fig. 2. Authenticated initialization and refilling process.

an outsider or an inside adversary like other HGs from
different HANs or the TPA obtains the messages with
electricity consumption information, then he/she should
not be able to comprehend the encrypted message.

• Usage Data Integrity: The TPA should be able to verify
the integrity of the data received from each HG of a
HAN. Similarly, the SP needs to check the integrity of
the aggregated data received from the TPA.

• Consumer Privacy: The TPA should not be able to ex-
tract any private information (e.g, name, address, contact
number, etc.) of a HAN user. Only the SP should have
the ability to know a consumer’s real identity, and their
electricity usage. This is necessary for determining the
actual electricity consumption and proper billing services.
In addition, after eavesdropping the usage data, an outside
adversary should not be able to comprehend that the data
is from a particular consumer’s end.

• Forward Secrecy: Forward secrecy is extremely impor-
tant since cryptographic computations, e.g., encryption,
and authentication, are often carried out during data
aggregation. In a scheme with forward secrecy, secret
keys are evolved at regular time periods. Exposure of
a secret key corresponding to a given time period does
not enable an adversary to break the scheme for any prior
time period. In other words, forward secrecy ensures that
the messages of prior time periods are confidential even
if the current time period’s key has been compromised.

To improve the security level of smart meters, forward
secrecy should be considered. Now, to ensure forward
secrecy in our proposed scheme, it is important that the
exposure of shared secret keys of HGi , TPA, and SP
should not enable the adversary to obtain the aggregated
meter reading and billing information of each user in the
previous time periods.

III. PROPOSED ENERGY-EFFICIENT DATA AGGREGATION
SCHEME - EDAS

In this section we present our EDAS which consists of three
phases: authenticated initialization and refilling, data aggrega-
tion for dynamic pricing-based billing, and data aggregation
for demand-response management. In the authenticated ini-
tialization and refilling phase, a home gateway HGi and the
aggregator TPA mutually authenticate each other with the help
of the SP and subsequently establish an integrity key khi , a set
of random integers, and temporary identities between them. In
addition, through this phase, both the HGi and the TPA can
update their integrity key and establish a new set of temporary
identities. In the data aggregation for dynamic pricing-based
billing phase, the TPA anonymously accumulates the usage
data and eventually sends it to the SP for billing. In the
final phase of EDAS, the TPA anonymously accumulates and
aggregates the usage data of a group of HANs in order to
assists the SP with demand-response management.
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Fig. 3. Proposed computationally efficient and lightweight data aggregation scheme for secure dynamic pricing-based billing process in smart grids.

A. Authenticated Initialization and Refilling

Assume that there are n HANs in a locality which obtain
power supply from the SP. During meter installation of a home
HANi , the SP randomly generates a shadow identity SIDi and
a secret key ki and assigns them to the HG of HANi . This
phase of the proposed scheme consists of the following steps:

Step 1: HGi generates a nonce Ng and computes V1 =
h(SIDi ||Ng ||ki). Then, HGi composes a request message
MA1

: {SIDi ,Ng ,V1} and sends it to the TPA. Since, a
particular shadow identity SIDi cannot be used twice, the
request message MA1 cannot be replayed. Moreover to address
the loss of synchronization issue or denial of service (DoS)
attack [19], both HGi and the SP can maintain a set of
pseudo identities PIDi = {pid1 , pid2 , · · · , pidn}, where each
identity can be used only once and after that it must be deleted
by both sides.

Step 2: Upon receiving the request message MA1 , the
TPA generates a random number Na and computes V2 =
h(IDA||Na ||Kas). Subsequently, the TPA creates a message
MA2

: {MA1
, IDA,Na ,V2} and sends it to the SP.

Step 3: After receiving the message MA2
, the SP first

tries to identify SIDi and then checks V1 and V2 . If these
parameters are valid, then the SP randomly generates an
integrity key kh , a new shadow identity SIDnew

i , and picks
a set of q random integers Riq = {ri1 , ri2 , · · · , riq} drawn
uniformly from [a, b], where a and b are chosen to be orders
of magnitude larger than the typical meter value. For instance,
in the USA the average power consumption of a house is
about 15 kWh each day. In this scenario, a and b may be
chosen as 106 and 108, respectively. To ensure better privacy,

the choice of a and b should be changed regularly. Now, the
SP computes R∗

iq = ENCki{ri1 , ri2 , · · · , riq}, SIDnew∗
i =

h(SIDi ||ki) ⊕ SIDnew
i , kHG

h = h(IDHGi ||ki ||Ng) ⊕ kh ,
kA
h = h(IDA||Kas ||Na) ⊕ kh , V3 = h(kA

h ||Kas ||Na), and
V4 = h(kHG

h ||ki ||R∗
iq||SIDnew∗

i ). It then composes a message
MA3 : {(SIDnew∗

i ,R∗
iq, k

HG
h ,V4)||(kA

h ,V3)} and sends it to
the TPA. Here, ENC denotes symmetric-key-based encryption
using the Advanced Encryption Standard (AES).

Step 4: On receiving MA3
, the TPA first validates V3.

If the validation is successful, then the TPA decodes kh =
h(IDA||Kas ||Na) ⊕ kA

h and generates a set of q unique
temporary identities TIDiq = {tidi1 , tidi2 , · · · , tidiq}. Next,
the TPA derives TID∗

iq = ENCkh (TIDiq), V5 = h(TID∗
iq ||

kh ||IDA) and creates a message MA4
: {(SIDnew∗

i , R∗
iq, k

HG
h ,

V4)||(TID∗
iq ||V5 )} and sends it to HGi .

Step 5: Upon receiving the message MA4
, HGi first

computes and verifies V4 and then decodes kh =
h(IDHGi ||ki ||Ng) ⊕ kHG

h and SIDnew
i = h(SIDi ||ki) ⊕

SIDnew∗
i . Hereafter, HGi verifies the parameter V5. If all

the validations are successful, HGi decrypts Riq from R∗
iq ,

and TIDiq from TID∗
iq , and stores {TIDiq ,Riq , kh} for data

aggregation. Details of this phase are also depicted in Fig. 2.

B. Data Aggregation for Dynamic Pricing-based Billing

In this subsection, we present our privacy-friendly and
efficient data aggregation scheme for dynamic pricing-based
billing, where we consider the variations in tariff prices
throughout the day according to the time-of-day period sched-
ules. After a pre-defined schedule of the time interval Tj ,
HGi collects the meter reading of SMi , selects the next
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Fig. 4. Proposed computationally efficient and lightweight data aggregation scheme for demand-response management in smart grids.

unused masking value rij ∈ Riq , and calculates the blinded
measurement Xij = {Mij + rij}, where it is assumed
that rij ≫ Mij . Then, HGi selects an unused temporary
identity tidij ∈ TID{tidi1 , tidi2 , · · · , tidiq}, generates a
timestamp tgi , and computes Hij = h(Xij ||kh ||tgi). Finally,
HGi composes a message {tidij , tgi ,Xij ,Hij} and sends it
to the TPA. Then, HGi deletes the pair of used (rij , tidij )
from the respective lists. Note that once all the masking
values Riq = {ri1 , ri2 , · · · , riq} and temporary identities
tidij ∈ TID{tidi1 , tidi2 , · · · , tidiq} are used up, HGi needs
to execute Phase 1 again.

Now, upon receiving the usage data, the TPA first lo-
cates and validates the temporary identity tidij , along with
the timestamp tgi and key-hash integrity output Hij . If the
validation is successful, the TPA stores Xij in its database.
Otherwise, the TPA terminates the accumulation process and
asks HGi to send the reading again. At the end of the
day (or any desired interval), the TPA generates a times-
tamp ta and then computes XACC =

⊗q
j=1{Xij}, E =

ENCKas
(SIDi ||ta), and δ = h(SIDi ||Kas ||XACC ||ta). Here,⊗

denotes the accumulation of the blinded measurements, i.e.,
{Xi1||Xi2|| · · · ||Xiq}. Finally, the TPA composes a message
∆ = {IDA,E , δ,XACC} and sends it to the SP. After receiv-
ing the power consumption information ∆, the SP first de-
crypts E and then validates the timestamp ta , and δ. If the val-
idation is successful, the SP locates Riq = {ri1 , ri2 , · · · , riq}
and the list of tariff prices Tar [q ] = {tar1, tar2, · · · , tarq} for
each interval and subsequently computes the bill amount for
the day d, i.e., Billdi =

∑q
j=1(Xij − rij )Tar [j ] and stores

Billdi in its database. Thus, the consumer can see his/her

energy usage for each day. At the end of the month, the
SP calculates the billing amount BAi =

∑n
d=1 Bill

d
i . After

calculating BAi, the SP locates the consumer information and
sends the bill to the owner of HANi . Details of this phase are
depicted in Fig. 3.

Note that for the correctness of the proposed scheme, both
the SP and HGi should sequentially use the masking values
from Riq = {ri1 , ri2 , · · · , riq}. For instance, if it is assumed
that there are five different tariff prices throughout the day,
then HGi needs to send the usage information of HANi

five times (T1, T2, · · · , T5) in a day. Now, we further assume
that after the execution of each authenticated initialization
and refilling phase, HGi receives five masking values, i.e.,
Ri5 = {ri1, ri2, · · · , ri5}. Therefore, both the SP and HGi

are required to use Ri5 in the following way: {ri1 (at T1), ri2
(at T2), · · · , ri5 ( at T5)}. However, for better performance of
the proposed scheme, we assume that after execution of each
authenticated initialization and refilling phase, HGi receives
the masking values for two to three days.

C. Data Aggregation for Demand-Response Management

For maintaining balance between power production and
demand, the SP needs to know the electricity usage of its users
or any sub-group of its users (e.g. from a specific geographic
region) on a regular basis (say, every one or two hours).
Consider a group of n users for aggregation. In this regard, the
SP maintains a n × q matrix (P ) of random integers, whose
i-th row comprises of the vector Riq = {ri1 , ri2 , · · · , riq} that
was generated for and shared with HGi during the execution
of the authenticated initialization and refilling phase. All HGs
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are synchronized with respect to their vector Riq and for any
time period Tj specified by the SP or the TPA, each HAN
uses the j-th element of its vector of random variables (i.e.,
rij for HGi ). Our data aggregation process then consists of
the following steps:

Step AG1: At a particular time interval Tj , the SP selects
the corresponding column of M and calculates ColjSum =∑n

i=1 P [i ][j ]. It then generates a time stamp tsp and computes
∆SP = ENCKas (ColjSum ||Kas), HSP = h(∆SP ||Kas ||tsp),
and subsequently sends {∆SP ,HSP , tsp} to the TPA.

Step AG2: Upon receiving {∆SP ,HSP , tsp}, the TPA first
checks whether the time stamp tsp and HSP are valid or not.
If they are valid, the TPA decrypts and obtains ColjSum from
∆SP . Then the TPA asks the HGs to return their reading for
that interval.

Step AG3: Next, each gateway HGi picks an unused
temporary identity tidij ∈ TID and selects the predefined
random integer rij from its array, which was assigned for
that particular interval. The HGi then collects the meter
reading Mi for that interval from SMi and generates a
time stamp tgi . HGi then calculates its blinded measurement
Xi = Mi + rij , computes Hi = h(X1 ||khi ||tgi), composes a
message {tidij , tgi ,Xi ,Hi}, and sends it to the TPA.

Step AG4: After receiving the meter reading from each
home gateway HGi , the TPA first checks tgi and Hi , and
then maps tidij into SIDi . It then computes the sum of the
blinded measurement SumBM =

∑n
i=1 Xi , and obtains the

aggregated result of the actual measurement by SumAM =
SumBM − ColjSum . Thus the TPA obtains the aggregated
power consumption data of the HANs, which may be used
as an input for demand-response management.

Note that in our system if any of the checks in the steps
above fails, this phase of the proposed scheme is aborted.
Besides, to expedite the performance of the above data ag-
gregation scheme, the SP can pre-compute ∆SP and HSP for
several sessions and send them to the TPA. Finally, in order
to ensure forward secrecy in the proposed scheme, at the end
of each interaction, all the three entities (HGi , the TPA, and
the SP) need to update their shared secret keys. For example,
after sending/receiving the aggregated data of each day, both
HGi and the TPA need to update the hash-integrity key with
k∗
hi = h(khi ||tgi). In case of loss of synchronization or denial

of service (DoS) attack [19], both HGi and the TPA need to
execute the authenticated initialization and refilling phase of
the proposed scheme. Details of this phase are depicted in Fig.
4.

IV. SECURITY ANALYSIS

In this section, we demonstrate that the proposed scheme
can achieve all the security goals listed in Section II.

1) Accomplishment of Authentication: In the authenticated
initialization and refilling phase of EDAS, the SP authenticates
HGi by verifying the shadow identity SIDi and V1 in the re-
quest message MA2

, where only a legitimate HGi can generate
the valid key-hash output V1. Besides, the SP authenticates
the TPA by using the request parameter V2, which must be
equal to h(IDA||Na ||Kas). On the other hand, both HGi and

the TPA authenticate the SP by using the response parameters
V3 and V4, respectively. Now, in the data aggregation for
billing phase of EDAS, before accumulating any usage data,
the TPA authenticates HGi by using the time-stamp tgi and
the response Hij . Moreover, in this phase of EDAS, the SP
authenticates the TPA by using the hash-response parameter
δ. On the other hand, in the data aggregation for balancing
demand-response phase of EDAS, the TPA authenticates HGi

by using the time-stamp tgi and the response Hi . Finally, in
EDAS, if an adversary tries to perform any replay attempt, the
receiving end can easily comprehend such attacks by using the
timestamps {tgi , ta}. Therefore, the proposed scheme is also
secure against replay attacks.

2) Accomplishment of Usage Data Confidentiality: The
amount of electricity usage in HANi is blinded with the
random integer rij . Hence, the TPA can only see the blinded
measurement of a HAN or the summation of the usage data
of a group of HANs. As each element of Riq is unique and
random, even if two consecutive readings from a HAN or the
readings from two HANs are the same, an adversary (even the
TPA) cannot comprehend that from the blinded measurements.
Thus, the pattern of the electricity consumption is protected
from detection by any eavesdropper.

3) Accomplishment of Usage Data Integrity: In the data
aggregation for billing phase, we ensure two levels of data
integrity. In the first level, the TPA checks whether it has
received the same data as that was sent by HGi . For that,
the TPA computes H ∗

ij and checks whether H ∗
ij is equal to

Hij or not. Similarly, in the second level, the SP invokes the
key-hash oracle and computes δ∗ to check the integrity of the
aggregated electricity consumption by comparing δ∗ with δ.
This approach facilitates the detection of any manipulation of
the aggregated usage data during communication. On the other
hand, in the data aggregation for balancing demand-response
phase of EDAS, the TPA checks the integrity of the usage
data by using the parameter Hi , which helps to prevent the
generation of an inaccurate aggregated result.

4) Accomplishment of Consumer Privacy : In EDAS, ex-
cept for the SP, no one can gain knowledge of any private
information of a HAN user. The TPA only knows the shadow
identity SIDi and uses that to accumulate the readings for
each HAN. Besides, while sending the usage data, HGi is
not allowed use the same temporary identity tidij twice. No
one except the TPA can recognize the mapping between tidij
and SIDi . Therefore, an outsider cannot guess whether the
usage data for two consecutive days are from the same HAN
user. This approach of the proposed scheme is quite useful for
achieving privacy against eavesdropper (PAE) [21].

5) Accomplishment of Forward Secrecy : EDAS uses a
regular update of the shared keys khi and Kas . For instance,
after sending/receiving the usage data of each day, both HGi

and the TPA need to update the hash-integrity key kh with
k∗
h . Now, even if the integrity key k∗

h is revealed, an attacker
cannot obtain kh from k∗

h since the hash function h(·) is one-
way. In this way, EDAS can prevent an attacker from obtaining
any previous aggregated usage data and billing information.
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TABLE II
PERFORMANCE BENCHMARKING BASED ON SECURITY PROPERTIES

(NOTATION: A: AUTHENTICATION; DC: DATA CONFIDENTIALITY; DI:
DATA INTEGRITY; CP: CONSUMER PRIVACY; FS: FORWARD SECRECY).

Scheme A DC DI CP FS
Li et al. [12] No Yes Yes No Yes

Fouda et al. [13] Yes No Yes No Yes
Kursawe et al. [14] No Yes Yes No No
Knirsch et al. [15] No Yes Yes No Yes

Jo et al. [16] Yes Yes Yes No Yes
Mohammed et al. [17] No Yes No Yes Yes

EDAS Yes Yes Yes Yes Yes

TABLE III
PERFORMANCE BENCHMARKING BASED ON COMPUTATION AND

COMMUNICATION COST (NOTATION: H: HASH OPERATION; ASE/D:
ASYMMETRIC ENCRYPTION/DECRYPTION; SE/SD: SYMMETRIC
ENCRYPTION/DECRYPTION; MEO: MODULAR EXPONENTIATION

OPERATION).

Performance Matrices Fouda et al. [13] EDAS

Key-establishment Cost 2ASE+2ASD 2SE+2SD
+4MEO+2H +15H

Computation Cost at HG 1SE+1H 1H
Computation Cost at TPA 1SD+1H 1SE+1H
Computation Cost at SP - 1SD+1H

Communication Cost (HG-TPA) 56 bytes 72 bytes
Communication Cost (TPA-SP) - 80 bytes

V. PERFORMANCE ANALYSIS AND COMPARISONS

The objective of EDAS is not only to fulfill several security
requirements in smart grids, but also to ensure that the com-
putational and communication overhead is reasonable during
the data aggregation process. To manifest the advantages
of EDAS, we compare EDAS with recently proposed data
aggregation schemes for smart grids: [12], [13], [14], [15],
[16], and [17]. We also demonstrate that EDAS is well suited
for resource limited smart grid devices (like smart meters
and home gateways). In order to analyze the performance
of EDAS, particularly on the security front, our scheme has
been compared with five state-of-the-art protocols [12], [13],
[14], [15], [16], and [17] (shown in Table II), by considering
all the security goals listed in Section II. From Table II we
see that EDAS can ensure all the security goals listed in
Section II, in contrast to the protocols presented in [12], [13],
[14], [15], [16], and [17] that only guarantee a subset of the
requirements. For instance, in [12], [14], [15], and [17], while
data aggregation the identity and the legitimacy of the smart
meters are not verified. Consequently, a dishonest or fake smart
meter may falsify the data, which will cause an inaccurate
aggregated result. On the other hand, in [12], [13], [14], [15],
[16], and [17], the smart meters reveal their fixed identity while
transmitting the usage data. As a consequence, an adversary
can easily comprehend that the usage data is from the same
HAN. Therefore, [12], [13], [14], [15], [16], and [17] cannot
ensure consumer privacy.

Next, we consider the computation and communication
costs for analyzing the performance of the data aggregation
for billing phase in EDAS with respect to other existing
schemes. To ensure fairness, we compare EDAS with the
scheme in [13] because both of these schemes use symmetric-

key crypto systems to ensure privacy and integrity of the
usage data for billing process. Before data aggregation, both
the schemes require the establishment of a shared secret key
between the HG and the TPA through an authenticated key-
exchange protocol. However, it should be noted that unlike
[13], for maintaining forward security EDAS does not need
to execute the authenticated key-establishment protocol for
each transaction. Instead, once all the random integers Riq are
used up, EDAS executes the key-establishment protocol of the
authenticated initialization and refilling phase for obtaining
the new set of random integers (the results presented here
use sets of 10 random integers). On the other hand, the key
establishment protocol in [13] is based on the computationally
expensive Diffie-Hellman key exchange scheme. In contrast,
EDAS is based on the lightweight cryptographic primitives
like one-way hash function, exclusive-OR, etc. (shown in Table
III).

Next we present experimental results to analyze the per-
formance of the proposed scheme more comprehensively.
Table IV presents the experiential specifications, including the
hardware, computational, and communication specifications.
For measuring the computation time of different cryptographic
operations used in [13] and/or EDAS, we conducted simula-
tions of their cryptographic operations on an Intel Core i5-
2500 processor with CPU speed 3.3 GHz (operating as the
SP), an AMD E450 processor with 1.65 GHz CPU speed
(operating as the TPA), and a HTC One X with ARM Cortex-
A9 MPCore processor with 890 MHz CPU speed (operating
as a HG). Moreover, the scheme presented in [13] uses
asymmetric encryption during its key-establishment process
and both EDAS and [13] use symmetric key encryption and
hash operations during data aggregation. Hence, we emulate
the Advance Encryption Standard with Cipher Block Chaining
(AES-CBC) mode, the Elliptic Curve Integrated Encryption
Scheme (ECIES), and SHA-256, as the symmetric encryption,
asymmetric encryption, and hash operation, respectively. The
simulation uses Java Cryptography Extension (JCE) [25] to
evaluate the execution time of different cryptographic opera-
tions.

Based on our experimental results, the key-establishment
process in [13] takes 147.48 ms on an average. Besides, for
securely transferring 56 bytes of usage data, the protocol
incurs 5.32 ms of communication cost. In our experiments,
we consider the size of the usage data for each transactions
to be 8 bytes, and the size of the identity of a HG and the
hash integrity outputs to be 128 bits and 256 bits, respectively.
Ensuring privacy and integrity of the usage data in [13]
incurs 0.0075 ms of computation cost. Overall, the average
computation and communication cost for data aggregation and
billing process in [13] for an entire month is N × 152.9 ms,
where N denotes the number of times the aggregated usage
data is sent from a HG to the TPA in a month. One the other
hand, the key-establishment process in EDAS takes 57.03 ms.
In addition, transferring 72 bytes of data (including usage data
of 8 bytes) between a HG and the TPA takes 6.49 ms. At the
end, for transferring billing information to the SP, EDAS takes
9.63 ms. Overall, the entire computation and communication
costs for the data aggregation and billing process for each
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TABLE IV
EXPERIMENTAL SPECIFICATIONS

Specification HG TPA SP
Hardware Specification HTC One X with ARM Cortex-A9 MPCore processor AMD E450 processor Intel Core i5-2500 processor

Computation Cost of the Cryptographic Operations Used in [13] and EDAS
Computational Specification HG TPA SP

SHA-256 0.00067 ms 0.00042 ms 0.00037 ms
AES-CBC-256 Encryption 0.0027 ms 0.0012 ms 0.00097 ms
AES-CBC-256 Decryption 0.0043 ms 0.0031 ms 0.0019 ms

Modular Exponentiation Operation 13.56 ms 8.93 ms -
Elliptic Curve Integrated Encryption (ECIE) 17.37 ms 11.54 ms -

Communication Cost
Communication Specification HG-TPA TPA-SP

Link Type One-hop Wireless (802.11) Wired (Internet)
Average Transmission Time for 896-bits 12.32 ms 16.19 ms

month in EDAS is x × 57.03 + N × 6.49 + d × 9.63 ms,
where x is the number of executions of the authenticated
initialization and refilling phase in a month and d is the
number of days in a month. Fig. 5 shows the total cost with
respect to the number of HG data transmissions in a month.
From Fig. 5, we see that if a HG sends it’s meter reading
twice in every day to the TPA (i.e. N = 60), d = 30 and
x = 15 (i.e., one execution of the authenticated initialization
and refilling phase every two days), then the scheme presented
in [13] takes 9174 ms, whereas EDAS takes only 1533.3 ms.
Finally, we consider the performance of the demand-response
management phase in EDAS with the existing schemes. For
this, we conducted simulations of the cryptographic operations
used by the existing data aggregation schemes and by the
proposed scheme on an AMD E450 processor with 1.65 GHz
CPU speed (operating as the TPA or SP), and a HTC One
X with ARM Cortex-A9 MPCore processor with 890 MHz
CPU speed (operating as a HG). The simulations used the
JPBC library Pbc-0.5.14 [23], JCE [25], and the Pailler library
libpaillier-0.8 [24] to evaluate the execution time of different
cryptographic operations. Table V shows the variation in the
aggregation time for different numbers of SMs in the proposed
scheme, and others. It can be seen from Table V that the
aggregation time for the Pailler encryption based Li et al.’s
scheme is higher than others. On the other hand, the data
aggregation time for the proposed scheme is significantly
lower as compared to the others. Hence, the proposed scheme
is better suited for efficient data aggregation in smart-grids.

VI. CONCLUSION

In this paper, we proposed an efficient data aggrega-
tion scheme (EDAS) for secure and privacy-aware dynamic
pricing-based billing, and demand-response management in
smart-grids. It is designed using lightweight symmetric-key-
based cryptographic primitives. We analyzed the security of
the proposed scheme and it was shown that EDAS can ensure
several security properties like authentication, data privacy,
data integrity, etc., which are highly important for smart grid
security. Moreover, it was shown that EDAS has significantly
lower computation and communication cost as compared to
other data aggregation schemes. Hence, we argue that EDAS
is efficient, practical, and more suitable for applications with

Fig. 5. Performance comparison between Fouda et al.’s scheme [13] and
EDAS-based Billing Approach in terms of total data aggregation time.

TABLE V
VARIATION OF AGGREGATION TIME FOR VARIOUS NUMBER OF SMS

Schemes No of Smart Meters Aggregation Time

Li et al. [12]
200 3216 ms
400 5829 ms
500 7210 ms

Fouda et al. [13]
200 1.87 ms
400 3.73 ms
500 4.65 ms

Kursawe et al. [14]
200 2364 ms
400 4698 ms
500 5880 ms

Knirsch et al. [15]
200 89.6 ms
400 123.45 ms
500 165.97 ms

Jo et al. [16]
200 1247 ms
400 2189 ms
500 2685 ms

Mohammed et al. [17]
200 875 ms
400 1546 ms
500 2317 ms

EDAS
200 0.185 ms
400 0.37 ms
500 0.56 ms
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real time requirements than other similar approaches for smart
grid security.
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